

| Question | | Answer | Marks | | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| $\mathbf{3}$ | (i) | | $\begin{array}{l}\text { graph of shape with vertices at }(-2,-3), \\ (0,0) \text { and }(2,-4)\end{array}$ | 2 | M1 for 2 vertices correct |
| $[2]$ | | | | | |$)$

Question		Answer $3 a+12[=a c+5 f]$ $3 a-a c=5 f-12$ or ft $a(3-c)=5 f-12$ or ft $[a=] \frac{5 f-12}{3-c}$ oe or ft as final answer	MarksM1M1M1M1[4]	Guidance	
5				for expanding brackets correctly for collecting a terms on one side, remaining terms on other for factorising a terms; may be implied by final answer for division by their two-term factor; for all 4 marks to be earned, work must be fully correct	annotate this question if partially correct ft only if two a terms ft only if two a terms, needing factorising may be earned before $2^{\text {nd }} \mathrm{M} 1$
6		$\begin{aligned} & (3 x+1)(x+3) \\ & \\ & x<-3 \\ & {[\mathrm{or}]} \\ & x>-1 / 3 \text { oe } \end{aligned}$	M1 A1 A1 [3]	or $3(x+1 / 3)(x+3)$ or for $-1 / 3$ and -3 found as endpoints eg by use of formula mark final answers; allow only A1 for $-3>x>-1 / 3$ oe as final answer or for $x \leq-3$ and $x \geq-1 / 3$ if M0, allow SC1 for sketch of parabola the right way up with their solns ft their endpoints	A0 for combinations with only one part correct eg $-3>x<-1 / 3$, though this would earn M1 if not already awarded

Question		Answer	Marks	Guidance	
9	(i)	$3 n^{2}+6 n+5$ isw	B2 [2]	M1 for a correct expansion of at least one of $(n+1)^{2}$ and $(n+2)^{2}$	
9	(ii)	odd numbers with valid explanation	B2 [2]	marks dep on 9(i) correct or starting again for B2 must see at least odd \times odd $=$ odd [for $3 n^{2}$] (or when n is odd, [3] n^{2} is odd) and odd $[+$ even $]+$ odd $=$ even soi, condone lack of odd \times even $=$ even for $6 n$; condone no consideration of n being even or B2 for deductive argument such as: $6 n$ is always even [and 5 is odd] so $3 n^{2}$ must be odd so n is odd B1 for odd numbers with a correct partial explanation or a partially correct explanation or B1 for an otherwise fully correct argument for odd numbers but with conclusion positive odd numbers or conclusion negative odd numbers B0 for just a few trials and conclusion	accept a full valid argument using odd and even from starting again Ignore numerical trials or examples in this part - only a generalised argument can gain credit

Question		Answer	Marks	Guidance	
10	(i)	$(7,0)$	$\begin{gathered} 1 \\ {[1]} \end{gathered}$	accept $x=7, y=0$	condone 7, 0
10	(ii)	$\sqrt{13}$ $(x-4)^{2}+(y-2)^{2}=13$ or ft their evaluated r^{2}, isw	2 2 [4]	M1 for Pythagoras used correctly eg $\left[r^{2}=\right] 3^{2}+2^{2}$ or for subst A or their B in $(x-4)^{2}+(y-2)^{2}\left[=r^{2}\right]$ or B1 for $[r=] \pm \sqrt{13}$ M1 for one side correct, as part of an equation with x and y terms	annotate this question if partially correct allow recovery if some confusion between squares and roots but correct answer found do not accept $(\sqrt{13})^{2}$ instead of 13 ; allow M1 for LHS for $(x-4)^{2}+(y-2)^{2}=r^{2}$ (or worse, $\left.(x-4)^{2}+(y-2)^{2}=r\right)$ (may be seen in attempt to find radius)
10	(iii)	$(7,4)$	2 [2]	B1 each coord accept $x=7, y=4$ if B0, then M1 for a vector or coordinates approach such as ' 3 along and 2 up' to get from A to C oe or M1 for $\frac{x_{D}+1}{2}=4$ and $\frac{y_{D}+0}{2}=2$	condone 7, 4 or M1 for longer method, finding the equation of the line CD as $y=2 / 3(x-1)$ oe and then attempting to find intn with their circle

Question		grad tgt $=-3 / 2$ oe	Marks M2	Guidance	
10	(iv)	$\operatorname{grad} \operatorname{tgt}=-3 / 2$ oe	M2	correctly obtained or ft their D if used M1 for $\operatorname{grad} \mathrm{AD}=\frac{4-0}{7-1}$ oe isw or $2 / 3$ oe seen or used in this part or for their grad tgt $=-1 /$ their grad AD	annotate this question if partially correct may use AD, CD or AC NB grad AD etc may have been found in part (iii); allow marks if used in this part - mark the copy of part (iii) that appears below the image for part (iv)
		$y-\text { their } 4=\text { their }(-3 / 2)(x-\text { their } 7)$	M1	or subst $(7,4)$ into $y=$ their $(-3 / 2) x+b$ M0 if grad AD oe used or if a wrong gradient appears with no previous working	
		$y=-1.5 x+14.5$ oe isw	A1		condone $y=\frac{-3 x+29}{2}$
			[4]		condone $y=-1.5 x+b$ and $b=14.5$ oe

Question		Answer	Marks	Guidance	
11	(i)	$\begin{aligned} & x=4 \\ & (4,-3) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	or $x=4, y=-3$	condone 4, -3
11	(ii)	$(0,13)$ isw $[$ when $y=0,](x-4)^{2}=3$ $[x=] 4 \pm \sqrt{3}$ or $\frac{8 \pm \sqrt{12}}{2}$ isw	1 M1 A2 [4]	or [when $x=0$], $y=13$ isw 0 for just $(13,0)$ or $(k, 13)$ where $k \neq 0$ or $x^{2}-8 x+13[=0]$ need not go on to give coordinate form A1 for one root correct	annotate this question if partially correct may be implied by correct value(s) for x found allow M1 for $y=x^{2}-8 x+13$ only if they go on to find values for x as if y were 0
11	(iii)	replacement of x in their eqn by $(x-2)$ completion to given answer $y=x^{2}-12 x+33$, showing at least one correct interim step	M1 A1 [2]	$\begin{aligned} & \text { may be simplified; eg }[y=](x-6)^{2}-3 \\ & \text { or allow M1 for }(x-6-\sqrt{3})(x-6+\sqrt{3}) \\ & {[=0 \text { or } y]} \\ & \text { cao; condone using } \mathrm{f}(x-2) \text { in place of } y \end{aligned}$	condone omission of ' $y=$ ' for M1, but must be present in final line for A1

Question		Answer	Marks	Guidance	
11	(iv)	$\begin{aligned} & x^{2}-12 x+33=8-2 x \text { or } \\ & (x-6)^{2}-3=8-2 x \end{aligned}$	M1	for equating curve and line; correct eqns only; or for attempt to subst $(8-y) / 2$ for x in $y=x^{2}-12 x+33$	annotate this question if partially correct
		$x^{2}-10 x+25=0$	M1	for rearrangement to zero, condoning one error such as omission of ' $=0$,	
		$(x-5)^{2}[=0]$	A1	or showing $b^{2}=4 a c$	allow $\frac{10 \pm \sqrt{0}}{2}$ oe if $b^{2}-4 a c=0$ is not used explicitly A0 for $(x-5)^{2}=y$
		$x=5$ www [so just one point of contact]	A1	may be part of coordinates $(5, k)$	allow recovery from $(x-5)^{2}=y$
		point of contact at $(5,-2)$	A1	dependent on previous A1 earned; allow for $y=-2$ found	
		alt. method	or		examiners: use one mark scheme or the other, to the benefit of the candidate if both methods attempted, but do not use a mixture of the schemes
		for curve, $y^{\prime}=2 x-12$	M1		
		$2 x-12=-2$	M1	for equating their y^{\prime} to -2	
		$x=5$, and y shown to be -2 using eqn to curve	A1		
		tgt is $y+2=-2(x-5)$	A1		
		deriving $y=8-2 x$	A1		condone no further interim step if all working in this part is correct so far
			[5]		

Question		Answer$\begin{gathered} y=(x+5)(x+2)(2 x-3) \text { or } \\ y=2(x+5)(x+2)(x-3 / 2) \end{gathered}$	$\frac{\text { Marks }}{2}$[2]	Guidance	
12	(i)			M1 for $y=(x+5)(x+2)(x-3 / 2)$ or $(x+5)(x+2)(2 x-3)$ with no equation or $(x+5)(x+2)(2 x-3)=0$ but M0 for $y=(x+5)(x+2)(2 x-3)-30$ or $(x+5)(x+2)(2 x-3)=30$ etc	allow ' $\mathrm{f}(x)=$ ' instead of ' $y=$ ' ignore further work towards (ii) but do not award marks for (i) in (ii)
12	(ii)	correct expansion of a pair of their linear twoterm factors ft isw correct expansion of the correct linear and quadratic factors and completion to given answer $y=2 x^{3}+11 x^{2}-x-30$	M1 M1 [2]	ft their factors from (i); need not be simplified; may be seen in a grid must be working for this step before given answer or for direct expansion of all three factors, allow M2 for $2 x^{3}+10 x^{2}+4 x^{2}-3 x^{2}+20 x-15 x-6 x-30$ oe (M1 if one error) or M1M0 for a correct direct expansion of $(x+5)(x+2)(x-3 / 2)$ condone lack of brackets if used as if they were there	allow only first M1 for expansion if their (i) has an extra - 30 etc do not award $2^{\text {nd }}$ mark if only had ($x-3 / 2$) in (i) and suddenly doubles RHS at this stage condone omission of ' $y=$ ' or inclusion of ' $=0$ ' for this second mark (some cands have already lost a mark for that in (i)) allow marks if this work has been done in part (i) - mark the copy of part (i) that appears below the image for part (ii)

Question		Answer ruled line drawn through $(-2,0)$ and $(0,10)$ and long enough to intersect curve at least twice $-5.3 \text { to }-5.4 \text { and } 1.8 \text { to } 1.9$	Marks B1 B2 [3]	Guidance	
12	(iii)			tolerance half a small square on grid at $(-2,0)$ and $(0,10)$ B1 for one correct ignore the solution -2 but allow B1 for both values correct but one extra or for wrong 'coordinate' form such as $(1.8,-5.3)$	insert BP on spare copy of graph if not used, to indicate seen - this is included as part of image, so scroll down to see it accept in coordinate form ignoring any y coordinates given;
12	(iv)	$\begin{aligned} & 2 x^{3}+11 x^{2}-x-30=5 x+10 \\ & 2 x^{3}+11 x^{2}-6 x-40[=0] \end{aligned}$ division by $(x+2)$ and correctly obtaining $2 x^{2}$ $+7 x-20$ substitution into quadratic formula or for completing the square used as far as $\begin{aligned} & x+\frac{7}{4}^{2}=\frac{209}{16} \text { oe } \\ & {[x=] \frac{-7 \pm \sqrt{209}}{4} \text { oe isw }} \end{aligned}$	M1 M1 M1 M1 A1 [5]	for equating curve and line; correct eqns only for rearrangement to zero, condoning one error or showing that $(x+2)\left(2 x^{2}+7 x-20\right)=2 x^{3}$ $+11 x^{2}-6 x-40$, with supporting working condone one error eg a used as 1 not 2 , or one error in the formula, using given $2 x^{2}+7 x-20=0$ dependent only on $4^{\text {th }}$ M1	annotate this question if partially correct

