## Core 1 May 2009

1) $y=x^{5}+x^{-2}$

$$
\begin{align*}
& \frac{d y}{d x}=5 x^{4}-2 x^{-3}=5 x^{4}-\frac{2}{x^{3}}  \tag{3}\\
& \frac{d^{2} y}{d x^{2}}=20 x^{3}+6 x^{-4}=20 x^{3}+\frac{6}{x^{4}} \tag{2}
\end{align*}
$$

2) $\frac{(8+\sqrt{7})(2-\sqrt{7})}{(2+\sqrt{7})(2-\sqrt{7})}=\frac{16-6 \sqrt{7}-7}{4-7}=\frac{9-6 \sqrt{7}}{-3}=2 \sqrt{7}-3$
3) i) $\frac{1}{9}=\frac{1}{3^{2}}=3^{-2}$
ii) $\sqrt[3]{3}=3^{\frac{1}{3}}$
iii) $3^{10} \times\left(3^{2}\right)^{15}=3^{40}$
4) $y=2 x-4 \quad 4 x^{2}+(2 x-4)^{2}=10 \quad 4 x^{2}+4 x^{2}-16 x+16=10$
$4 x^{2}-8 x+3=0 \quad(2 x-3)(2 x-1)=0$
$x=\frac{3}{2} \quad y=-1, \quad x=\frac{1}{2} \quad y=-3$
5)i) $(2 x+1)\left(x^{2}+x-12\right)=2 x^{3}+2 x^{2}-24 x+x^{2}+x-12$
ii) $x\left(x^{2}+2 x+3\right)\left(x^{2}+7 x-2\right)$
considering only the components making up the coefficient of $x^{4}$
$x\left(x^{2} \times x+2 x \times x^{2}\right)$ hence coefficient of $x^{4}$ is $7+2=9$
5) $y=-\sqrt{x}$
ii) $\mathrm{f}(\mathrm{x})=-\sqrt{x} \quad 5+\mathrm{f}(\mathrm{x})=5-\sqrt{x}$

The graph of $\mathrm{y}=-\sqrt{x}$ will be translated 5 units in a positive direction parallel to the $y$ axis.
iii) $f\left(\frac{x}{2}\right) \quad y=-\sqrt{\frac{x}{2}}$
(2)
7) i) $x^{2}-5 x+\frac{1}{4}=\left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}+\frac{1}{4}=\left(x-\frac{5}{2}\right)^{2}-\frac{24}{4}=\left(x-\frac{5}{2}\right)^{2}-6$

Or use matching method $(x-a)^{2}-b=x^{2}-2 a x+a^{2}-b$
$-5 \mathrm{x}=-2 \mathrm{ax}$ so $\mathrm{a}=2 \frac{1}{2} \quad \frac{1}{4}=\mathrm{a}^{2}-\mathrm{b} \quad \mathrm{b}=\left(2 \frac{1}{2}\right)^{2}-\frac{1}{4}=6.25-0.25=6$ as $2.5^{2}=6.25$
ii) $x^{2}+y^{2}-5 x+\frac{1}{4}=\left(x-\frac{5}{2}\right)^{2}-6+y^{2}=0 \quad\left(x-\frac{5}{2}\right)^{2}+y^{2}=6$

Centre $\left(\frac{5}{2}, 0\right)$ radius $\sqrt{6}$ or use $a=\frac{1}{2}$ coefft $x$ change sign $b=\frac{1}{2}$ coefft $y$ change sign
or $a=2 \frac{1}{2}$
$b=0$
$r^{2}=a^{2}+b^{2}-n o .=\left(2 \frac{1}{2}\right)^{2}+0^{2}-\frac{1}{4}$
$r=\sqrt{6}$

So $\quad-7<x<-1$
(3)
ii) $3 x^{2}>48 \quad x^{2}>16 \quad x^{2}-16>0 \quad(x-4)(x+4)>0$

(3)
9) i) $\left.\quad \mathrm{A}(4,-3) \quad \mathrm{B}(-1,9) \quad \mathrm{AB}=\sqrt{\left((4--1)^{2}+(-3-9)^{2}\right.}\right) \quad \mathrm{AB}=\sqrt{169}=13$
ii) midpoint $\mathrm{AB}\left(\frac{4-1}{2}, \frac{-3+9}{2}\right)=\left(\frac{3}{2}, 3\right)$
iii) gradient $A B=\frac{-3-9}{4--1}=\frac{-12}{5}$

Equation of line gradient $\frac{-12}{5}$, through $(1,3)$

$$
\begin{gather*}
y-3=\frac{-12}{5}(x-1) \quad 5 y-15=-12 x+12 \\
12 x+5 y-27=0 \tag{4}
\end{gather*}
$$

10) i) $(3 x+7)(3 x-1)=0 \quad x=-2 \frac{1}{3}, \quad x=\frac{1}{3}$
ii) At stationary point $\frac{d y}{d x}=0$

$$
\begin{equation*}
y=9 x^{2}+18 x-7 \quad \frac{d y}{d x}=18 x+18=0 \quad x=-1 \quad y=-16 \quad(-1,-16) \tag{4}
\end{equation*}
$$

iii)

$(-1,-16)$
(iv) $y$ increases as $x$ increases for $x>-1$

11 i) $y=k \sqrt{x} \quad 2 x+3 y=0$ gradient normal at $P$ is $\frac{-2}{3}, y=-2 / 3 x$
gradient tangent is $\frac{3}{2}$ (flip and change sign)
Gradient of tangent to curve at P is given by $\frac{d y}{d x}=\frac{1}{2} \mathrm{kx}^{-\frac{1}{2}}$
Gradient of tangent is $\frac{3}{2} \quad \frac{1}{2} k x^{-\frac{1}{2}}=\frac{3}{2} \quad$ at $P \quad x=4$, hence $k=6$
ii) $P(4,12)$ gradient normal $=\frac{-2}{3}$

Equation of normal $(y-12)=\frac{-2}{3}(x-4) \quad 3 y=-2 x+44$


