4751 (C1) Introduction to Advanced Mathematics

Sect	tion A			
1	(0, 14) and (14/4, 0) o.e. isw	4	M2 for evidence of correct use of gradient with (2, 6) eg sketch with 'stepping' or $y - 6 = -4(x - 2)$ seen or y = -4x + 14 o.e. or M1 for $y = -4x + c$ [accept any letter or number] and M1 for $6 = -4 \times 2 + c$; A1 for (0, 14) [$c = 14$ is not sufficient for A1] and A1 for (14/4, 0) o.e.; allow when $x = 0$, $y = 14$ etc isw	4
2	$[a =] \frac{2(s - ut)}{t^2} \text{ o.e. as final answer}$ [condone $[a =] \frac{(s - ut)}{0.5t^2}$]	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step – needs to be by t^2] $[a =] \frac{(s - ut)}{\frac{1}{2}t^2}$ gets M2 only (similarly other triple-deckers)	3
3	10 www x < 0 or $x > 6$ (both required)	3	M1 for $f(3) = 1$ soi and A1 for 31 - 3k = 1 or $27 - 3k = -3$ o.e. [a correct 3-term or 2-term equation] long division used: M1 for reaching $(9 - k)x + 4$ in working and A1 for $4 + 3(9 - k) = 1$ o.e. equating coeffts method: M2 for $(x - 3)(x^2 + 3x - 1)$ [+ 1] o.e. (from inspection or division) B1 each;	3
4			if B0 then M1 for 0 and 6 identified;	2
5	(i) 10 www	2	M1 for $\frac{5 \times 4 \times 3}{3 \times 2(\times 1)}$ or $\frac{5 \times 4}{2(\times 1)}$ or for 1 5 10 10 5 1 seen	
	(ii) 80 www or ft 8 × their (i)	2	B2 for $80x^3$; M1 for 2^3 or $(2x)^3$ seen	4
				16

1

6	any general attempt at <i>n</i> being odd <u>and</u> <i>n</i> being even even	M1	M0 for just trying numbers, even if some odd, some even	
	<i>n</i> odd implies n^3 odd and odd – odd = even <i>n</i> even implies n^3 even and even –	A1 A1	or $n(n^2 - 1)$ used with <i>n</i> odd implies $n^2 - 1$ even and odd x even = even etc [allow even x odd = even]	
	even = even	AI	or A2 for $n(n - 1)(n + 1) =$ product of 3 consecutive integers; at least one even so product even; odd ³ - odd = odd etc is not sufft for A1	
			SC1 for complete general method for only one of odd or even eg $n = 2m$ leading to $2(4m^3 - m)$	3
7	(i) 1	2	B1 for 5° or for 25 × 1/25 o.e.	
	(ii) 1000	1		3
8	(i) 2/3 www	2	M1 for 4/6 or for $\sqrt{48} = 2\sqrt{12}$ or $4\sqrt{3}$ or $\sqrt{27} = 3\sqrt{3}$ or $\sqrt{108} = 3\sqrt{12}$ or for $\sqrt{\frac{4}{9}}$	
	(ii) $43 - 30\sqrt{2}$ www as final answer	3	M2 for 3 terms correct of 25 - $15\sqrt{2}$ - $15\sqrt{2}$ + 18 soi, M1 for 2 terms correct	5
9	(i) $(x + 3)^2 - 4$	3	B1 for $a = 3$, B2 for $b = -4$ or M1 for $5 - 3^2$ soi	
	(ii) ft their ($\neg a$, <i>b</i>); if error in (i), accept ($\neg 3$, $\neg 4$) if evidence of being independently obtained	2	B1 each coord.; allow $x = -3$, $y = -4$; or M1 for $\begin{bmatrix} -3 \\ -4 \end{bmatrix}$ o.e. oe for sketch with -3 and -4 marked on axes but no coords given	5
10	$(x^2 - 9)(x^2 + 4)$	M2	or correct use of quad formula or comp sq reaching 9 and -4 ; allow M1 for attempt with correct eqn at factorising with factors giving two terms correct, or sign error, or attempt at formula or comp sq [no more than two errors in formula/substn]; for this first M2 or M1 allow use of y etc or of x instead of x^2	
	$x^2 = 9$ [or -4] or ft for integers /fractions if first M1 earned $x = \pm 3$ cao	M1 A1	must have x^2 ; or M1 for $(x + 3)(x - 3)$; this M1 may be implied by $x = \pm 3$ A0 if extra roots if M0 then allow SC1 for use of factor theorem to obtain both 3 and -3 as roots or $(x + 3)$ and $(x - 3)$ found as factors and SC2 for $x^2 + 4$ found as other factor using factor theorem [ie max SC3]	4
				20

