4722

Mark Scheme

1 (i)	f(2) = 8 + 4a - 2a - 14 2a - 6 = 0 a = 3	M1*		Attempt f(2) or equiv, including inspection / long division / coefficient matching
		M1d* A1	3	Equate attempt at $f(2)$, or attempt at remainder, to 0 and attempt to solve Obtain $a = 3$
(ii)	f(-1) = -1 + 3 + 3 - 14 = -9	M1		Attempt f(-1) or equiv, including inspection / long division / coefficient matching
		A1 ft	2	Obtain -9 (or $2a - 15$, following their a)
			5	
2 (i)	area $\approx \frac{1}{2} \times 3 \times \left(\sqrt[3]{8} + 2\left(\sqrt[3]{11} + \sqrt[3]{14}\right) + \sqrt[3]{17}\right)$	B1		State or imply at least 3 of the 4 correct <i>y</i> -coords , and no others
	≈ 20.8	M1		Use correct trapezium rule, any <i>h</i> , to find area between $x = 1$ and $x = 10$
	~ 20.0	M1		Correct h (soi) for their y-values – must be at equal intervals
. <u></u>		A1	4	Obtain 20.8 (allow 20.7)
(ii)	use more strips / narrower strips	B1	1	Any mention of increasing n or decreasing h
			5	
3 (i)	$(1 + \frac{1}{2}x)^{10} = 1 + 5x + 11.25x^2 + 15x^3$	B1		Obtain $1 + 5x$
		M1		Attempt at least the third (or fourth) term of the binomial expansion, including coeffs
		A1		Obtain $11.25x^2$
		A1		Obtain $15x^3$
			4	
(ii)	coeff of $x^3 = (3 \times 15) + (4 \times 11.25) + (2 \times 5)$ = 100	M1		Attempt at least one relevant term, with or without powers of x
		A1 ft		Obtain correct (unsimplified) terms (not necessarily summed) – either coefficients or still with powers of <i>x</i> involved
		A1	3	Obtain 100
			7	

4722

Mark Scheme

4 (i)	$u_1 = 6, u_2 = 11, u_3 = 16$	B1	1	State 6, 11, 16
(ii)	$S_{40} = {}^{40}/_2 (2 \ge 6 + 39 \ge 5)$ = 4140	M1		Show intention to sum the first 40 terms of a sequence
		M1		Attempt sum of their AP from (i), with $n = 40$, $a =$ their u_1 and $d =$ their $u_2 - u_1$
		A1	3	Obtain 4140
(iii)	$w_3 = 56$ $5p + 1 = 56$ or $6 + (p - 1) \ge 56$ p = 11	B1		State or imply $w_3 = 56$
		M1		Attempt to solve $u_p = k$
		A1	3	Obtain $p = 11$
			7	
5 (i)	$\frac{\sin\theta}{8} = \frac{\sin 65}{11}$	M1		Attempt use of correct sine rule
	$\theta = 41.2^{\circ}$	A1	2	Obtain 41.2° , or better
(ii) a	180 - (2 x 65) = 50° or 65 x $\pi/_{180}$ = 1.134 50 x $\pi/_{180}$ = 0.873 A.G. π - (2 x 1.134) = 0.873	M1		Use conversion factor of $\pi/180}$
		A1	2	Show 0.873 radians convincingly (AG)
(ii) b	area sector = $\frac{1}{2} \times 8^2 \times 0.873 = 27.9$ area triangle = $\frac{1}{2} \times 8^2 \times \sin 0.873 = 24.5$ area segment = 27.9 - 24.5 = 3.41	M1		Attempt area of sector, using $(\frac{1}{2}) r^2 \theta$
		M1		Attempt area of triangle using (1/2) $r^2 \sin \theta$
		M1		Subtract area of triangle from area of sector
		A1	4	Obtain 3.41or 3.42
			8	

