4723 Core Mathematics 3

1 <u>Eith</u>	her: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1 4	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$ Attempt solution of quadratic equation	B1 M1	or equiv at least as far as factorisation or use of formula
	Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
	Obtain 0	B1 4	ignoring errors in working
2 (i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative
	Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord -3 indicated	A1 2	y-axis and positive x-axis
(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	M1	with correct curvature and crossing each negative axis
	Show correct graph with x-coord -3 indicated and y-coord -4 indicated	A1 A1	
	[SC: Incorrect curve earning M0 but both correct interce		cated B1]
		3	-
3	Attempt use of product rule	M1	+ form
	Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
	Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
	Obtain $y - e^2 = 3e(x - e)$	A1 √	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
	Obtain $y = 3ex - 2e^2$	A1 6	in terms of e now and in requested form
4 (i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant <i>k</i> ; any $n < \frac{5}{2}$
	Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
	Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
(ii)	Attempt relevant calculations with 0.3 and 0.4 Obtain at least one correct value	M1 A1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Obtain two correct values and conclude appropriately	A1	0.4 0.3515 0.0485 113.8 noting sign change or showing 0.3 < f(0.3) and $0.4 > f(0.4)$ or showing gradients either side of 100

(iii)	Obtain correct first iterate	B1	
	Carry out correct process Obtain 0.3553	M1 A1	finding at least 3 iterates in all answer required to exactly 4 dp
	obtain 0.5555	3	answer required to exactly 4 up
	$[0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0.3577 \rightarrow 0.35777 \rightarrow 0.357777 \rightarrow 0.357777 \rightarrow 0.357777$	0.35534	
	$0.35 \rightarrow 0.35575 \rightarrow 0.35528 \rightarrow 0.4 \rightarrow 0.25146 \rightarrow 0.25562 \rightarrow 0.25562$		
	$0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.466$	0.35529	$\rightarrow 0.35532$
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants <i>a</i> , <i>b</i> , <i>c</i>
	State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8	A1	allow 42 or greater accuracy; allow 0.73
	Obtain 138.2 and no other values between 0 and 180	A1	allow 138 or greater accuracy
	[SC: Answers only 41.8 or B1; 138.2 or .	$\frac{1}{6}$	o others B1]
(b)(i	i) State $\frac{7}{6}$	 B1	
	0	1	
(ii	i)Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	 M1	or equiv retaining exactness; condone sign
			errors
	Obtain $\frac{13}{36}$	A1	or exact equiv
		2	
6	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k_1 e^{nx}$	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e^0
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B1	for $y = e^{3x}$ and/or $y = (2x-1)^4$
	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
y^2			
	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1	or similarly simplified exact equiv
		9	
7 (i)	State $A = 42$	B 1	
, (1)	State $k = \frac{1}{9}$	B1	or 0.11 or greater accuracy
	Attempt correct process for finding <i>m</i>	M1	involving logarithms or equiv
	Obtain $\frac{1}{9} \ln 2$ or 0.077	A1	or 0.08 or greater accuracy
	,	4	
(ii)	Attempt solution for <i>t</i> using either formula	<u>M1</u>	using correct process (log'ms or T&I or)
	Obtain 11.3	A1	or greater accuracy; allow 11.3 ± 0.1
(***)	Differentiate to altrein former D Ml	2	and and D is different from A
(m)	Differentiate to obtain form Be^{mt}	M1	where B is different from A
	Obtain 3.235e ^{0.077t} Obtain 47.9	A1√ A1	or equiv; following their A and m allow 48 or greater accuracy

8	(i)	Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or $\cos \theta \cos 60 - \sin \theta \sin 60$ Attempt expansion of both with exact numerical values attempted Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	B1 M1 A1	and with $\cos 60 \neq \sin 60$ or exact equiv
		2 2 2	3	
	(ii)	Attempt correct process for finding <i>R</i> Attempt recognisable process for finding α Obtain $\sqrt{7}\sin(\theta + 70.9)$	M1 M1 A1 3	whether exact or approx allowing sin / cos muddles allow 2.65 for <i>R</i> ; allow 70.9 \pm 0.1 for α
	(iii)	Attempt correct process to find any value of θ + their α Obtain any correct value for θ + 70.9 Attempt correct process to find θ + their α in 3rd quadrant Obtain 131 [SC for solutions with no working shown: Correct and	M1 A1 M1 A1	-158, -22, 202, 338, or several values including this or greater accuracy and no other hly B4; 131 with other answers B2]
9	(i)	Attempt use of quotient rule Obtain $\frac{75-15x^2}{(x^2+5)^2}$	*M1 A1	or equiv; allow <i>u</i> / <i>v</i> muddles or (unsimplified) equiv; this M1A1 available at any stage of question
		Equate attempt at first derivative to zero and rearrange to solvable form Obtain $x = \sqrt{5}$ or 2.24 Recognise range as values less than <i>y</i> -coord of st pt Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	M1 A1 M1 A1 6	dep * M or greater accuracy allowing < here any notation; with \leq now; any exact equiv
	(ii)	State $\sqrt{5}$	B1√	following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k
	(iii)	Equate attempt at first derivative to -1 and attempt simplification Obtain $x^4 - 5x^2 + 100 = 0$ Attempt evaluation of discriminant or equiv Obtain -375 or equiv and conclude appropriately	*M1 A1 M1 A1 4	and dependent on first M in part (i) or equiv involving 3 non-zero terms dep * M