

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA040117 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme					
1. (a)	a = 44 These answers may be in or near the	B1				
	b = 76 table	B1				
		(2)				
(b)	55+1.5(55-31)=91 [and $31-1.5(55-31)=-5$]	M1				
	<u>Penville</u>	DI				
		B1				
	⊩I	B1				
		A1				
	0 10 20 30 40 50 60 70 80 90 100 110 120					
	Years	(4)				
(c)	Greenslax: $[Q_2 - Q_1 = 20, Q_3 - Q_2 = 12 \text{ or } (Q_2 - Q_1) > (Q_3 - Q_2)] \Rightarrow -ve(skew)$	B1				
	Penville: $[Q_2 - Q_1 = 8, Q_3 - Q_2 = 16 \text{ or } (Q_3 - Q_2) > (Q_2 - Q_1)] \implies +\text{ve (skew)}$	B1				
	Don't insist on seeing "skew" so just -ve and +ve will do. Treat "correlation" as ISW					
	Justification that is consistent	ddB1 (3)				
		Total 9				
	Notes					
	A fully correct box plot scores 4/4. If <u>not</u> fully correct apply scheme and need evidence for If two box plots are seen ignore the one for Greenslax. If not on graph paper M1 max					
(b)	M1 for sight of $55+1.5(55-31)$ or 91 seen (possibly implied by RH whisker of box)	plot)				
	May be implied by a fully correct box plot					
	1 st B1 box with whiskers (condone missing median)					
	2 nd B1 25, 31, 39, 55, RH whisker to end at 75 or 91. Two RH whiskers is B0 Accuracy must be to within 0.5 of a square so e.g. lower quartile at 30 or 32 is OK					
	A1 only one outlier plotted at 99. Allow cross to be vertically displaced If the RH whisker goes to 99 (2 nd B0) and A0 even if outlier is identified since we require					
	a horizontal "gap" between RH whisker and outlier.					
(c)	1 st B1 Greenslax – ve (skew) We must be able to tell which is which but labels may implied by their values but not simply from $Q_3 - Q_2 > 2$	y be $O_2 - O_2$				
	2^{nd} B1 Penville + ve (skew). If there is just <u>one</u> , unlabelled comment assume Penv	ille. \tilde{z}_1				
	3 rd ddB1 dependent on 1 st and 2 nd B marks being scored. Justification for <u>both</u> based on: quartiles, median relative to quartiles, or "tail"					
	If only values for $Q_3 - Q_2$ etc are given they should be correct ft for Greenslax and correct for Penville					
	If values for Greenslax imply +ve skew then 1 st B0 and 3 rd B0					

Question Number	Scheme				
2	mean $= \frac{60.8 + 20}{1.4}$ <u>or</u> $60.8 = 1.4x - 20$ (o.e.)	M1			
	= 57.7142 awrt 57.7	A1			
	standard deviation = $\frac{6.60}{1.4}$ <u>or</u> $6.60 = 1.4x$	M1			
	= 4.7142 awrt 4.71	A1			
		(4)			
		Total 4			
	Notes				
	1^{st} M1sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean 1^{st} A1for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is 2/2				
	2 nd M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^2 = 1.4^2 x^2$ is M0 until we see them take a square root. 2 nd A1 for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is 2/2				

