1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1 A1	$\underline{2}$	$\begin{aligned} & \frac{1}{9^{\frac{1}{2}}} \text { or } \frac{1}{\sqrt{9}} \text { soi } \\ & \text { cao } \end{aligned}$
2 (i)		$\begin{aligned} & \text { B1* } \\ & \text { B1 } \\ & \text { dep* } \end{aligned}$	2	Reasonably correct curve for $y=-\frac{1}{x^{2}}$ in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants only Very good curves in curve for $y=-\frac{1}{x^{2}}$ in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants SC If 0 , very good single curve in either $3^{\text {rd }}$ or $4^{\text {th }}$ quadrant and nothing in other three quadrants. B1
		M1 A1	2	Translation of their $y=-\frac{1}{x^{2}}$ vertically Reasonably correct curve, horizontal asymptote soi at $y=3$
(iii)	$y=-\frac{2}{x^{2}}$	B1	1 5	
3 (i)	$\begin{aligned} & \frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\ & =\frac{12(3-\sqrt{5})}{9-5} \\ & =9-3 \sqrt{5} \end{aligned}$	M1 A1 A1	3	Multiply numerator and denom by $3-\sqrt{5}$ $(3+\sqrt{5})(3-\sqrt{5})=9-5$
(ii)	$\begin{aligned} & 3 \sqrt{2}-\sqrt{2} \\ & =2 \sqrt{2} \end{aligned}$	M1 A1	2 5	Attempt to express $\sqrt{18}$ as $\mathrm{k} \sqrt{2}$

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& $$
\left(x^{2}-4 x+4\right)(x+1)
$$
$$
=x^{3}-3 x^{2}+4
$$ \& M1

A1

A1 \& 3 \& | Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) |
| :--- |
| Expansion with at most 1 incorrect term |
| Correct, simplified answer | \\

\hline (ii) \& \& | B1 |
| :--- |
| B1 |
| B1 | \& \& | +ve cubic with 2 or 3 roots |
| :--- |
| Intercept of curve labelled (0,4) or indicated on y-axis |
| $(-1,0)$ and turning point at $(2,0)$ labelled or indicated on x-axis and no other x intercepts | \\

\hline 5 \& $$
\begin{aligned}
& k=x^{2} \\
& 4 k^{2}+3 k-1=0 \\
& (4 k-1)(k+1)=0 \\
& k=\frac{1}{4}(\text { or } k=-1) \\
& x= \pm \frac{1}{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1* } \\
& \text { M1 } \\
& \text { dep } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | 5 |
| :---: |
| 5 | \& | Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^{2} |
| :--- |
| Correct method to solve a quadratic |
| Attempt to square root to obtain x $\pm \frac{1}{2}$ and no other values | \\

\hline 6 \& $$
\begin{aligned}
& y=2 x+6 x^{-\frac{1}{2}} \\
& \frac{d y}{d x}=2-3 x^{-\frac{3}{2}}
\end{aligned}
$$

$$
\text { When } \begin{aligned}
x=4 \text {, gradient } & =2-\frac{3}{\sqrt{4^{3}}} \\
& =\frac{13}{8}
\end{aligned}
$$ \& M1

A1
A1

M1
A1 \& 5

\square \& | Attempt to differentiate $k x^{-\frac{3}{2}}$ |
| :--- |
| Completely correct expression (no +c) |
| Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$ | \\

\hline 7 \& $$
\begin{aligned}
& 2(6-2 y)^{2}+y^{2}=57 \\
& 2\left(36-24 y+4 y^{2}\right)+y^{2}=57 \\
& 9 y^{2}-48 y+15=0 \\
& 3 y^{2}-16 y+5=0 \\
& (3 y-1)(y-5)=0 \\
& y=\frac{1}{3} \text { or } y=5 \\
& x=\frac{16}{3} \text { or } x=-4
\end{aligned}
$$ \& M1 ${ }^{*}$

A1
A1
A1
M1
dep
A1

A1 \& ${ }_{6}^{6}$ \& | substitute for x / y or attempt to get an equation in 1 variable only correct unsimplified expression |
| :--- |
| obtain correct 3 term quadratic |
| correct method to solve 3 term quadratic |
| SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 | \\

