4761 Mechanics 1

Q 1		mark	comment	sub
(i)	$0.5 \times 8 \times 10=40 \mathrm{~m}$	M1	Attempt to find whole area or ... If suvat used in 2 parts, accept any t value $0 \leq t \leq 8$ for max.	2
(ii)	$0.5 \times 5(T-8)=10$ $T=12$	A1 M1 B1 A1	cao $0.5 \times 5 \times k=10$ seen. Accept ± 5 and ± 10 only. If suvat used need whole area; if in 2 parts, accept any t value $8 \leq t \leq T$ for min. Attempt to use $k=T-8$. cao. [Award 3 if $T=12$ seen]	3
(iii)	$40-10=30 \mathrm{~m}$	B1	FT their 40.	1
		6		
Q 2		mark	comment	sub
(i)	$\begin{aligned} & \sqrt{10^{2}+24^{2}}=26 \text { so } 26 \mathrm{~N} \\ & \arctan (10 / 24) \\ & =22.619 \ldots \text { so } 22.6^{\circ}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	B1 M1 A1	Using arctan or equiv. Accept $\arctan (24 / 10)$ or equiv. Accept 157.4°.	3
(ii)	$\mathbf{W}=-w \mathbf{j}$	B1	Accept $\binom{0}{-w}$ and $\binom{0}{-w \mathrm{j}}$	1
(iii)	$\begin{aligned} & \mathbf{T}_{1}+\mathbf{T}_{2}+\mathbf{W}=\mathbf{0} \\ & \\ & k=-10 \\ & w=34 \end{aligned}$	M1 B1 B1	Accept in any form and recovery from $\mathbf{W}=w \mathbf{j}$. Award if not explicit and part (ii) and both k and w correct. Accept from wrong working. Accept from wrong working but not -34 . [Accept - $10 \mathbf{i}$ or $34 \mathbf{j}$ but not both]	3
		7		

Q 3	mark	comment	sub
(i)	The line is not straight	B1	Any valid comment

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& mark \& comment \& sub \\
\hline \[
\begin{aligned}
\& \text { (i) }
\end{aligned}
\] \& \[
\mathbf{v}=\mathbf{i}+(3-2 t) \mathbf{j}
\]
\[
\mathbf{v}(4)=\mathbf{i}-5 \mathbf{j}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { F1 }
\end{aligned}
\] \& \begin{tabular}{l}
Differentiating r. Allow 1 error. Could use const accn. \\
Do not award if \(\sqrt{26}\) is given as vel (accept if \(\mathbf{v}\) given and \(v\) given as well called speed or magnitude).
\end{tabular} \& 3 \\
\hline (ii) \& \begin{tabular}{l}
\[
a=-2 \mathbf{j}
\] \\
Using N2L F \(=1.5 \times(-2 \mathbf{j})\)
\[
\text { so }-3 \mathrm{j} N
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Diff \(\mathbf{v}\). FT their \(\mathbf{v}\). Award if \(-2 \mathbf{j}\) seen \& isw. \\
Award for \(1.5 \times(\pm\) their a or \(a)\) seen. \\
cao Do not award if final answer is not correct. \\
[Award M1 A1 for - 3 j WW]
\end{tabular} \& 3 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
(iii) \\
\(x=2+t\) and \(y=3 t-t^{2}\) \\
Substitute \(t=x-2\) \\
so \(y=3(x-2)-(x-2)^{2}\) \\
\([=(x-2)(5-x)]\) \\
B1 \\
B1 \\
Must have both but may be implied. \\
cao. isw. Must see the form \(y=\)
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{8} \\
\hline Q 6 \& \& mark \& comment \& sub \\
\hline \& Up the plane \(T-4 g \sin 25=0\)
\[
T=16.5666 \ldots \text { so } 16.6 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f} .)
\] \& M1

A1 \& | Resolving parallel to the plane. If any other direction used, all forces must be present. Accept $s \leftrightarrow c$. |
| :--- |
| Allow use of m. No extra forces. | \& 2

\hline \multicolumn{5}{|l|}{(ii)}

\hline (iii) \& Diagram \& B1 \& Any 3 of weight, friction normal reaction and P present \&

\hline
\end{tabular}

If there is a consistent $s \leftrightarrow c$ error in the weight term throughout the question, penalise only two marks for this error. In the absence of other errors this gives
(i) $35.52 \ldots$ (ii) $1.6294 \ldots$ (iv) $57.486 \ldots$ (v) $1.688 \ldots$

For use of mass instead of weight lose maximum of 2.

