4723 Core Mathematics 3

1 (i)	State $y = \sec x$	B1		
(ii)	State $y = \cot x$	B 1		
(iii)	State $y = \sin^{-1} x$	B1	3	
		[3	
2	Either: State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
	$\underbrace{\text{Obtain integral of form } k(2x-3)^5}_{\text{Obtain integral of form } k(2x-3)^5}$	M1		any constant k involving π or not
	Obtain $\frac{1}{2}(2x-3)^5$ or $\frac{1}{2}\pi(2x-3)^5$			
	$\operatorname{Obtalli}_{\overline{10}}(2x-5) \operatorname{Ol}_{\overline{10}} \pi(2x-5)$	AI		
	Attempt evaluation using 0 and $\frac{3}{2}$	MI		subtraction correct way round
	Obtain $\frac{243}{10}\pi$	A1	5	or exact equiv
	<u>Or</u> : State or imply $\int \pi (2x-3)^4 dx$	B1		or unsimplified equiv
	Expand and obtain integral of order 5	M1		with at least three terms correct
	Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$	A1		with or without π
	Attempt evaluation using (0 and) $\frac{3}{2}$	M1		
	Obtain $\frac{243}{10}\pi$	A1	(5)	or exact equiv
	10	[5	
	Attempt use of identity for $\sec^2 \alpha$	M1		using $\pm \tan^2 \alpha \pm 1$
5 (1)	Obtain $1+(m+2)^2-(1+m^2)$	Δ1		absent brackets implied by subsequent
	(1+m)	Π		correct working
	Obtain $4m + 4 = 16$ and hence $m = 3$	A1	3	
(ii)	Attempt subn in identity for $tan(\alpha + \beta)$	M1		using $\frac{\pm \tan \alpha \pm \tan \beta}{1 + \alpha + \alpha}$
				$1 \pm \tan \alpha \tan \beta$
	Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$	A1v	/	following their <i>m</i>
	Obtain $-\frac{4}{7}$	A1	3	or exact equiv
		[6	
4 (i)	Obtain $\frac{1}{3}e^{3x} + e^{x}$	B1		
	Substitute to obtain $\frac{1}{2}e^{9a} + e^{3a} - \frac{1}{2}e^{3a} - e^{a}$	B1		or equiv
	Equate definite integral to 100 and			1
	attempt rearrangement	M1		as far as $e^{9a} = \dots$
	Introduce natural logarithm	M1		using correct process
	Obtain $a = \frac{1}{9}\ln(300 + 3e^a - 2e^{3a})$	A1	5	AG; necessary detail needed
(ii)	Obtain correct first iterate	B1		allow for 4 dp rounded or truncated
	Show correct iteration process	M1		with at least one more step
	Obtain at least three correct iterates in all	A1	1	allowing recovery after error
	Outaili 0.0309	AI	4	answer required to exactly 4 dp
	$[0.6 \rightarrow 0.631269 \rightarrow 0.630]$	884 -	$\rightarrow 0$.630889]
			9	

