Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

1i	590	B1 1	Allow approximately 590
ii	Graph horiz (for ≥ 55 mks) oe	B1 1	or levels off, or $grad = 0$, $grad$ not increase
	_		Allow line not rise, goes flat, plateaus, stops
			increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27	M1	eg 26 mks $\rightarrow 150^{\text{th}}$ 27 mks $\rightarrow 180^{\text{th}}$
	Double & attempt read x	M1	eg read at $cf = 300$ or 360 Indep of first M1
			May be implied by ans
	Max $C = 29$ to 31.5	A1 3	Answer within range, no working, M1M1A1
			32 without working, sc B1
v	LO = 25.5-26.5 or UO = 34-35.5	M1	M1 for one correct quartile
	IOR = 8-10	A1	dep > 1 correct quartile or no working
	(German) more spread	B1ft 3	or less consistent, less uniform, less similar,
			more varied, more variable, greater variance,
			more spaced apart, further apart
			ft their IQR; must be consistent with IQR
			Correct comment with no working: M0A0B1
Total		9	
2i	Opposite orders or ranks or scores		or reversed, or backwards, or inverse
	or results or marks		or as one increases the other decreases
	$r_{s} = -1$	B1 1	Needs reason AND value
ii	Attempt Σd^2 (= 6)	M1	
	$1 - \frac{6 \times \Sigma d^2}{2}$		of
	3(3 ² -1)	M1	dep 1 st M1
	$=-\frac{1}{2}$ oe		Allow use wrong table for M1M1
		AI 3	
111	3! or P_3 or 6	MI	r attempt list possible orders of 1,2,3 (\geq 3 orders)
	$1 \div \text{their } 6$	MI	2 Will for fully correct method only
	1 on an $\frac{6}{6}$	A 1 2	or $\frac{1}{3} \times \frac{1}{2} (\times 1)$: M1M1
	$\frac{1}{6}$ be eg $\frac{1}{36}$	AI 3	
Total		7	
3i	If <i>x</i> is contr (or indep) or <i>y</i> depend't,		Allow <i>x</i> increases constantly, is predetermined,
	use y on x	B1	you choose <i>x</i> , you set <i>x</i> , <i>x</i> is fixed, <i>x</i> is chosen
	If neither variable contr'd (or indep)		Allow <i>y</i> not controlled AND want est <i>y</i> from <i>x</i>
	AND want est y from x : use y on x	B1 2	
			Ignore incorrect comments
11a	$S_{xx} = 510000 - \frac{1800^2}{2}$ (= 150000)		or $\frac{510000}{9} - 200^2$ (= 16666.7)
	$S = 4080 \frac{1800 \times 14.4}{1200}$	M1	or $\frac{4080}{5}$ - 200×1.6 (= 133.33)
	$S_{xy} = 4080 - \frac{9}{9}$ (= 1200)	1011	9 M1 for either S
			WI IOI either 5
	$h = \frac{1200'}{100}$ (-0.008)	M1	$b = \frac{133.33'}{133.33'}$ dep correct expressions both S's
	¹ / ₁₅₀₀₀₀ (= 0.003)	1111	16666.7' dep confect expressions both b s
			14.4
	$y - \frac{14.4}{9} = 0.008(x - \frac{1800}{9})$	M1	or $a = \frac{14.4}{9} - 0.008 \times \frac{1800}{9} (=0)$
	y y y		Must be all correct for M1
	y = 0.008x (+ 0)	A1 4	CAO
iib	312.5 or 313	B1ft 1	ft their eaun in (iia)
110	-0.4	B1ft 1	ft their eaun in (ija)