-				
6 a	$\int_{3}^{5} \left(x^{2} + 4x \right) dx = \left[\frac{1}{3} x^{3} + 2x^{2} \right]_{3}^{5}$ $= \left(\frac{125}{3} + 50 \right) - \left(9 + 18 \right)$	M1		Attempt integration
	$= (\frac{125}{3} + 50) - (9 + 18)$	A1		Obtain $\frac{1}{3}x^3 + 2x^2$
	$= 64^{2}/_{3}$	M1		Use limits $x = 3$, 5 – correct order & subtraction
		<u>A1</u>	4	Obtain 64 $^{2}/_{3}$ or any exact equiv
b	$\int (2 - 6\sqrt{y}) dy = 2y - 4y^{\frac{3}{2}} + c$	B 1		State 2y
		M1		Obtain $ky^{\frac{3}{2}}$
		A1	3	Obtain $-4y^{\frac{3}{2}}$ (condone absence of $+c$)
с	$\int_{1}^{\infty} 8x^{-3} dx = \left[\frac{-4}{x^2}\right]_{1}^{\infty}$	B1		State or imply $\frac{1}{x^3} = x^{-3}$
	= (0) - (-4)	M1		Attempt integration of kx^n
	=4	A1		Obtain correct $-4x^{-2}$ (+ <i>c</i>)
		A1 ft	4	Obtain 4 (or -k following their kx^{-2})
			11	
7 (i)	$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x}$ $= \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x}$ $= \tan^2 x - 1$	M1		Use either $\sin^2 x + \cos^2 x = 1$, or $\tan x = \frac{\sin x}{\cos x}$
		A1	2	Use other identity to obtain given answer convincingly.
(ii)	$\tan^{2} x - 1 = 5 - \tan x$ $\tan^{2} x + \tan x - 6 = 0$ $(\tan x - 2)(\tan x + 3) = 0$ $\tan x = 2, \tan x = -3$ $x = 63.4^{\circ}, 243^{\circ} \qquad x = 108^{\circ}, 288^{\circ}$	B1		State correct equation
		M1		Attempt to solve three term quadratic in $\tan x$
		A1		Obtain 2 and -3 as roots of their quadratic
		M1		Attempt to solve $\tan x = k$ (at least one root)
		A1ft		Obtain at least 2 correct roots
		A1	6	Obtain all 4 correct roots
			8	

8 a	$\log 5^{3_{W}-1} = \log 4^{250}$	M1*		Introduce logarithms throughout
	$(3w-1)\log 5 = 250 \log 4$	M1*		Use $\log a^b = b \log a$ at least once
	$3w - 1 = \frac{250\log 4}{\log 5}$ w = 72.1	A1		Obtain $(3w - 1)\log 5 = 250 \log 4$ or equiv
		M1d*		Attempt solution of linear equation
		A1	5	Obtain 72.1, or better
b	$\log_x \frac{5y+1}{3} = 4$	M1		Use $\log a - \log b = \log \frac{a}{b}$ or equiv
	$\frac{5y+1}{3} = x^4$	M1		Use $f(y) = x^4$ as inverse of $\log_x f(y) = 4$
	$5y + 1 = 3x^4$ $y = \frac{3x^4 - 1}{5}$	M1		Attempt to make <i>y</i> the subject of $f(y) = x^4$
	$y = \frac{1}{5}$	A1	4	Obtain $y = \frac{3x^4 - 1}{5}$, or equiv
_			9	
9 (i)	$ar = a + d$, $ar^3 = a + 2d$ $2ar - ar^3 = a$	M1		Attempt to link terms of AP and GP, implicitly or explicitly.
	$ar^3 - 2ar + a = 0$ $r^3 - 2r + 1 = 0$ A.G.	M1		Attempt to eliminate <i>d</i> , implicitly or explicitly, to show given equation.
		A1	3	Show $r^3 - 2r + 1 = 0$ convincingly
(ii)	f (r) = $(r-1)(r^2 + r - 1)$	B1		Identify $(r-1)$ as factor or $r = 1$ as root
	$-1\pm\sqrt{5}$	M1*		Attempt to find quadratic factor
	$r = \frac{-1 \pm \sqrt{5}}{2}$	A1		Obtain $r^2 + r - 1$
	Hence $r = \frac{-1 + \sqrt{5}}{2}$	M1d*		Attempt to solve quadratic
		A1	5	Obtain $r = \frac{-1 + \sqrt{5}}{2}$ only
(iii)	$\frac{a}{1-r} = 3 + \sqrt{5}$	M1		Equate S_{∞} to $3 + \sqrt{5}$
	$a = (\frac{3}{2} - \frac{\sqrt{5}}{2})(3 + \sqrt{5})$	A1		Obtain $\frac{a}{1 - \left(\frac{-1 + \sqrt{5}}{2}\right)} = 3 + \sqrt{5}$
	$a = {}^{9}/_{2} - {}^{5}/_{2}$ a = 2	M1		Attempt to find <i>a</i>
		A1	4	Obtain $a = 2$
			12	