5 (i)	Either:	Show correct process for comp'n Obtain $y = 3(3x+7) - 2$	M1 A1		correct way round and in terms of <i>x</i> or equiv
		Obtain $x = -\frac{19}{9}$	A1	3	or exact equiv; condone absence of $y = 0$
	<u>Or</u> : Us	se fg(x) = 0 to obtain $g(x) = \frac{2}{3}$	B1		
	At	tempt solution of $g(x) = \frac{2}{3}$	M1		
	Ob	$tain \ x = -\frac{19}{9}$	A1	(3)	or exact equiv; condone absence of $y = 0$
(ii)	Attemp	t formation of one of the equations			
	3 <i>x</i> +7	$=\frac{x-7}{3}$ or $3x+7=x$ or $\frac{x-7}{3}=x$	M1		or equiv
	Obtain	$x = -\frac{7}{2}$	A1		or equiv
	Obtain	$y = -\frac{7}{2}$	A1۷	3	or equiv; following their value of <i>x</i>
(iii)	Attempt	t solution of modulus equation	M1		squaring both sides to obtain 3-term quadratics or forming linear equation with signs of 3x different on each side
	Obtain $3r - 3r $	-12x+4 = 42x+49 or 2 = -3x-7	A 1		or equiv
	Obtain	$x = -\frac{5}{2}$	A1		or exact equiv; as final answer
	Obtain	$y = \frac{9}{2}$	A1	4	or equiv; and no other pair of answers
		-	[10	
6 (i)	Obtain	derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$	M1		any constant k; any linear function for f
	Obtain	$\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$	A1	2	or equiv
(ii)	Either:	Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	*M1		
	,	Take reciprocal of expression/value	*M1		and without change of sign
		Obtain –7 for gradient of tangent	Al M1		den *M *M
		Obtain $y = -7x + 52$	A1	5	and no second equation
	<u>Or</u> : Sub	'te $y = 3$ in expression for $\frac{dx}{dy}$	M1		
	Atte	empt formation of eq'n $x = m'y + c$	M 1		where m' is attempt at $\frac{dx}{dy}$
	Obt	ain $x - 7 = -\frac{1}{7}(y - 3)$	A1		or equiv
	Atte	empt rearrangement to required form	M1		
	Obt	an y = -1x + 52	Al	(5) 7	and no second equation

7 (i)	State $R = 10$ Attempt to find value of α	B1 M1	or equiv implied by correct answer or its complement; allow sin/cos muddles
	Obtain 36.9 or $\tan^{-1}\frac{3}{4}$	A1 3	or greater accuracy 36.8699
(ii)(a)	Show correct process for finding one angle Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second angle	M1 A1 M1	or greater accuracy 101.027
	Obtain (115.84 + 36.87 and hence) 153	$A1\sqrt{4}$	following their value of α ; or greater accuracy 152.711; and no other between 0 and 360
(b)	Recognise link with part (i)	M1	signalled by 40 – 20
	Use fact that maximum and minimum values of sine are 1 and -1 Obtain 60	M1 A1 3 10	may be implied; or equiv
8 (i)	Refer to translation and stretch	M1	in either order; allow here equiv informal terms such as 'move'
	State translation in <i>x</i> direction by 6 State stretch in <i>y</i> direction by 2 [SC: if M0 but one transformation complet	A1 A1 3 ely corre	or equiv; now with correct terminology or equiv; now with correct terminology ect, give B1]
(ii)	State $2\ln(x-6) = \ln x$	B1	or $2\ln(a-6) = \ln a$ or equiv
	Show correct use of logarithm property Attempt solution of 3-term quadratic Obtain 9 only	*M1 M1 A1 4	dep *M following correct solution of equation
(iii)	Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$) M1	any constant k; maybe with $y_0 = 0$ implied
	Obtain $\frac{1}{3} \times 1(2\ln 1 + 8\ln 2 + 2\ln 3)$	A1	or equiv
	Obtain 2.58	A1 3	or greater accuracy 2.5808
9 (a)	Attempt use of quotient rule	*M1	or equiv; allow numerator wrong way round and denominator errors
	Obtain $\frac{(kx^2+1)2kx - (kx^2-1)2kx}{(kx^2+1)^2}$	A1	or equiv; with absent brackets implied by
	Obtain correct simplified numerator Akr	Δ1	subsequent correct working
	Equate numerator of first derivative to zero State $x = 0$ or refer to $4kx$ being linear or	M1	dep *M
	observe that, with $k \neq 0$, only one sol'n	A1√ 5	AG or equiv; following numerator of form $k'kx = 0$, any constant k'

(b)	Attempt use of product rule	*M1
	Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$	A1

Equate to zero and either factorise with		
factor e^{mx} or divide through by e^{mx}	M1	dep *M
Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv		
and observe that e^{mx} cannot be zero	A1	
	2.61	
Attempt use of discriminant	MI	using co
Simplify to obtain $m^4 + 4$	A1	or equiv
Observe that this is positive for all <i>m</i> and		
hence two roots	A1 7	or equiv
	12	

ng correct $b^2 - 4ac$ with their a, b, cequiv

equiv; AG

or equiv