1. (a) Find $\int x^{2} e^{x} d x$.
(b) Hence find the exact value of $\int_{0}^{1} x^{2} \mathrm{e}^{x} d x$.

$$
\begin{aligned}
& \int u v^{\prime}=u v-\int u^{\prime} v \quad \begin{array}{ll}
u=x^{2} & v=e^{x} \\
u^{\prime}=2 x & v^{\prime}=e^{x}
\end{array} \\
& \begin{array}{ll}
\int x^{2} e^{x} & =x^{2} e^{x}-2 \int x e^{x}
\end{array} \\
& \int x e^{x}=x e^{x}-\int e^{x} \quad u=x \\
& =x e^{x}-e^{x} \\
& \begin{aligned}
\therefore \int x^{2} e^{x} & =x^{2}=1 \\
& =\left(v^{x}-2\left(x e^{x}-e^{x}\right)\right. \\
& =\left(x^{x}-2 x+2\right) e^{x}+c_{1}^{x}
\end{aligned}
\end{aligned}
$$

b)

$$
\begin{array}{r}
\int_{0}^{1} x^{2} e^{x}=\left[\left(x^{2}-2 x+2\right) e^{x}\right]_{0}^{1}=e^{1}-2 \\
=e-2
\end{array}
$$

2. (a) Use the binomial expansion to show that

$$
\begin{equation*}
\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1+x+\frac{1}{2} x^{2}, \quad|x|<1 \tag{6}
\end{equation*}
$$

(b) Substitute $x=\frac{1}{26}$ into

$$
\sqrt{\left(\frac{1+x}{1-x}\right)=1+x+\frac{1}{2} x^{2}, ~ . ~}
$$

to obtain an approximation to $\sqrt{ } 3$
Give your answer in the form $\frac{a}{b}$ where a and b are integers.

$$
\begin{aligned}
\sqrt{\frac{1+x}{1-x}} & =(1+x)^{\frac{1}{2}} \times(1-x)^{-\frac{1}{2}} \\
(1+x)^{\frac{1}{2}} & =1+\left(\frac{1}{2}\right) x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) x^{2}}{2} \ldots \\
& =1+\frac{1}{2} x-\frac{1}{8} x^{2} \\
(1-x)^{-\frac{1}{2}} & =1+\left(-\frac{1}{2}\right)(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(-x)^{2} \\
& =1+\frac{1}{2} x+\frac{3}{8} x^{2}
\end{aligned}
$$

$$
\therefore \quad x 1+\frac{1}{2} x-\frac{1}{8} x^{2}
$$

1	1	$\frac{1}{2} x$	$-\frac{1}{8} x^{2}$
$+\frac{1}{2} x$	$\frac{1}{2} x$	$\frac{1}{4} x^{2}$	x
$+\frac{3}{8} x^{2}$	$\frac{3}{8} x^{2}$	x	x

$$
\begin{aligned}
& =1+x+\frac{4}{8} x^{2} \\
& =1+x^{2}+\frac{1}{2} x^{2}
\end{aligned}
$$

b) $\sqrt{\frac{1+\frac{1}{26}}{1-\frac{1}{26}}}=\sqrt{\frac{\frac{27}{\frac{26}{26}}}{\frac{26}{26}}}=\sqrt{\frac{27}{25}}=\frac{3 \sqrt{3}}{5}=\frac{3}{5} \sqrt{3}$

$$
\therefore \frac{3}{5} \times \sqrt{3} \simeq 1+\frac{1}{26}+\frac{1}{2}\left(\frac{1}{26}\right)^{2}=\frac{1405}{1352} \quad \therefore \sqrt{3}=\frac{7025}{4056}
$$

Figure 1
Figure 1 shows the finite region R bounded by the x-axis, the y-axis, the line $x=\frac{\pi}{2}$ and the curve with equation

$$
y=\sec \left(\frac{1}{2} x\right), \quad 0 \leqslant x \leqslant \frac{\pi}{2}
$$

The table shows corresponding values of x and y for $y=\sec \left(\frac{1}{2} x\right)$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
y	1	1.035276	$\mathbf{1 . 1 5 4 7 0 1}$	1.414214

(a) Complete the table above giving the missing value of y to 6 decimal places.
(b) Using the trapezium rule, with all of the values of y from the completed table, find an approximation for the area of R, giving your answer to 4 decimal places.