Question Number	Scheme				
3 (a)	$r = \frac{31512.5}{\sqrt{42587.5 \times 25187.5}} = 0.962$ awrt 0.962	M1 A	¹ (2)		
(b)	<i>r</i> is close to 1 or a strong correlation. ["points are close to a straight line" isB0]	B1			
	[Just "positive" correlation is B0] [Use of "relationship" or "skew" not "correlation" is B0]		(1)		
(c)	$b = \frac{31512.5}{42587.5} = 0.739947 = 0.740$ (3 dp) 0.740 (only)				
			(2)		
(d)	$a = 1326.25 - (0.7399 \times 2423.75)$ [= -467.2 or awrt -467]	M1			
	So $m = -467 + 0.74v$	A1	(2)		
(e)	<i>b</i> is the <u>money (spent)</u> per <u>visitor</u> . (i.e. definition of a rate in words.)[ignore values] So each 1000 visitors generates an extra ± 0.74 million <u>or</u> each visitor spends ± 740 oe	B1 B1ft	(2)		
(f)	$m = -467 + 0.74 \times 2500$ m = 1383 (£ million) awrt 1380	M1 A1			
			(2)		
(g)	As 2500 is within the range of the data set \underline{or} it involves <u>interpolation</u> .	B1	(\mathbf{a})		
	The value of money spent is reliable	dB1 Total	(2)		
	Notes				
(a)	M1 for a correct expression for <i>r</i> . Ans only of 0.96 or awrt 0.96 is M1A0 Ans only of 0.962 or awrt 0.962 is M1A1. Do not allow fractions for A1				
(b)	B1 for comment implying strong correlation. (e.g. big/high/clear etc) B0 if $ r > 1$				
(c)	M1 for a correct expression for b (may be implied by 0.74 or better in regression equation).	ation)			
	A1 A1 for 0.740 only in (c) or $b = 0.740$ seen elsewhere (M1A0 for $\frac{2521}{3407}$ or awrt 0.74 here)				
(d)	M1 for 1326.25 – ('their b' × 2423.75) Condone fractions or awrt 1330 for \overline{m} and awrt 2420 for \overline{v} A1 for a correct equation in <i>m</i> and <i>v</i> with <i>a</i> = awrt – 467 and <i>b</i> = awrt 0.74 Condone $\frac{2521}{3407}$ for <i>b</i> and $\frac{-1591740}{3407}$ for <i>a</i> . [Equation in <i>y</i> and <i>x</i> is A0]				
(e)	1^{st} B1 for a correct definition of the rate in words. Must state or imply "money per v	visitor"			
	Allow alternative words or symbols e.g. £ or "pounds" for money, "people" for	visitors	etc		
	2^{nd} B1ft for a correct numerical rate (ft their value of b)				
	e.g. "each <u>visitor</u> spends £740" is B1B1, "b is the extra <u>money</u> spent per <u>visitor</u> " is B1B0 [no v	alues]			
	" <i>b</i> is increase of <u>£0.74 million</u> in <i>m</i> as <i>v</i> increases <u>by 1000</u> " is B0B1[£ for money but no "visit "increase in <u><i>m</i></u> as <u><i>v</i></u> increases" is B0B0 [Idea of rate but letters not words and no numerical values of the set of the		æ]		
(f)	M1 sub. $v = 2500$ into <u>their</u> equation. Simply substituting 2 500 000 is M0 (unless ac	ljusted e	eqn)		
	A1 awrt 1380 units (£ and million not required)				
(g)	1^{st} B1 for 2500 or 2 500 000 or visitors or v is in range. "it" is B0 unless v clearly in	nplied			
	2^{nd} dB1 for stating it is reliable. Dependent on previous B mark being awarded				
	"both <i>v</i> and <i>m</i> in range" or "1380 in range" is B0 but use ISW so "interpolation since b range" scores B1 for the "interpolation". "Not extrapolation" counts as "interpolation"				