Q 7		mark	comment	sub
(i)	With the 11.2 N resistance acting to the left N2L $\quad F-11.2=8 \times 2$ $F=27.2 \text { so } 27.2 \mathrm{~N}$	M1 A1 A1	Use of N2L (allow $F=m g a$). Allow 11.2 omitted; no extra forces. All correct cao	3
(ii)	The string is inextensible	E1	Allow 'light inextensible' but not other irrelevant reasons given as well (e.g. smooth pulley).	1
(iii)		B1 B1	One diagram with all forces present; no extras; correct arrows and labels accept use of words. Both diagrams correct with a common label.	
(iv)	method (1) box N2L \rightarrow 105-T-11.2 = 8 a sphere N2L $\uparrow T-58.8=6 a$ Adding $35=14 a$ $\mathrm{a}=2.5 \mathrm{so} 2.5 \mathrm{~m} \mathrm{~s}^{-2}$ Substitute $a=2.5$ giving $T=$ $\begin{aligned} & 58.8+15 \\ & T=73.8 \text { so } 73.8 \mathrm{~N} \\ & \text { method (2) } \end{aligned}$ $105-11.2-58.8=14 a$ $a=2.5$ $\begin{aligned} & \text { either: } \quad \text { box N2L } \\ & \rightarrow 105-T-11.2=8 a \end{aligned}$	M1 A1 A1 M1 E1 M1 A1 M1 A1 E1 M1	For either box or sphere, $F=m a$. Allow omitted force and sign errors but not extra forces. Need correct mass. Allow use of mass not weight. Correct and in any form. Correct and in any form. [box and sphere equns with consistent signs] Eliminating 1 variable from 2 equns in 2 variables. Attempt to substitute in either box or sphere equn. For box and sphere, $F=m a$. Must be correct mass. Allow use of mass not weight. Method made clear. For either box or sphere, $F=m a$. Allow omitted force and sign errors but not extra forces. Need correct mass. Allow use of mass not weight.	

	$T-58.8=6 a$ Substitute $a=2.5$ in either equn $T=73.8 \text { so } 73.8 \mathrm{~N}$	M1 A1	Attempt to substitute in either box or sphere equn. [If AG used in either equn award M1 A1 for that equn as above and M1 A1 for finding T. For full marks, both values must be shown to satisfy the second equation.]	7
(v) (A)	g downwards	B1	Accept $\pm g, \pm 9.8, \pm 10, \pm 9.81$	1
(B)	Taking $\uparrow+\mathrm{ve}, s=-1.8, u=3$ and $a=-9.8$ so $-1.8=3 T-4.9 T^{2}$ and so $4.9 T^{2}-3 T-1.8=0$	M1	Some attempt to use $s=u t+0.5 a t^{2}$ with $a= \pm 9.8$ etc $s= \pm 1.8$ and $u= \pm 3$. Award for $a=$ g even if answer to (A) wrong. Clearly shown. No need to show + ve required.	2
(C)	See over			
(C)	Time to reach $3 \mathrm{~m} \mathrm{~s}^{-1}$ is given by $3=0+2.5 t \text { so } t=1.2$ remaining time is root of quad time is $0.98513 \ldots \mathrm{~s}$ Total 2.1851...so 2.19 s (3 s. f.) With the 11.2 N resistance acting to the right	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Quadratic solved and + ve root added to time to break. Allow 0.98. [Award for answer seen WW] cao	
(i)	$F+11.2=8 \times 2$ so $F=4.8$		The same scheme as above	
(iii)			The 11.2 N force may be in either direction, otherwise the same scheme	
(iv)	The same scheme with +11.2 N instead of -11.2 N acting on the box method (1) box N2L $\rightarrow 105-T+11.2=8 a$ sphere as before			

	$\begin{aligned} & \text { method (2) } \\ & 105+11.2-58.8=14 a \\ & \text { These give } a=4.1 \text { and } T=83.4 \end{aligned}$	Allow 2.5 substituted in box equation to give $T=96.2$ If the sign convention gives as positive the direction of the sphere descending, $a=-4.1$. Allow substituting $a=2.5$ in the equations to give T $=43.8$ (sphere) or 136.2 (box).	
(v)		In (C) allow use of $\mathrm{a}=4.1$ to give time to break as 0.73117 ..s. and total time as 1.716 ...s	
		20	