Region R is rotated through 2π radians about the x-axis.
(c) Use calculus to find the exact volume of the solid formed.

b) $\frac{1}{2}\left(\frac{\pi}{6}\right)[1+1.414214+2(1.035276+1.154701)]$

c) $\begin{aligned} \text { Vol }=\pi \int_{0}^{\frac{\pi}{2}} \sec ^{2}\left(\frac{1}{2} x\right) d x=\pi\left[\frac{1}{2} \tan \left(\frac{1}{2} x\right)\right]_{0}^{\frac{\pi}{2}}=\pi\left[2 \tan \left(\frac{1}{2} x\right)\right]_{0}^{\frac{\pi}{2}}= & \pi\left[2 \tan \left(\frac{\pi}{4}\right)-0\right] \\ & =2 \pi\end{aligned}$
4. A curve C has parametric equations

$$
x=2 \sin t, \quad y=1-\cos 2 t, \quad-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $t=\frac{\pi}{6}$
(b) Find a cartesian equation for C in the form

$$
y=\mathrm{f}(x), \quad-k \leqslant x \leqslant k
$$

stating the value of the constant k.
(c) Write down the range of $\mathrm{f}(x)$.

$$
\text { a) } \begin{array}{rlrl}
x & =2 \sin t & y & =1-\cos 2 t \\
\frac{d x}{d t} & =2 \cos t & \frac{d y}{d t} & =2 \sin 2 t \\
\frac{d y}{d x} & =\frac{d y}{d t} \div \frac{d x}{d t}=\frac{2 \sin 2 t}{2 \cos t} & =\frac{4 \sin t \cos t}{2 \cos t} \\
& =2 \sin t
\end{array}
$$

$$
\left.\frac{d u}{d x}\right|_{t=\frac{\pi}{6}}=1
$$

b)

$$
\begin{aligned}
& y=1-\cos 2 t=1-\left(1-2 \sin ^{2} t\right)=1-\left(1-2\left(\frac{x}{2}\right)^{2}\right) \\
&=2 \frac{x^{2}}{4}=\frac{x^{2}}{2} \\
&-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \quad \therefore-1 \leq \sin t \leq 1 \Rightarrow-2 \leq x \leq 2 \quad k=2
\end{aligned}
$$

c) $0 \leqslant y \leqslant 2$
5. (a) Use the substitution $x=u^{2}, u>0$, to show that

$$
\begin{equation*}
\int \frac{1}{x(2 \sqrt{x}-1)} \mathrm{d} x=\int \frac{2}{u(2 u-1)} \mathrm{d} u \tag{3}
\end{equation*}
$$

(b) Hence show that

$$
\int_{1}^{9} \frac{1}{x(2 \sqrt{x}-1)} \mathrm{d} x=2 \ln \left(\frac{a}{b}\right)
$$

where a and b are integers to be determined.

$$
\begin{aligned}
& x=u^{2} \Rightarrow \sqrt{x}=u . \\
& \frac{d x}{d u}=2 u \Rightarrow d x=2 u d u \quad \frac{1}{u^{2}(2 u-1)} 2 u d u \\
& =\int \frac{1}{u^{2}(2 u-1)} 2 u d u=\int \frac{2}{u(2 u-1)} d u \quad \Rightarrow \\
& x=9 \quad u=3 \quad \int_{1}^{3} \frac{2}{u(2 u-1)} d u . \\
& x=1 \quad u=1 \quad
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{u(2 u-1)}=\frac{A}{u}+\frac{B}{2 u-1}=\frac{A(2 u-1)+B(u)}{u(2 u-1)} \\
& \therefore 2 \equiv A(2 u-1)+B(u) \quad u=0 \Rightarrow A=-2 \\
& \quad u=\frac{1}{2} \Rightarrow 2=\frac{1}{2} B \therefore B=4 \\
& \int_{1}^{3} \frac{-2}{u}+\frac{4}{2 u-1} d u=-2 \int_{1}^{3} \frac{1}{u} d u+2 \int_{1}^{3} \frac{2}{2 u-1} d u \\
& =[-2 \ln u+2 \ln (2 u-1)]_{1}^{3} \\
& =(-2 \ln 3+2 \ln 5)-(-2 \ln T+2 \ln T) \\
& =2(\ln 5-\ln 3)=2 \ln \left(\frac{5}{3}\right)
\end{aligned}
$$

6. Water is being heated in a kettle. At time t seconds, the temperature of the water is $\theta^{\circ} \mathrm{C}$.

The rate of increase of the temperature of the water at any time t is modelled by the differential equation

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=\lambda(120-\theta), \quad \theta \leqslant 100
$$

where λ is a positive constant.
Given that $\theta=20$ when $t=0$,
(a) solve this differential equation to show that

$$
\begin{equation*}
\theta=120-100 \mathrm{e}^{-3 t} \tag{8}
\end{equation*}
$$

When the temperature of the water reaches $100^{\circ} \mathrm{C}$, the kettle switches off.
(b) Given that $\lambda=0.01$, find the time, to the nearest second, when the kettle switches off.

7. A curve is described by the equation

$$
x^{2}+4 x y+y^{2}+27=0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

A point Q lies on the curve.
The tangent to the curve at Q is parallel to the y-axis.
Given that the x coordinate of Q is negative,
(b) use your answer to part (a) to find the coordinates of Q.
a) $\frac{d y}{d x}=2 x+4 x \frac{d y}{d x}+4 y+2 y \frac{d y}{d x}=0$

$$
\begin{aligned}
& (4 x+2 y) \frac{d y}{d x}=-2 x-4 y \\
\Rightarrow & \frac{d y}{d x}=\frac{-2(x+y)}{2(2 x+y)}=-\frac{x+2 y}{2 x+y}
\end{aligned}
$$

b)

gro tangent

$$
\therefore \text { gradient normal }=\frac{2 x+y}{x+2 y}
$$

$$
\begin{aligned}
& M_{n}=0 \Rightarrow 2 x+y=0 \Rightarrow y=-2 x \\
& x^{2}+4 x(-2 x)+(-2 x)^{2}+27=0 \\
& \Rightarrow x^{2}-8 x^{2}+4 x^{2}+27=0 \quad \Rightarrow-3 x^{2}=-27 \\
& \therefore x=-3, y=6 \quad(-3,6) \quad \therefore x^{2}=9 \quad \therefore x=-3,3
\end{aligned}
$$

8. With respect to a fixed origin O, the line l has equation
$\mathbf{r}=\left(\begin{array}{c}13 \\ 8 \\ 1\end{array}\right)+\lambda\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$, where λ is a scalar parameter.
The point A lies on l and has coordinates $(3,-2,6)$.
The point P has position vector $(-p \mathbf{i}+2 p \mathbf{k})$ relative to O, where p is a constant.
Given that vector $\overrightarrow{P A}$ is perpendicular to l,
(a) find the value of p.

Given also that B is a point on l such that $\angle B P A=45^{\circ}$,
(b) find the coordinates of the two possible positions of B.

$$
\begin{aligned}
& \text { a) } \overrightarrow{P A}=a-p=\left(\begin{array}{c}
3 \\
-2 \\
6
\end{array}\right)-\left(\begin{array}{c}
-p \\
0 \\
2 p
\end{array}\right)=\left(\begin{array}{c}
3+p \\
-2 \\
6-2 p
\end{array}\right) \\
& \operatorname{dir} l=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \quad \text { l peep to } \overrightarrow{P A}=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
3+p \\
-2 \\
-2 p p
\end{array}\right)=0 \\
& \Rightarrow 6+2 p-4-6+2 p=0 \Rightarrow 4 p=4 \quad \therefore p=1
\end{aligned}
$$

$$
\begin{aligned}
& B=\left(\begin{array}{c}
13+2 \lambda \\
8+2 \lambda \\
1-\lambda
\end{array}\right) \\
& \overrightarrow{A P}=\left(\begin{array}{c}
4 \\
-2 \\
4
\end{array}\right) \Rightarrow|\overrightarrow{A P}|=\sqrt{4^{2}+2^{2}+4^{2}}=6 \\
& \left|A B_{1}\right|=6 \quad\left|\left(\begin{array}{c}
13+2 \lambda \\
8+2 \lambda \\
1-\lambda
\end{array}\right)-\left(\begin{array}{c}
3 \\
-2 \\
6
\end{array}\right)\right|=\left|\begin{array}{c}
10+2 \lambda \\
10+2 \lambda \\
-5-\lambda
\end{array}\right| \\
& \\
& \Rightarrow \sqrt{(10+2 \lambda)^{2}+(1 a+2 \lambda)^{2}+(-5-\lambda)^{2}}=6 \\
& \Rightarrow 100+40 \lambda+4 \lambda^{2}+100+40 \lambda+4 \lambda^{2}+25+10 \lambda+\lambda^{2}=36 \\
& B_{1}
\end{aligned}=\left(\begin{array}{c}
7 \\
2 \\
4
\end{array}\right) \quad B_{2}=\left(\begin{array}{c}
-1 \\
-6 \\
8
\end{array}\right) \quad \begin{aligned}
& B_{1} \\
&
\end{aligned}
$$