4752

11i $y = 3x$ 2M1 for grad AB = $\frac{1-3}{6}$ or $-1/3$ o.e.2iieqn AB is $y = -1/3 x + 3$ o.e. or ftM1need not be simplified; no ft from midpt used in (i); may be seen in (i) but do not give mark unless used in (ii) eliminating x or y, ft their eqns if find y first, cao for y then ft for x2iii $3x = -1/3x + 3$ or ft $x = 9/10$ or 0.9 o.e. caoM1 A1need not be simplified; no ft from midpt used in (i); may be seen in (i) but do not give mark unless used in (ii) eliminating x or y, ft their eqns if find y first, cao for y then ft for x4iii $\left(\frac{9}{10}\right)^2 (1+3^2)$ o.e and completion to given answerA1ft dep on both Ms earned or square root of this; M1 for $\left(\frac{9}{10}\right)^2 + \left(\frac{27}{10}\right)^2$ or 0.81 + 7.29 soi or ft their coords (inc midpt) or M1 for distance = 3 cos θ and tan4	
iii $\begin{array}{c} 3x = -1/3x + 3 \text{ or ft} \\ x = 9/10 \text{ or } 0.9 \text{ o.e. cao} \\ y = 27/10 \text{ oe ft their } 3 \times \text{their } x \\ \left(\frac{9}{10}\right)^2 \left(1+3^2\right) \text{ o.e and} \\ \text{completion to given answer} \end{array}$ $\begin{array}{c} \text{M1} \\ \text{A1} \\ \text{M1} \\ \text{A1} \\ \text{M1} \\ \text{A1} \\ \text{M1} \\ \text{M1} \\ \text{A1} \\ \text{M1} \\ \text{M2} \\ \text{M2} \\ \text{M1} \\ \text$	ł
$\begin{array}{c c} 3x = -1/3x + 3 \text{ or ft} \\ x = 9/10 \text{ or } 0.9 \text{ o.e. cao} \\ y = 27/10 \text{ oe ft their } 3 \times \text{their } x \\ \left(\frac{9}{10}\right)^2 \left(1+3^2\right) \text{ o.e and} \\ \text{completion to given answer} \end{array} \qquad \begin{array}{c c} \text{M1} \\ \text{A1} \\ \text{A1} \\ \text{H1} \\ \text{and } \begin{array}{c} \text{eliminating } x \text{ or } y, \text{ ft their eqns} \\ \text{if find } y \text{ first, cao for } y \text{ then ft for } x \\ \text{A1} \\ \text{A1} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{A2} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{A2} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{A2} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{A2} \\ \text{Construction } \begin{array}{c} \text{Construction } \begin{array}{c} \text{A1} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{A1} \\ \text{Construction } \begin{array}{c} \text{Construction } \begin{array}{c} \text{A1} \\ \text{Construction } \begin{array}{c} \text{A1} \\ \text{Construction } \end{array} \right) \\ \text{Construction } \begin{array}{c} \text{Construction } \begin{array}{c} \text{A1} \\ \text{Construction } \end{array} \right) \\ \text{Construction } \begin{array}{c} \text{Construction } \begin{array}{c} \text{Construction } \end{array} \right) \\ \text{Construction } \begin{array}{c} \text{Construction } \begin{array}{c} \text{Construction } \end{array} \right) \\ \text{Construction } \begin{array}{c} \text{Construction } \end{array} \right) \\ \text{Construction } \begin{array}{c} \text{Construction } \begin{array}{c} \text{Construction } \end{array} \right) \\ \text{Construction } \end{array} \right) \\ \text{Construction } \begin{array}{c} Constructi$	Ļ
iii $y = 27/10$ oe ft their $3 \times$ their x $\left(\frac{9}{10}\right)^2 (1+3^2)$ o.e and completion to given answer 2 or square root of this; M1 for $\left(\frac{9}{10}\right)^2 + \left(\frac{27}{10}\right)^2$ or $0.81 + 7.29$ soi or ft their coords (inc midpt)	ŀ
$ \left(\frac{9}{10}\right)(1+3^2) \text{ o.e and} $ completion to given answer $ \left(\frac{9}{10}\right)^2 + \left(\frac{27}{10}\right)^2 \text{ or } 0.81 + 7.29 \text{ soi or ft} $ their coords (inc midpt)	
θ = 3 and M1 for showing	
$\sin \theta = \frac{3}{\sqrt{10}}$ and completion 2	<u>}</u>
iv $2\sqrt{10}$ 2 M1 for 6 ² + 2 ² or 40 or square roots of these 2	2
v 9 www or ft their $a\sqrt{10}$ 2 M1 for $\frac{1}{2} \times 3 \times 6$ or 1 9 m	
$\frac{1}{2} \times \text{their } 2\sqrt{10} \times \frac{9}{10}\sqrt{10} $ 2	<u>}</u>