Question Number	Scheme					
4 (a)	0.03 B $P(J_{n}B) = 0.005 \text{ or } \frac{1}{200}$	M1				
	$J = 0.98$ B' P(JAB') = 0.245 or $\frac{49}{200}$					
	0.25 0.45 k 0.03 B P(KnB) = 0.0135 or 272000	A1				
	0.97 B' P(KnB') = 0.4365 or 873					
	0.3 $L = 0.05 - B P(LAB) = 0.015 \text{ or } \frac{3}{200}$					
	0.3 L 0.05 B $P(LAB) = 0.015$ or $\frac{3}{200}$ 0.95 B' $P(LAB') = 0.285$ or $\frac{57}{200}$	(2)				
(b)	0.25×0.98 , = 0.245 (or exact equiv. e.g. $\frac{49}{200}$)	M1A1				
		(2)				
(c)	$0.25 \times 0.02 + 0.45 \times 0.03 + 0.3 \times 0.05$, = 0.0335 (or exact equiv. e.g. $\frac{67}{2000}$)	M1A1 (2)				
(d)	$[P(J \cup L \mid B)] = \frac{0.25 \times 0.02 + 0.3 \times 0.05}{0.0335} \qquad \underline{\text{or}} \frac{0.0335 - 0.45 \times 0.03}{0.0335}$	M1A1ft				
	= 0.5970 awrt 0.597 (or $\frac{40}{67}$ or exact equiv.)	A1				
		(3)				
	Notes To					
	Allow fractions or percentages throughout this question					
(a)	Allow 3+6 tree diagram with the 6 correct "end" probs and labels to get $2/2$ (1 st , 3 rd , 5 th M1 for (3+6) tree drawn with 0.25, 0.45, 0.02, 0.03, 0.05 on correct branches	gets M1)				
	A1 for 0.3, 0.98, 0.97, 0.95 on the correct branches and labels, condone missing <i>B</i> 's Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability <i>p</i> " for M1 and A1ft they must have 0					
(b)	M1 for $0.25 \times$ 'their 0.98' o.e.					
(c)	M1 for $0.25 \times$ their $0.02 + 0.45 \times$ their $0.03 +$ their $0.3 \times$ their 0.05 Condone 1 transcription error. <u>Or</u> $1 - (0.25 \times$ their $0.98 + 0.45 \times$ their $0.97 +$ their $0.3 \times$ their $0.95)$					
(d)	M1 for use of conditional probability with their (c) as denominator. Also exactly 2 products on num' and at least one correct (or correct ft) <u>or</u> their (c) – one of the products from their (c). Ignore an incorrect expression inside their probability statement					
	A1ft for $\frac{0.25 \times \text{their } 0.02 + \text{their } 0.3 \times \text{their } 0.05}{\text{their(c)}} \text{ or } \frac{\text{their } (c) - 0.45 \times \text{their } 0.03}{\text{their } (c)} \text{ or } \frac{0}{\text{their}}$.02 ir (c)				
	A1 awrt 0.597 or exact fraction e.g. $\frac{40}{67}$					

Question Number	Scheme					
5 (a)	2k + 4k + 6k + k(8 - 2) = 1 (commas instead of + or a table OK if $18k = 1$ seen later)					
	$k = \frac{1}{18} (*)$					
(b)	$[2k+4k] = \frac{6}{18} = \frac{1}{3}$ ($\frac{1}{3}$ or any exact <u>numerical</u> equivalent)	B1 (1)				
(c)	$\mathbf{E}(X) = \left(2 \times \frac{1}{9}\right) + \left(4 \times \frac{2}{9}\right) + \left(6 \times \frac{1}{3}\right) + \left(8 \times \frac{1}{3}\right) \underline{\mathbf{or}} \left(2 \times 2k\right) + \left(4 \times 4k\right) + \left(6 \times 6k\right) + \left(8 \times 6k\right)$	M1				
	$=5\frac{7}{9}$ (or exact equivalent e.g. $\frac{52}{9}$)	A1 (2)				
(d)	$\mathbf{E}(X^2) = \left(4 \times \frac{1}{9}\right) + \left(16 \times \frac{2}{9}\right) + \left(36 \times \frac{1}{3}\right) + \left(64 \times \frac{1}{3}\right) \underline{\mathbf{or}} \left(4 \times 2k\right) + \left(16 \times 4k\right) + \left(36 \times 6k\right) + \left(64 \times 6k\right)$	M1				
	$= 37\frac{1}{3}$ (or exact equivalent e.g. $\frac{112}{3}$)	A1 (2)				
(e)	Var $(X) = 37\frac{1}{3} - \left(5\frac{7}{9}\right)^2$ [= 3.95 or $\frac{320}{81}$]	M1				
	$Var (3 - 4X) = 16 \times 3.95$					
	$=$ awrt 63.2 (allow $\frac{5120}{81}$)					
	N-4					
(a)	Notes					
	$\frac{\text{Or}}{\text{M1 for } 2k + 4k + 6k + k(8 - 2) = 1} \text{A1 for } k = \frac{1}{18} \text{ NB cso so no incorrect work}$ $\frac{\text{Or}}{\text{M1 for } 2 \times \frac{1}{18} + 4 \times \frac{1}{18} + 6 \times \frac{1}{18} + \frac{1}{18}(8 - 2) \text{A1 for } = 1 \text{ and "therefore } k = \frac{1}{18} \text{"}$	ang seen				
(c)	If in parts (c), (d) and (e) there is a correct expression worthy of M1 but later they incorrectly go on and multiply or divide by some number n, then allow the M1 but mark their final answer (A0) Answers only in (b), (c), (d) and (e) score all the marks.M1for an expression for E(X) with at least 3 correct terms (products) allow use of k e.g. 104k					
(d)	M1 for an expression for $E(X^2)$ with at least 3 correct terms (products) allow use of k e.g. 672k					
(e)	A1 for any exact equivalent only. E.g. 37.3 is A0 but, of course, 37.3 is OK 1^{st} M1 for $E(X^2) - [E(X)]^2$ ft their answers to (c) and (d). Must see values used correctly.					
	2 nd M1 for statement "4 ² ×Var(X)"seen <u>or</u> for 4 ² × their Var(X) provided their Var(X) Do not allow for $16 \times E(X^2)$ but can score M0M1	-				
	NB condone $-4^2 \times Var(X)$ if the answer later becomes positive.					
	A1 for exact fraction $\left(\frac{5120}{81} \text{ o.e.}\right)$ or decimal approximation that is awrt 63.2					
	Beware: rounding to 3sf in (c) (5.78) and (d) (37.3) gives 62.3 which could be misread as 63.2					

