4722 Core Mathematics 2

1 (i) $\begin{aligned} \cos \theta & =\frac{6.4^{2}+7.0^{2}-11.3^{2}}{2 \times 6.4 \times 7.0} \\ & =-0.4211 \\ \theta & =115^{\circ} \text { or } 2.01 \text { rads }\end{aligned}$
(ii) area $=\frac{1}{2} \times 7 \times 6.4 \times \sin 115$

$$
=20.3 \mathrm{~cm}^{2}
$$

A1 2 Obtain 20.3 (cao)

2 (i) $a+9 d=2(a+3 d)$

$$
\begin{aligned}
& a=3 d \\
& a+19 d=44 \Rightarrow 22 d=44
\end{aligned}
$$

$$
d=2, a=6
$$

M1 Attempt use of cosine rule (any angle)
A1 Obtain one of $115^{\circ}, 34.2^{\circ}, 30.9^{\circ}, 2.01,0.597,0.539$
A1 3 Obtain 115° or 2.01 rads, or better
(ii) $S_{50}=\frac{50}{2}(2 \times 6+49 \times 2)$

$$
=2750
$$

M1* Attempt use of $a+(n-1) d$ or $a+n d$ at least once for u_{4}, u_{10} or u_{20}
A1 Obtain $a=3 d$ (or unsimplified equiv) and $a+19 d=44$
M1dep* Attempt to eliminate one variable from two simultaneous equations in a and d, from u_{4}, u_{10}, u_{20} and no others
A1 4 Obtain $d=2, a=6$

M1 Attempt S_{50} of AP, using correct formula, with $n=50$, allow 25(2a $+24 d)$
A1 2 Obtain 2750

$$
3 \begin{aligned}
& \log 7^{x}=\log 2^{x+1} \\
& x \log 7=(x+1) \log 2 \\
& \\
& x(\log 7-\log 2)=\log 2 \\
& x=0.553
\end{aligned}
$$

A1 5 Obtain $x=0.55$, or rounding to this, with no errors seen

4 (i) $\left(x^{2}-5\right)^{3}=\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}(-5)+3\left(x^{2}\right)(-5)^{2}+(-5)^{3}$ M1* Attempt expansion, with product of powers of x^{2} and ± 5,

$$
=x^{6}-15 x^{4}+75 x^{2}-125
$$

OR
$\left(x^{2}-5\right)^{3}=\left(x^{2}-5\right)\left(x^{4}-10 x^{2}+25\right)$

$$
=x^{6}-15 x^{4}+75 x^{2}-125
$$

at least 3 terms
M1* Use at least 3 of binomial coeffs of 1, 3, 3, 1
A1dep* Obtain at least two correct terms, coeffs simplified
A1 4 Obtain fully correct expansion, coeffs simplified
M2 Attempt full expansion of all 3 brackets
A1 Obtain at least two correct terms
A1 Obtain full correct expansion
(ii) $\int\left(x^{2}-5\right)^{3} \mathrm{~d} x=\frac{1}{7} x^{7}-3 x^{5}+25 x^{3}-125 x+c$

M1 Attempt integration of terms of form $k x^{n}$
A1 $\sqrt{ } \quad$ Obtain at least two correct terms, allow unsimplified coeffs
A1 Obtain $\frac{1}{7} x^{7}-3 x^{5}+25 x^{3}-125 x$
B1 $\quad 4+c$, and no $\mathrm{d} x$ or $\int \operatorname{sign}$

5 (i) $2 x=30^{\circ}, 150^{\circ}$ $x=15^{\circ}, 75^{\circ}$

A1 3 Obtain 75° (not radians), and no extra solutions in range
Attempt $\sin ^{-1} 0.5$, then divide or multiply by 2
Obtain 15° (allow $\pi / 12$ or 0.262)
(ii) $2\left(1-\cos ^{2} x\right)=2-\sqrt{3} \cos x$
$2 \cos ^{2} x-\sqrt{ } 3 \cos x=0$
$\cos x(2 \cos x-\sqrt{ } 3)=0$
$\cos x=0, \cos x=1 / 2 \sqrt{ } 3$
range
$x=90^{\circ}, x=30^{\circ}$

M1 Use $\sin ^{2} x=1-\cos ^{2} x$
A1 Obtain $2 \cos ^{2} x-\sqrt{ } 3 \cos x=0$ or equiv (no constant terms)
M1
A1

B1
Attempt to solve quadratic in $\cos x$
Obtain 30° (allow $\pi / 6$ or 0524), and no extra solns in
5 Obtain 90° (allow $\pi / 2$ or 1.57), from correct quadratic only

