Core 1 May 2009
1)
$$y = x^5 + x^{-2}$$

 $\frac{dy}{dx} = 5x^4 - 2x^{-3} = 5x^4 - \frac{2}{x^3}$
(3)

$$\frac{d^2 y}{dx^2} = 20x^3 + 6x^{-4} = 20x^3 + \frac{6}{x^4}$$
(2)

2)
$$\frac{(8+\sqrt{7})(2-\sqrt{7})}{(2+\sqrt{7})(2-\sqrt{7})} = \frac{16-6\sqrt{7}-7}{4-7} = \frac{9-6\sqrt{7}}{-3} = 2\sqrt{7}-3$$
 (4)

3) i) $\frac{1}{9} = \frac{1}{3^2} = 3^{-2}$ (1) ii) $\sqrt[3]{3} = 3^{\frac{1}{3}}$ (1) iii) $3^{10} \times (3^2)^{15} = 3^{40}$ (2)

4)
$$y = 2x - 4$$

 $4x^{2} + (2x - 4)^{2} = 10$
 $4x^{2} + 4x^{2} - 16x + 16 = 10$
 $4x^{2} - 8x + 3 = 0$ $(2x - 3)(2x - 1) = 0$
 $x = \frac{3}{2}$ $y = -1$, $x = \frac{1}{2}$ $y = -3$ (6)

5)i)
$$(2x + 1)(x^2 + x - 12) = 2x^3 + 2x^2 - 24x + x^2 + x - 12$$

= $2x^3 + 3x^2 - 23x - 12$ (3)

ii)
$$x(x^2 + 2x + 3)(x^2 + 7x - 2)$$

considering only the components making up the coefficient of x^4 (2)
 $x(x^2 \times x + 2x \times x^2)$ hence coefficient of x^4 is 7+ 2 = 9

6)
$$y = -\sqrt{x}$$

ii) $f(x) = -\sqrt{x}$ 5 + $f(x) = 5 - \sqrt{x}$
The graph of $y = -\sqrt{x}$ will be translated
5 units in a positive direction
parallel to the y axis.
iii) $f(\frac{x}{2})$ $y = -\sqrt{\frac{x}{2}}$ (2) $y = -\sqrt{x}$

7) i)
$$x^2 - 5x + \frac{1}{4} = (x - \frac{5}{2})^2 - \frac{25}{4} + \frac{1}{4} = (x - \frac{5}{2})^2 - \frac{24}{4} = (x - \frac{5}{2})^2 - 6$$
 (3)

Or use matching method $(x - a)^2 - b = x^2 - 2ax + a^2 - b$

$$-5x = -2ax$$
 so $a = 2\frac{1}{2}$ $\frac{1}{4} = a^2 - b$ $b = (2\frac{1}{2})^2 - \frac{1}{4} = 6.25 - 0.25 = 6$
as $2.5^2 = 6.25$

