1	(i)	$\cos \theta = \frac{6.4^2 + 7.0^2 - 11.3^2}{2 \times 6.4 \times 7.0}$ = -0.4211 θ = 115° or 2.01 rads	M1 A1 A1	3	Attempt use of cosine rule (any angle) Obtain one of 115°, 34.2°, 30.9°, 2.01, 0.597, 0.539 Obtain 115° or 2.01 rads, or better
	(ii)	area = $\frac{1}{2} \times 7 \times 6.4 \times \sin 115$ = 20.3 cm ²	M1 A1	2	Attempt triangle area using $(\frac{1}{2})ab\sin C$, or equiv Obtain 20.3 (cao)
				5	
2	(i)	a+9d=2(a+3d)	M1*		Attempt use of $a + (n-1)d$ or $a + nd$ at least once for u_4 ,
		$a = 3d$ $a + 19d = 44 \Rightarrow 22d = 44$	A1 M1de	p*	u_{10} or u_{20} Obtain $a = 3d$ (or unsimplified equiv) and $a + 19d = 44$ Attempt to eliminate one variable from two simultaneous equations in a and d , from u_4 , u_{10} , u_{20} and no others
		d = 2, a = 6	A1	4	Obtain $d = 2, a = 6$
	(ii)	$S_{50} = {}^{50}/_2 (2x6 + 49x2)$ = 2750	M1 A1	2	Attempt S_{50} of AP, using correct formula, with $n = 50$, allow $25(2a + 24d)$ Obtain 2750
				6	
2	log	$7^{x} - \log 2^{x+1}$	M1	U	Introduce logarithms throughout or equiv with base 7 or 2
3	$x \log x$	$7 = \log 2$ g 7 = (x+1) log 2	M1		Drop power on at least one side
	x(lo	$\log 7 - \log 2 = \log 2$	A1 M1		Obtain correct linear equation (allow with no brackets) Either expand bracket and attempt to gather <i>x</i> terms,
	<i>x</i> =	0.553	A1	5	or deal correctly with algebraic fraction Obtain $x = 0.55$, or rounding to this, with no errors seen
				5	
4	(i)(<i>x</i>	$(x^{2}-5)^{3} = (x^{2})^{3} + 3(x^{2})^{2}(-5) + 3(x^{2})(-5)^{2} + (-5)^{3}$	M1*		Attempt expansion, with product of powers of x^2 and ± 5 , at least 3 terms
		$= x^6 - 15x^4 + 75x^2 - 125$	M1* A1dej A1	р* 4	Use at least 3 of binomial coeffs of 1, 3, 3, 1 Obtain at least two correct terms, coeffs simplified Obtain fully correct expansion, coeffs simplified
	OR $(x^2 -$	$(x^{2} - 5)^{3} = (x^{2} - 5)(x^{4} - 10x^{2} + 25)$ $= x^{6} - 15x^{4} + 75x^{2} - 125$	M2 A1 A1		Attempt full expansion of all 3 brackets Obtain at least two correct terms Obtain full correct expansion
	(ii)	$\int \left(x^2 - 5\right)^3 dx = \frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x + c$	M1		Attempt integration of terms of form kx^n
	·		A1		Obtain at least two correct terms, allow unsimplified coeffs
			A1		Obtain $\frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x$
			B1	4	+ c, and no dx or J sign
				8	