SR answer only B1 one correct solution
B1 second correct solution, and no others

8

6	$\int\left(3 x^{2}+a\right) \mathrm{d} x=x^{3}+a x+c$	M1		Attempt to integrate	
		A1		Obtain at least one correct term, allow unsimplified	
		A1		Obtain $x^{3}+a x$	
	$(-1,2) \Rightarrow-1-a+c=2$	M1		Substitute at least one of $(-1,2)$ or $(2,17)$ into integration attempt involving a and c	
	$(2,17) \Rightarrow 8+2 a+c=17$	A1		Obtain two correct equations, allow unsimplified	
		M1		Attempt to eliminate one variable from two equations in a and c	
	$a=2, c=5$	A1		Obtain $a=2, c=5$, from correct equations	
	Hence $y=x^{3}+2 x+5$	A1	8	State $y=x^{3}+2 x+5$	
	8				
	(i) $\mathrm{f}(-2)=-16+36-22-8$	M1		Attempt $\mathrm{f}(-2)$, or equiv	
	$=-10$	A1	2	Obtain -10	
(ii) $\mathrm{f}(1 / 2)=1 / 4+21 / 4+51 / 2-8=0$ AG		$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$		Attempt $f(1 / 2)$ (no other method allowed) Confirm $f(1 / 2)=0$, extra line of working required	
(iii) $\mathrm{f}(x)=(2 x-1)\left(x^{2}+5 x+8\right)$		M1 A1 A1 3		Attempt complete division by $(2 x-1)$ or $(x-1 / 2)$ or equiv Obtain $x^{2}+5 x+c$ or $2 x^{2}+10 x+c$ State $(2 x-1)\left(x^{2}+5 x+8\right)$ or $(x-1 / 2)\left(2 x^{2}+10 x+16\right)$	
	(iv) $\mathrm{f}(x)$ has one real root $(x=1 / 2)$	B1 $\sqrt{ }$	State 1 root, following their quotient, ignore reason		
	because $b^{2}-4 a c=25-32=-7$				
	hence quadratic has no real roots as -7<0,	B1 $\sqrt{ }$	2	Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9)	

8 (i) $1 / 2 \times r^{2} \times 1.2=60$
$r=10$

$$
r \theta=10 \times 1.2=12
$$

perimeter $=10+10+12=32 \mathrm{~cm}$
(ii)(a) $u_{5}=60 \times 0.6^{4}$
$=7.78$
(b) $\quad S_{10}=\frac{60\left(1-0.6^{10}\right)}{1-0.6}$

$$
=149
$$

A1 2 Obtain 149, or better (allow 149.0-149.2 inclusive)
B1 series is convergent or $-1<r<1$ (allow $r<1$) or reference
mon ratio is less than 1 , so series is convergent and hence sum to infinity exists

$$
\begin{aligned}
& S_{\infty}=\frac{60}{1-0.6} \\
& =150
\end{aligned}
$$

M1 Attempt $(1 / 2) r^{2} \theta=60$
A1 Obtain $r=10$
B1 $\sqrt{ } \quad$ State or imply arc length is $1.2 r$, following their r 4 Obtain 32

M1 Attempt u_{5} using $a r^{4}$, or list terms
A1 2 Obtain 7.78, or better

M1 Attempt use of correct sum formula for a GP, or sum terms to areas getting smaller / adding on less each time

M1 Attempt S_{∞} using $\frac{a}{1-r}$
A1 3 Obtain $S_{\infty}=150$

SR B1 only for 150 with no method shown

11

9 (i)

B1 Sketch graph showing exponential growth (both quadrants)
B1 2 State or imply $(0,4)$
(ii) $4 k^{x}=20 k^{2}$
$k^{x}=5 k^{2} \quad$ M1 Equate $4 k^{x}$ to $20 k^{2}$ and take logs (any, or no, base)
$x=\log _{k} 5 k^{2}$
$x=\log _{k} 5+\log _{k} k^{2} \quad$ M1 Use $\log a b=\log a+\log b$
$x=2 \log _{k} k+\log _{k} 5$
M1 Use $\log a^{b}=b \log a$
$x=2+\log _{k} 5 \quad$ AG
A1 4 Show given answer correctly
OR $4 k^{x}=20 k^{2}$
$k^{x}=5 k^{2} \quad$ M1 Attempt to rewrite as single index
$k^{x-2}=5$
A1 Obtain $k^{X-2}=5$ or equiv eg $4 k^{K-2}=20$
$x-2=\log _{k} 5$
$x=2+\log _{k} 5 \quad$ AG
M1 Take logs (to any base)
A1 Show given answer correctly
(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times\left(4 k^{0}+8 k^{\frac{1}{2}}+4 k^{1}\right)$

M1 Attempt y-values at $x=0,1 / 2$ and 1 , and no others
M1 Attempt to use correct trapezium rule, $3 y$-values, $h=1 / 2$
$\approx 1+2 k^{\frac{1}{2}}+k \quad$ A1 3 Obtain a correct expression, allow unsimplified
(b) $1+2 k^{\frac{1}{2}}+k=16$

M1 \quad Equate attempt at area to 16
$\left(k^{\frac{1}{2}}+1\right)^{2}=16$
M1 Attempt to solve 'disguised' 3 term quadratic
$k^{\frac{1}{2}}=3$
$k=9$

A1 3 Obtain $k=9$ only