4732		Mar	'k S	cheme June 2010
iid	Contraction oe	B1(f	ft)	or length decreased, shorter, pushed in, shrunk,
				smaller
	Unreliable because extrapolated oe	B1	2	or not in the range of x
				or not in range of previous results
Total		10)	
4ia	0.299 (3 sf)	B1	1	
ib	0.2991 - 0.1040	M1	2	Must subtract correct pair from table
	$= 0.195 (3 \text{ sf}) \text{ or } \frac{1280}{6561} \text{ oe}$	AI		
iia	$^{15}C_4 \times (1-0.22)^{11} \times 0.22^4$	M1		Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
	= 0.208 (3 sf)	Al		
11b	$(15 \times 0.22 =) 3.3$ 15 × 0.22 × (1 0 22) or (2 2) × (1 0 22)	BI		Allow M1 for $15 \times 0.22 \times 0.99$
	-2.57(3 sf)		3	Allow M1 for $13 \times 0.22 \times 0.88$
Total	- 2.57 (5.51)	8	5	
5i	$\frac{1}{1} \times \frac{1}{2}$ or $\frac{2}{1} \times \frac{1}{2}$ or $\frac{1}{1}$ or $\frac{2}{1}$	B1		or 1 out of 6 or 2 out of 12
	$2 \ 3 \ 4 \ 3 \ 4 \ 4 \ C_2 \ 12$			or $\frac{2!}{4!} \times 2$
	$(=\frac{1}{6} \mathbf{AG})$			·••:
	$\frac{1}{4} \times \frac{2}{2}$ or $2 \times \frac{1}{4} \times \frac{1}{2}$ or $\frac{1}{2} \times \frac{1}{2}$ or $\frac{2}{4} \times \frac{1}{2}$	B1		or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{21}$ or $\frac{1}{4}$ or $\frac{2!}{4!} \times 2$
	4 5 4 5 2 5 4 5	21		$12 \ 6 \ 5! \ 4C_2 \ 4$
	Add two of these or double one	B1	3	
	$(=\frac{1}{3} \mathbf{AG})$			$an = \frac{2}{2}$ on $4 \times \frac{1}{2} \times \frac{1}{2}$ on $\frac{2}{2} \times \frac{2}{2}$ on $\frac{4}{2}$ on $\frac{2}{2} \times \frac{4}{2}$ D1D1
				$OI = \frac{1}{4C_2} OI = 4 \times \frac{1}{4} \times \frac{1}{3} OI = \frac{1}{4} \times \frac{1}{3} OI = \frac{1}{12} OI = \frac{1}{4!} \times 4 BIBI$
				or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1		Allow repetitions
	$\mathbf{D}(\mathbf{Y}, 5) = 1^{1} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{f} \mathbf{r} \mathbf{D}(\mathbf{Y}, 4) = 1^{1} \mathbf{r} \mathbf{r} \mathbf{r}$			Allow other values with zero probabilities.
	P(X = 5) wring as for $P(X = 4)$ above	M1		
	or $1 - (\frac{1}{6} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	IVII		
	$\mathbf{P}(\mathbf{Y}, 2) = 1$ is a few $\mathbf{P}(\mathbf{Y}, C)$ shows			
	P(X = 3) wring as for $P(X = 6)$ above	1.61		
	or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	MI		or M1 for total of their probs = 1, dep B1
	2 4 5 6			$-\pi P(Y, 2) = \frac{1}{2} P(Y, 4) = \frac{1}{2} P(Y, 5) = \frac{1}{2} P(Y, 4) = \frac{1}{2}$
				of $P(X = 5) = \frac{1}{6}$, $P(X = 4) = \frac{1}{3}$, $P(X = 5) = \frac{1}{3}$, $P(X = 6) = \frac{1}{6}$
	$\frac{1}{6} \frac{1}{3} \frac{1}{3} \frac{1}{6} 0 e$	A1	4	Complete list of values linked to probs
iii	Σxp	M1		≥ 2 terms correct ft
	$=4\frac{1}{2}$	Al		
	$\Sigma x^2 p \qquad (= 21 \frac{1}{6})$	M1		> 2 terms correct ft
	$-41^{,2}$	M1		Independent except dependent on +ve result
			-	
	$=\frac{11}{12}$ or 0.917 (3 st)	A1	5	
Total		12	2	

4732		Mark S	cheme June 20	010
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) + 3) \div 10	
	= 5.7	A1		
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1	
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9 \text{ or } 342$	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1	
	$v = \frac{('342'+3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2$ (= 3249) or just state ' Σx^2 '; allow $$	
	= 2.61 oe	A1 6	CAO	
Total		6		
7i	${}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4} \text{ or } 6 \times 20 \times 5$ = 600	M1M1 A1 3	M1 for any 2 correct combs seen, even if added	
ii	$\frac{2}{4} \text{ or } \frac{{}^{3}C_{1}}{{}^{4}C_{2}} \text{ or } \frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}} \text{ or}$	M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$	
	$\frac{{}^{3}C_{1}\times {}^{6}C_{3}\times {}^{5}C_{4}}{{}^{'600'}}$			
	$=\frac{1}{2}$ oe	A1 2		
iii	${}^{3}C_{1} \times {}^{6}C_{3} (\times {}^{4}C_{4}) + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if \times or \div by something	
	360	A1 3		
Total		8		

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^n \times 0.3$
	$0.7^3 \times 0.3$	M1	
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343: M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ${}^{4}C_{1}$ used, or YNNNY
	${}^{4}C_{1} \times 0.7^{3} \times 0.3 \qquad (= 0.412)$	M1	
	$\times 0.3$	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^5 + {}^5C_1 \times 0.7^4 \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks