0 1 1	20	25	30	45	55	60	65	70	
Volume (y)	74	76	77	72	68	67	64	62	
[You may us Calculate S ₃₉	$e \sum x = 37$	70, S _{ax} = 1	2587.5, 2	∑ y = 560	$\sum y^2 =$	39 418, 5	$S_{xy} = -71$	0]	
Calculate the	product i	moment	correlati	on coeffi	cient for	these da	ta.	(2)	
	Freedowner,	,						(2)	
Interpret you	r value of	the corr	elation c	oefficien	t.				
								(1)	
e researcher b	elieves th	at a line	ar regre	ssion mo	del may	be appr	ropriate 1	o describe	
. C					C.d.	and adver			
the researche	a reason, ' r's belief.	whether	or not yo	ur value	of the co	rrelation	coefficie	nt supports	
								(1)	
Find the equ	uation of	the reg	ression	line of j	y on x ,	giving y	our ans	wer in the	
10 m y - a +	0X							(4)	
ck is a 40-year	-old patier	nt.							
(i) Use voi	ir regress	ion line	to estin	nate the	volume	of blood	d pumpe	d by each	
contracti	ion of Jac	k's heart					1		
	nt, giving	a reason	, on the i	reliability	of your	estimate			
(ii) Commen	b) (Mrr		-10				(2)	\
(ii) Commer		inc	1	218×	258	H.S	=-0.	945	
(ii) Commer 35= 218	-							2	1.1
(ii) Commer									1.1.1
(ii) Commer	ence The -	to	دی م	er	ney th	atu	e co	the ve	A.
(ii) Commer (ii) Commer (ii) Commer 218 ong euro Austs.	ence The o	to	su ge	erson	nes to -	atu ne lo	e co	rielaku Mie vo	n bhane

3. A biased four-sided die has faces marked 1, 3, 5 and 7. The random variable X represents the score on the die when it is rolled. The cumulative distribution function of X, F(x), is given in the table below.

x	1	3	5	7
F(x)	0.2	0.5	0.9	Ľ

(4)

(2)

(1)

(1)

(2)

(2)

(a) Find the probability distribution of X(b) Find $P(2 < X \le 6)$ (c) Write down the value of F(4) 1 3 5 a) 0.1 0.3+0.4 = 0.7 6) c) F(4)= P(x 54)= 0.3 4. The random variable $Y \sim N(\mu, \sigma^2)$ Given that P(Y < 17) = 0.6 find (a) P(Y > 17)(b) $P(\mu < Y < 17)$ (c) $P(Y < \mu | Y < 17)$ a) P(y>17)=467- =0.40 10%. b) D(27 17-M)= 407.

 $P(\mu(Y(17) = 0.10)$ $P(Y(\mu | Y(17) = 0.10)$ $P(Y(\mu | Y(17)) = P(Y(\mu)) = \frac{0.5}{P(Y(17))}$

2. The table below shows the distances (to the nearest km) travelled to work by the 50 employees in an office.

Distance (km)	Frequency (f)	Distance midpoint (x)
0-2	16	1.25
3-5	12	+>25th 4
6-10	10 20	8
11 - 20	8	15.5
21-40	4	30.5

[You may use $\sum fx = 394$, $\sum fx^2 = 6500$]

A histogram has been drawn to represent these data.

Th	he bar representing the distance of $3-5$ has a width of 1.5 cm and a height of 6	cm.
(a)) Calculate the width and height of the bar representing the distance of $6-10$	(3)
(b)) Use linear interpolation to estimate the median distance travelled to work.	(2)
(c)) (i) Show that an estimate of the mean distance travelled to work is 7.88 km.	
	(ii) Estimate the standard deviation of the distances travelled to work.	(4)
(d)) Describe, giving a reason, the skewness of these data.	(2)
Pe	ing starts to work in this office as the 51st employee.	
Sh	he travels a distance of 7.88 km to work.	
(e)) Without carrying out any further calculations, state, giving a reason, what Peng's addition to the workforce would have on your estimates of the	effect
	(i) mean,	
	(ii) median,	
	(iii) standard deviation	
	of the distances travelled to work.	

(3)

6	-	5	-1	-7
x	-2	0	2	4
P(X = x)	а	b	а	С
where a , b and c and where that $E(X) = 0$ a) find the value of	e probabilities.).8 of <i>c.</i>			
Fiven also that E(.	$(X^2) = 5$ find			
b) the value of a	and the value o	f <i>b</i> ,		
c) Var(X)				
The random variab	$Ie \ Y = 5 - 3X$			
Find				
d) E(Y)				
e) $Var(Y)$				
f) $P(Y \ge 0)$				
) E(x)=	-20 +2	a+4c =	0-8 :	
) E(x+)	= 4 + +	ta+160	= 5 80	= 1.8 q
51=1-	=) 2a+	b+c = 1	- b=	0.35
) V(x)= 6	-(x2)-E(x)2 = 5-	0.82 =	4.36
) V(S-3*)= 91/1	()= 39.2	4 0)6(S-3×)= S
P(970) = a+c	= 0.42	s	

5.

One event at Pentor sports day is throwing a tennis ball. The distance a child throws a
tennis ball is modelled by a normal distribution with mean 32 m and standard deviation
12 m. Any child who throws the tennis ball more than 50 m is awarded a gold certificate.

(a) Show that, to 3 significant figures, 6.68% of children are awarded a gold certificate. (3)

A silver certificate is awarded to any child who throws the tennis ball more than d metres but less than 50 m.

Given that 19.1% of the children are awarded a silver certificate,

(b) find the value of d.

(4)

Three children are selected at random from those who take part in the throwing a tennis ball event.

(c) Find the probability that 1 is awarded a gold certificate and 2 are awarded silver certificates. Give your answer to 2 significant figures.

(3)

 $P(d > so) = P(z > \frac{so - 3z}{12})$ = P(z > 1 - S) = 1 - Q(1 - S)5=12 41 32 50 = 0.0668 b) P(D,d)=0.191+0.668 = 0.2578 -- (d)=0.7422 ... d=0.65

b)
$$P(z > d - 32) = 0.191 + 0.0668 = 0.2578$$

 $= Q(d - 32) = 0.7422 = 0.65$
 $= d = 39.8n$

$$(1000 \times 83300.0 \times 6 = 5 \times 223)$$

= 0.00731

- The Venn diagram below shows the probabilities of customers having various combinations of a starter, main course or dessert at Polly's restaurant.
 - S = the event a customer has a starter.
 - M = the event a customer has a main course.
 - D = the event a customer has a dessert.

Given that the events S and D are statistically independent

(a) find the value of p.

(b) Hence find the value of q.

(c) Find

- (i) $P(D \mid M \cap S)$
- (ii) $P(D \mid M \cap S')$

One evening 63 customers are booked into Polly's restaurant for an office party. Polly has asked for their starter and main course orders before they arrive.

Of these 63 customers

27 ordered a main course and a starter,

36 ordered a main course without a starter.

(d) Estimate the number of desserts that these 63 customers will have.

a) $P(S) \times P(D) = P(S \wedge D)$ (0.31+p) $\times 0.3S = 0.14$ =: p = 0.09b) q = 1 - ... = 0.39() i) $P(D|M \wedge S) = \frac{0.10}{0.27} = 0.37$ ii) $P(D|M \wedge S') = \frac{0.15}{0.54} = 0.278$ = 0.15 = 0.278= 20

(4)

(2)

(4)