4722 Core Mathematics 2

5	(i)	$2x = 30^{\circ}, 150^{\circ}$	M1		Attempt $\sin^{-1} 0.5$, then divide or multiply by 2 Obtain 15° (allow $\pi/$ or 0.262)
		x - 15, 75	A1 A1	3	Obtain 75° (not radians), and no extra solutions in range
	(ii)	$2(1-\cos^2 x) = 2 - \sqrt{3}\cos x$	M1		Use $\sin^2 x = 1 - \cos^2 x$
		$2\cos^2 x - \sqrt{3}\cos x = 0$	A1		Obtain $2\cos^2 x - \sqrt{3}\cos x = 0$ or equiv (no constant terms)
		$\cos x \left(2\cos x - \sqrt{3}\right) = 0$	M1		Attempt to solve quadratic in cosx
		$\cos x = 0, \ \cos x = \frac{1}{2}\sqrt{3}$	A1		Obtain 30° (allow $\frac{n}{6}$ or 0524), and no extra solns in
ra	nge	$x = 90^{\circ}$, $x = 30^{\circ}$	B1	5	Obtain 90° (allow $\pi/2$ or 1.57), from correct quadratic only
				SR	answer only B1 one correct solution B1 second correct solution, and no others
				8	
6	∫(3	$3x^2 + a) dx = x^3 + ax + c$	M1		Attempt to integrate
			A1		Obtain at least one correct term, allow unsimplified
			A1		Obtain $x^3 + ax$
	(–1	$(2) \Rightarrow -1 - a + c = 2$	M1		Substitute at least one of $(-1, 2)$ or $(2, 17)$ into integration
					attempt involving a and c
	(2, 1	$17) \Longrightarrow 8 + 2a + c = 17$	A1		Obtain two correct equations, allow unsimplified
			M1		Attempt to eliminate one variable from two equations in a
	a - b	2 c - 5	Δ1		Obtain $a = 2$, $c = 5$ from correct equations
	Hen	$x^{2}, c = 5$ ice $y = x^{3} + 2x + 5$	A1	8	State $y = x^3 + 2x + 5$
				Q	
				0	
7	(i)	f(-2) = -16 + 36 - 22 - 8	M1		Attempt f(-2), or equiv
		= -10	A1	2	Obtain -10
	(ii)	$f(\frac{1}{2}) = \frac{1}{4} + \frac{21}{4} + \frac{51}{2} - 8 = 0$ AG	 M1		Attempt $f(\frac{1}{2})$ (no other method allowed)
			A1	2	Confirm $f(\frac{1}{2}) = 0$, extra line of working required
-	(iii)	$f(x) = (2x - 1)(x^2 + 5x + 8)$	M1		Attempt complete division by $(2x - 1)$ or $(x - \frac{1}{2})$ or equiv
			A1		Obtain $x^2 + 5x + c$ or $2x^2 + 10x + c$
			A1	3	State $(2x-1)(x^2+5x+8)$ or $(x-\frac{1}{2})(2x^2+10x+16)$
	(iv)	f(x) has one real root (x = $\frac{1}{2}$) because $b^2 - 4ac = 25 - 32 = -7$	B1√		State 1 root, following their quotient, ignore reason
		hence quadratic has no real roots as $-7 < 0$,	B1√	2	Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9)
				9	

8 (i) $\frac{1}{2} \times r^2 \times 1.2 = 60$	M1		Attempt ($\frac{1}{2}$) $r^2\theta = 60$
r = 10	A1		Obtain $r = 10$
$r\theta = 10 \times 1.2 = 12$	B1√		State or imply arc length is $1.2r$, following their r
perimeter = $10 + 10 + 12 = 32$ cm	A1	4	Obtain 32
$(ii)(a)u_5 = 60 \times 0.6^4$	M1		Attempt u_5 using ar^4 or list terms
=7.78	A1	2	Obtain 7.78. or better
(b) $S_{10} = \frac{60(1 - 0.6^{10})}{1 - 0.6}$	M1		Attempt use of correct sum formula for a GP, or sum terms
= 149	A1	2	Obtain 149, or better (allow 149.0 – 149.2 inclusive)
(c) common ratio is less than 1, so series is convergent and hence sum to infinity exists	B1		series is convergent or $-1 < r < 1$ (allow $r < 1$) or reference to areas getting smaller / adding on less each time
$S_{\infty} = \frac{60}{1 - 0.6}$	M1		Attempt S_{∞} using $\frac{a}{1-r}$
= 150	A1	3	Obtain $S_{\infty} = 150$
			SR B1 only for 150 with no method shown
	[11	
9 (i)	B1		Sketch graph showing exponential growth
	B1	2	State or imply (0, 4)
(ii) $4k^x = 20k^2$			
$k^x = 5k^2$	M1		Equate $4k^x$ to $20k^2$ and take logs (any, or no, base)
$x = \log_k 5k^2$			
$x = \log_k 5 + \log_k k^2$	M1		Use $\log ab = \log a + \log b$
$x = 2\log_k k + \log_k 5$	MI	4	Use $\log a^b = b \log a$
$x = 2 + \log_k 5 \qquad \text{AG}$	AI	4	Show given answer correctly
$OR 4k^x = 20k^2$			
$k^x = 5k^2$	M1		Attempt to rewrite as single index
$k^{x-2} = 5$	A1		Obtain $k^{x-2} = 5$ or equive g $4k^{x-2} = 20$
$x - 2 = \log_k 5$	M1		Take logs (to any base)
$x = 2 + \log_k 5 \qquad \text{AG}$	A1		Show given answer correctly
(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left(4k^0 + 8k^{\frac{1}{2}} + 4k^1 \right)$	M1		Attempt <i>y</i> -values at $x = 0$, $\frac{1}{2}$ and 1, and no others
	M1		Attempt to use correct trapezium rule, 3 y-values, $h = \frac{1}{2}$
$\approx 1 + 2k^{\frac{1}{2}} + k$	A1	3	Obtain a correct expression, allow unsimplified
(b) $1+2k^{\frac{1}{2}}+k=16$	 M1		Equate attempt at area to 16
$\left(k^{\frac{1}{2}}+1\right)^2 = 16$	M1		Attempt to solve 'disguised' 3 term quadratic
$k^2 = 3$ k = 9	A1	3	Obtain $k = 9$ only
		12	