3

12	iA	expansion of one pair of brackets	M1	eg $[(x + 1)](x^2 - 6x + 8)$; need not be simplified	
		correct 6 term expansion	M1	eg $\dot{x}^3 - 6x^2 + 8x + x^2 - 6x + 8$; or M2 for correct 8 term expansion: $x^3 - 4x^2 + x^2 - 2x^2 + 8x - 4x - 2x +$ 8, M1 if one error	
				allow equivalent marks working backwards to factorisation, by long division or factor theorem etc or M1 for all three roots checked by factor theorem and M1 for comparing coeffts of x^3	2
	iB	cubic the correct way up <i>x</i> -axis: −1, 2, 4 shown <i>y</i> -axis 8 shown	G1 G1 G1	with two tps and extending beyond the axes at 'ends'	
			01	ignore a second graph which is a translation of the correct graph	3
	iC	$[y=](x-2)(x-5)(x-7) \text{ isw or} (x-3)^3 - 5(x-3)^2 + 2(x-3) + 8 \text{ isw or } x^3 - 14x^2 + 59x - 70$	2	M1 if one slip or for $[y =] f(x - 3)$ or for roots identified at 2, 5, 7 or for translation 3 to the left allow M1 for complete attempt: $(x + 4)(x + 1)(x - 1)$ isw or $(x + 3)^3 - 5(x + 3)^2 + 2(x + 3) + 8$ isw	
		(0, -70) or <i>y</i> = -70	1	allow 1 for (0, -4) or $y = -4$ after f(x + 3) used	3
	ii	27 - 45 + 6 + 8 = -4 or 27 - 45 + 6 + 12 = 0	B1	or correct long division of $x^3 - 5x^2 + 2x + 12$ by $(x - 3)$ with no remainder or of $x^3 - 5x^2 + 2x + 8$ with rem -4	
		long division of $f(x)$ or their $f(x) + 4$ by $(x - 3)$ attempted as far as $x^3 - 3x^2$ in working	M1	or inspection with two terms correct eg $(x - 3)(x^2 \dots - 4)$	
		$x^2 - 2x - 4$ obtained	A1		
		$[x=]\frac{2\pm\sqrt{(-2)^2-4\times(-4)}}{2} \text{ or } (x-1)^2 = 5$	M1	dep on previous M1 earned; for attempt at formula or comp square on their other 'factor'	
		$(x-1)^2 = 5$ $\frac{2\pm\sqrt{20}}{2}$ o.e. isw or $1\pm\sqrt{5}$	A1		
					5 13

-	-				
13	i	(5, 2) $\sqrt{20}$ or $2\sqrt{5}$	1 1	0 for $\pm\sqrt{20}$ etc	2
	ii	no, since $\sqrt{20} < 5$ or showing roots of $y^2 - 4y + 9 = 0$ o.e. are not real	2	or ft from their centre and radius M1 for attempt (no and mentioning $\sqrt{20}$ or 5) or sketch or solving by formula or comp sq $(-5)^2 + (y-2)^2 =$ 20 [condone one error]	
	iii	y = 2x - 8 or simplified alternative	2	or SC1 for fully comparing distance from x axis with radius and saying yes M1 for $y - 2 = 2(x - 5)$ or ft from (i) or M1 for $y = 2x + c$ and subst their (i) or M1 for ans $y = 2x + k$, $k \neq 0$ or -8	2 2
	iv	$(x-5)^2 + (2x)^2 = 20$ o.e.	M1	subst $2x + 2$ for y [oe for x]	
		$5x^2 - 10x + 5[= 0]$ or better equiv.	M1	expanding brackets and rearranging to 0; condone one error; dep on first	
		obtaining <i>x</i> = 1 (with no other roots) or showing roots equal	M1	M1	
		one intersection [so tangent]	A1	o.e.; must be explicit; or showing line joining (1,4) to centre is perp to $y = 2x+2$	
		(1, 4) cao	A1	allow $y = 4$	
		$\frac{\text{alt method}}{y-2 = -\frac{1}{2} (x-5) \text{ o.e.}}$ 2x+2-2 = - $\frac{1}{2} (x-5) \text{ o.e.}$ x = 1 y = 4 cao	M1 M1 A1 A1	line through centre perp to $y = 2x + 2$ dep; subst to find intn with $y = 2x + 2$	
		showing (1, 4) is on circle <u>alt method</u> perp dist between $y = 2x - 8$ and	B1	by subst in circle eqn or finding dist from centre = $\sqrt{20}$ [a similar method earns first M1 for eqn of diameter, 2nd M1 for intn of diameter and circle A1 each for x and y coords and last B1 for showing (1, 4) on line – award onlyA1 if (1, 4) and (9, 0) found without (1, 4) being identified as the soln]	
		$y = 2x + 2 = 10 \cos \theta$ where $\tan \theta$ = 2	M1 M1		
		showing this is $\sqrt{20}$ so tgt	M1		
		$x = 5 - \sqrt{20} \sin \theta$ $x = 1$	A1 A1	or other valid method for obtaining x	5
		(1, 4) cao		allow $y = 4$	11