Question Number	Scheme	Marks
6 (a)	70 – 80 group - width 0.5 (cm)	B1
	1.5 cm ² is 10 customers or 3.75 cm ² is 25 customers or $0.5c = 3.75$ or $\frac{2.5}{\frac{1}{3}}$	M1
	70 – 80 group - height 7.5 (cm)	A1 (3)
(b)	Median = $(70) + \frac{13.5}{25} \times 10$ allow $(n + 1) = (70) + \frac{14}{25} \times 10$	M1
	= 75.4 (or if using $(n + 1)$ allow 75.6)	A1 (2)
(c)	$\left[\text{Mean } = \frac{6460}{85} \right] = 76$	B1
	$\sigma = \sqrt{\frac{529400}{85} - 76^2}$	M1
	= 21.2658 (s = 21.3920) awrt 21.3	A1 (3)
(d)	Coeff' of skewness = $\frac{3(76 - 75.4)}{21.2658} = 0.08464$ awrt 0.08 (awrt 0.06 for 75.6)	M1 A1
	There is (very slight) positive skew or the data is almost symmetrical (or both) <u>Any</u> mention of "correlation" is B0	B1ft (3) Total 11
	Notes	10(a) 11
(a)	B1 for 0.5	
	M1 for one of the given statements <u>or</u> any method where "their width" × "their height' Correct height scores M1A1 independent of width so B0M1A1 is possible.	'' = 3.75
(b)	M1 for a correct fraction: $+\frac{k}{25} \times 10$ where $k = 13.5$ or 14 for $(n + 1)$ case.	
	NB may work down so look out for (80) $-\frac{11.5}{25} \times 10$ etc Beware: $69.5 + \frac{13.5}{25} \times 11 = 75.44$	(but M0)
(c)	M1 for a correct expression with square root, ft their meanA1 for awrt 21.3 or, if clearly using <i>s</i> allow awrt 21.4. Must be evaluatedno surds.	
(d)	M1 sub. their values into formula allow use of <i>s</i> but their σ or <i>s</i> must be > 0 A1 for awrt 0.08 but accept 0.085 No fraction B1ft for a correct comment compatible with their coefficient. Allow "symmetrical" for coeff' < 0.25 They may say it is "slightly skew" so omit "positive" but do not allow "negative" if	coef' +ve
	Condone "strongly" positive skew.	

