4723 Core Mathematics 3

8 (i) Show at least correct $\cos \theta \cos 60+\sin \theta \sin 60$ or
$\cos \theta \cos 60-\sin \theta \sin 60$
Attempt expansion of both with exact numerical values attempted
Obtain $\frac{1}{2} \sqrt{3} \sin \theta+\frac{5}{2} \cos \theta$
(ii) Attempt correct process for finding R

Attempt recognisable process for finding α
Obtain $\sqrt{7} \sin (\theta+70.9)$

B1

M1 and with $\cos 60 \neq \sin 60$
A1 or exact equiv
3
M1 whether exact or approx
M1 allowing sin / cos muddles
A1 allow 2.65 for R; allow 70.9 ± 0.1 for α
3
M1
A1 -158, -22, 202, 338, ...
M1 or several values including this
A1 or greater accuracy and no other
Obtain 131
[SC for solutions with no working shown:

9 (i) Attempt use of quotient rule
Obtain $\frac{75-15 x^{2}}{\left(x^{2}+5\right)^{2}}$
Equate attempt at first derivative to zero and rearrange to solvable form
Obtain $x=\sqrt{5}$ or 2.24
Recognise range as values less than y-coord of st pt
Obtain $0 \leq y \leq \frac{3}{2} \sqrt{5}$
*M1 or equiv; allow u / v muddles
A1 or (unsimplified) equiv; this M1A1 available at any stage of question
$\mathbf{M 1} \quad \operatorname{dep}{ }^{*} \mathbf{M}$
A1 or greater accuracy
M1 allowing < here
A1 any notation; with \leq now; any exact equiv

B1 $\sqrt{ }$ following their x-coord of st pt; condone answer $x \geq \sqrt{5}$ but not inequality with k
(iii) Equate attempt at first derivative to -1 and attempt simplification
Obtain $x^{4}-5 x^{2}+100=0$
Attempt evaluation of discriminant or equiv
Obtain -375 or equiv and conclude appropriately
*M1 and dependent on first \mathbf{M} in part (i)
A1 or equiv involving 3 non-zero terms
M1 dep *M