\hline
\end{tabular}

$\begin{array}{ll} \hline 8 \text { (i) } \quad & 2\left(x^{2}+\frac{5}{2} x\right) \\ & =2\left[\left(x+\frac{5}{4}\right)^{2}-\frac{25}{16}\right] \\ & =2\left(x+\frac{5}{4}\right)^{2}-\frac{25}{8} \end{array}$	B1 M1 A1	3	$\begin{aligned} & \left(x+\frac{5}{4}\right)^{2} \\ & q=-2 p^{2} \\ & q=-\frac{25}{8} \text { c.w.o. } \end{aligned}$
(ii) $\left(-\frac{5}{4},-\frac{25}{8}\right)$	$\begin{aligned} & \text { B1 } \sqrt{ } \\ & \text { B1 } \sqrt{ } \end{aligned}$	2	
(iii) $\quad x=-\frac{5}{4}$	B1	1	
(iv) $x(2 x+5)>0$	M1		Correct method to find roots 0 , $-\frac{5}{2}$ seen
$x<-\frac{5}{2}, x>0$	M1 A1	$\begin{gathered} 4 \\ 10 \\ \hline \end{gathered}$	Correct method to solve quadratic inequality. (not wrapped, strict inequalities, no ‘and')
9 (i) $\quad \frac{4+p}{2}=-1, \quad \frac{5+q}{2}=3$	M1		Correct method (may be implied by one correct coordinate)
$\begin{gathered} p=-6 \\ q=1 \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	
$\text { (ii) } \begin{aligned} & r^{2}=\left(4-{ }^{-} 1\right)^{2}+(5-3)^{2} \\ & r=\sqrt{29} \end{aligned}$	M1 A1	2	Use of $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ for either radius or diameter
(iii) $(x+1)^{2}+(y-3)^{2}=29$			$\begin{aligned} & (x+1)^{2} \text { and }(y-3)^{2} \text { seen } \\ & (x \pm 1)^{2}+(y \pm 3)^{2}=\text { their } r^{2} \end{aligned}$
$x^{2}+y^{2}+2 x-6 y-19=0$	A1	3	Correct equation in correct form
$\text { (iv) } \begin{aligned} \text { gradient of radius } & =\frac{3-5}{-1-4} \\ & =\frac{2}{5} \end{aligned}$	M1		uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ oe
$\text { gradient of tangent }=-\frac{5}{2}$	B1 $\sqrt{ }$		oe
$\begin{aligned} & y-5=-\frac{5}{2}(x-4) \\ & y=-\frac{5}{2} x+15 \end{aligned}$	M1 A1	$\stackrel{5}{13}$	correct equation of straight line through (4, 5), any non-zero gradient oe 3 term equation e.g. $5 x+2 y=30$

10(i)	$\begin{aligned} & \frac{d y}{d x}=6 x^{2}+10 x-4 \\ & 6 x^{2}+10 x-4=0 \\ & 2\left(3 x^{2}+5 x-2\right)=0 \\ & (3 x-1)(x+2)=0 \\ & x=\frac{1}{3} \text { or } x=-2 \\ & y=-\frac{19}{27} \text { or } y=12 \end{aligned}$	B1 B1 M1*	6	1 term correct Completely correct (no +c) Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
(ii)	$-2<x<\frac{1}{3}$		2	Any inequality (or inequalities) involving both their x values from part (i) Allow \leq and \geq
(iii)	When x $x=\frac{1}{2}, 6 x^{2}+10 x-4=\frac{5}{2}$ and $2 x^{3}+5 x^{2}-4 x=-\frac{1}{2}$ $y+\frac{1}{2}=\frac{5}{2}\left(x-\frac{1}{2}\right)$	M1 B1 M1		Substitute $x=\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Correct y coordinate Correct equation of straight line using their values. Must use their $\frac{d y}{d x}$ value not e.g. the negative reciprocal
	$10 x-4 y-7=0$	A1		Shows rearrangement to given equation CWO throughout for A1

(iv)

B1

B1

Sketch of a cubic with a tangent which meets it at 2 points only
+ve cubic with max/min points and line with + ve gradient as tangent to the curve to the right of the min

SC1

B1 Convincing algebra to show that the cubic
$8 x^{3}+20 x^{2}-26 x+7=0$ factorises into $(2 x-1)(2 x-1)(x+7)$
B1 Correct argument to say there are 2 distinct roots
SC2 B1 Recognising $y=2.5 x-7 / 4$ is tangent from part (iii)
B1 As second B1 on main scheme

