1 (i)

B1 1

(ii) $\frac{1}{3}$

M1 $\frac{1}{\sqrt{9}}$ or $\frac{1}{\sqrt{9}}$ so

A1

2 cao

2 (i)

B1*

Reasonably correct curve for $y = -\frac{1}{x^2}$ in 3^{rd} and 4^{th} quadrants only

B1 dep* Very good curves in curve for $y = -\frac{1}{x^2}$ in 3rd and 4th quadrants

SC If 0, very good single curve in either 3rd or 4th quadrant and nothing in other three quadrants. **B1**

(ii)

M1

Translation of their $y = -\frac{1}{x^2}$ vertically

A1

Reasonably correct curve, horizontal asymptote soi at y = 3

(iii) $y = -\frac{2}{x^2}$

B1

5

1

3 (i) $\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$

M1

Multiply numerator and denom by $3 - \sqrt{5}$

 $=\frac{12(3-\sqrt{5})}{9-5}$

A1

 $(3+\sqrt{5})(3-\sqrt{5})=9-5$

 $=9-3\sqrt{5}$

A1

3

(ii) $3\sqrt{2} - \sqrt{2}$ $= 2\sqrt{2}$

M1

Attempt to express $\sqrt{18}$ as $k\sqrt{2}$

A1

2 5

4 (i)	$(x^2 - 4x + 4)(x + 1)$	M1 A1		Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
	$=x^3-3x^2+4$			Expansion with at most 1 incorrect term
	= x - 3x + 4	A1	3	Correct, simplified answer
(ii)	4	B1		+ve cubic with 2 or 3 roots
		B1		Intercept of curve labelled (0, 4) or indicated on <i>y</i> -axis
	-1 2 x	B1	3	(-1, 0) and turning point at $(2, 0)$ labelled or indicated on x -axis and no other x intercepts
	ſ		6	
5	$k = x^2$ $4k^2 + 3k - 1 = 0$	M1*		Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^2
	(4k-1)(k+1) = 0	M1 dep		Correct method to solve a quadratic
	$k = \frac{1}{4}$ (or $k = -1$)	A1		
		M1		Attempt to square root to obtain <i>x</i>
	$x = \pm \frac{1}{2}$	A1		$\pm \frac{1}{2}$ and no other values
			5 5	2
	$\frac{1}{2}$	M1		Attempt to differentiate
6	$y = 2x + 6x^{-\frac{1}{2}}$	A1		$kx^{-\frac{3}{2}}$
	$\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$	A1		Completely correct expression (no +c)
	When $x = 4$, gradient = $2 - \frac{3}{\sqrt{4^3}}$	M1		Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$
	$=\frac{13}{8}$	A1	5	
	8		5	
7	$2(6-2y)^2 + y^2 = 57$	M1*		substitute for x/y or attempt to get an equation in 1 variable only
	2/26 24 . 4 2) . 2 . 57	A1		correct unsimplified expression
	$2(36 - 24y + 4y^2) + y^2 = 57$			abtain assument 2 tanna anna duatia
	$9y^2 - 48y + 15 = 0$	A1		obtain correct 3 term quadratic
	$3y^2 - 16y + 5 = 0$	M1		correct method to solve 3 term quadratic
	(3y-1)(y-5) = 0	dep		to solve a term quantum
	$y = \frac{1}{3} \text{ or } y = 5$	A1		
	$x = \frac{16}{3}$ or $x = -4$	A1	6	SC If A0 A0, one correct pair of values, spotted or from correct factorisation www
			<u> </u>	B1

8 (i)	$2(x^2 + \frac{5}{2}x)$	В1		$\left(x+\frac{5}{4}\right)^2$
	$=2\left[\left(x+\frac{5}{4}\right)^2-\frac{25}{16}\right]$	M1		$q = -2p^2$
	$= 2\left(x + \frac{5}{4}\right)^2 - \frac{25}{8}$	A1	3	$q = -\frac{25}{8}$ c.w.o.
(ii)	$\left(-\frac{5}{4}, -\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$	B1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
. ,		A1		$0, -\frac{5}{2} \operatorname{seen}$
	$x < -\frac{5}{2}, x > 0$	M 1		Correct method to solve quadratic
	2, 2,	A1	4	inequality.
		A1	10	(not wrapped, strict inequalities, no 'and')
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6 $q = 1$	A1 A1	3	
(ii)	$r^2 = (4-1)^2 + (5-3)^2$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(;;;)	$(x+1)^2 + (x+2)^2 = 20$	M1		$(x+1)^2$ and $(y-3)^2$ seen
(iii)	$(x+1)^2 + (y-3)^2 = 29$	M1		$(x \pm 1)^2 + (y \pm 3)^2 = \text{their } r^2$
	$x^2 + y^2 + 2x - 6y - 19 = 0$	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent $= -\frac{5}{2}$	В1√		oe
	$y - 5 = -\frac{5}{2}(x - 4)$	M1		correct equation of straight line through (4, 5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

10(i)	$\frac{dy}{dx} = 6x^2 + 10x - 4$	B1		1 term correct
		B 1		Completely correct (no +c)
	$6x^2 + 10x - 4 = 0$	M1*		Sets their $\frac{dy}{dx} = 0$
	$2(3x^2 + 5x - 2) = 0$			dx
	(3x-1)(x+2) = 0	M1		Correct method to solve quadratic
	1	dep*		
	$x = \frac{1}{3}$ or $x = -2$	A1		SC If AO AO and compact main of violage
	19	111		SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
	$y = -\frac{19}{27}$ or $y = 12$	A1	6	
	1	M1		Any inequality (or inequalities) involving
(ii)	$-2 < x < \frac{1}{3}$		_	both their x values from part (i)
		A1	2	Allow \leq and \geq
(iii)	When $x = \frac{1}{2}$, $6x^2 + 10x - 4 = \frac{5}{2}$	M1		Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$
	and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$	B1		Correct y coordinate
	$y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$	M1		Correct equation of straight line using their values. Must use their $\frac{dy}{dx}$ value not e.g. the negative reciprocal
	10x - 4y - 7 = 0	A1	4	Shows rearrangement to given equation CWO throughout for A1
(iv)	y	B1		Sketch of a cubic with a tangent which meets it at 2 points only
		B1	2	+ve cubic with max/min points and line

with +ve gradient as tangent to the curve to the right of the min

SC1

B1 Convincing algebra to show that the cubic

8x³ + 20x² - 26x +7 = 0 factorises into
(2x - 1)(2x - 1)(x + 7)

B1 Correct argument to say there are 2 distinct roots

SC2 B1 Recognising y = 2.5x -7/4 is tangent from part (iii)

B1 As second B1 on main scheme