Question Number						
7 (a)	The random variable $H \sim$ height of females $P(H > 170) = P\left(Z > \frac{170 - 160}{8}\right) [= P(Z > 1.25)]$	M1				
	=1-0.8944					
	= 0.1056 (calc 0.1056498) awrt 0.106 (accept 10.6%)	A1 (3)				
(b)	$P(H > 180) = P\left(Z > \frac{180 - 160}{8}\right) [= 1 - 0.9938]$	M1				
	$= 0.0062 (calc \ 0.006209) \qquad awrt \ 0.0062 \ or \ \frac{31}{5000}$	A1				
	$[P(H > 180 H > 170)] = \frac{0.0062}{0.1056}$	M1				
	= 0.0587 (calc 0.0587760) awrt 0.0587 or 0.0588	A1 (4)				
(c)	$P(H > h H > 170) (= 0.5)$ <u>or</u> $\frac{P(H > h)}{P(H > 170)} (= 0.5)$	M1				
	$[P(H > h)] = 0.5 \times "0.1056" = 0.0528$ (calc 0.0528249) or $[P(H < h)] = 0.9472$	A1ft				
	$\frac{h-160}{8} = 1.62 \text{(calc } 1.6180592)$	M1 B1				
	h = awrt 173 cm awrt 173	A1 (5)				
		Total 12				
	Notes					
(a)	1 st M1 for attempt at standardising with 170, 160 and 8. Allow \pm i.e. for $\pm \frac{170-160}{8}$					
	2^{nd} M1 for attempting $1 - p$ where $0.8 . Correct answer only 3/3$					
(b)	 1st M1 for standardising with 180, 160 and 8 1st A1 for 0.0062 seen, maybe seen as part of another expression/calculation. 					
	2^{nd} M1 using conditional probability with denom = their (a) and num < their denom. <u>Values</u> needed. 2^{nd} A1 for awrt 0.0587 <u>or</u> 0.0588. Condone 5.87% or 5.88% or $\frac{31}{528}$ Correct answer only 4/4					
(c)	1 st M1 for a correct conditional probability statement. Either line and don't insist on 0	.5, ft (a)				
	1 st A1ft for $[P(H > h)] = 0.5 \times \text{their}(a)$ Award M1A1ft for correct evaluation of $0.5 \times \text{their}(a)$ or sight of 0.0528 or better					
	2^{nd} M1 for attempt to standardise (<u>+</u>) with 160 and 8 and set equal to <u>+</u> z value (1.56 <	z < 1.68)				
	B1 for (z =) awrt ± 1.62 (seen)					
	2^{nd} A1 for awrt 173 but dependent on <u>both</u> M marks.					

Question Number	Scheme							Scheme				Marks	
8 (a)	[P(A) = 1 - 0.18 - 0.22] = 0.6 (or exact equivalent)												
(b)	$P(A \cup B) = "0.6" + 0.22 = 0.82$ (or exact equivalent)												
(c)	$x = \mathbf{P}(A \cap B)$	Use $P(B)P(A' B)$	$) = P(A' \cap B)$	Establish independence before or after 1 st M1and score marks for (d) (RH ver)	(1) M1								
	$\frac{x}{x+0.22} = 0.6$	$P(B) \times [1 - 0.6] = 0$.22	Find P(<i>B</i>)									
	x = 0.6x + 0.132	Use $P(A \cap B) = P(A \cap B)$	$A \mid B) P(B)$	Use $P(B)P(A) = P(A \cap B)$	dM1								
	0.4x = 0.132	$P(A \cap B) = 0.6 \times 0.$.55	$P(A \cap B) = 0.6 \times 0.55$	GIVII								
		x = 0.33 (0	or exact equivalent)		A1cso								
(d)	P(B) = 0.55				(3)								
(4)	$P(B) \times P(A) = 0.5$	5×0.6	or stating P(A)	= P(A B) [= 0.6]	M1								
	= 0.3												
	$\mathbf{P}(B) \times \mathbf{P}(A) = \mathbf{P}(A)$	$A \cap B$	or P(A) = P(A)	<i>B</i>)	A1cso								
	therefore (statistic	ally) independent	bendent therefore (statistically) independent			dependent therefore (statistically) independent							
			Notes		Total 7								
(b)	B1ft for their	(a) + 0.22 or 1 - H		t their (a) if it is > 0.78									
	NB 3 versions for (c). Check carefully that Ms are genuinely scored.												
	Look out for <u>ass</u>	uming independen	i <u>ce</u> and if you see P	(B) = 0.55 check it is <u>derived</u>	<u>l</u> properly								
(c)	1 st M1 for a corr	rect equation for x e	.g. $\frac{x}{x+0.22} = 0.6$	or a correctly derived equation	on for $P(B)$								
	$2^{nd} dM1$ for solving to get in form $kx = L$ or correct use of P(B) to find P(A $\cap B$ or P(A $\cap B$) = P(B) - 0.22												
(d)		_	nd no incorrect worl	King seen. _stating $P(A) = P(A B)$ (= 0.6 r	not needed)								
(u)				for $P(A) = P(A B)$ and stating in									
) using $P(A \cap B)$ re		(1) = 1 (1) = 1 (1)	laoponaoin								
	There is no ft of a	n incorrect $P(B)$		A	B								
	Full marks in (d) i	is OK even if 0/3 in	(c)	(0.27 (0.33) 0.22									
	{This Venn diagram may be helpful.}												

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE