

Question		Answer	Marks	Guidance	Question
3	(i)	1	$\begin{gathered} 1 \\ {[1]} \end{gathered}$		
3	(ii)	$\frac{3}{5} \text { or } 0.6$	3 [3]	allow $\mathbf{B 3}$ for ± 0.6 oe; and M1 for at least one of 3 and 5 found	M1 for inversion even if they have done something else first, eg may be earned after $2^{\text {nd }}$ M1 for inversion of their $\frac{5}{3}$
4		$4 x-5>14 x+7$ $-12>10 x$ or $-10 x>12$ or ft $x<-\frac{12}{10}$ or $-\frac{12}{10}>x$ oe isw or ft	M1 M1 M1 [3]	for correctly multiplying by 7 to eliminate the fraction, including expanding bracket if this step done first for correctly collecting x terms on one side and number terms on the other and simplifying ft their $a x$ [inequality] b, where $b \neq 0$ and $a \neq 0$ or ± 1	may be earned later; the first two Ms may be earned with an equation or wrong inequality ft wrong first step award 3 marks only if correct answer obtained after equations or inequalities are used with no errors
5		$\begin{aligned} & x+3(5 x-2)=8 \text { or } y=5(8-3 y)-2 \\ & 16 x=14 \text { or } 16 y=38 \end{aligned}$ (7/8, 19/8) oe	M1 M1 A2 [4]	for subst to eliminate one variable; condone one error; for collecting terms and simplifying; condoning one error ft or $x=14 / 16, y=38 / 16$ oe isw allow A1 for each coordinate	or multn or divn of one or both eqns to get a pair of coeffts the same, condoning one error appropriate addn or subtn to eliminate a variable, condoning an error in one term; if subtracting, condone eg y instead of 0 if no other errors

Question		Answer	Marks	Guidance	Question
6	(i)	$-31+6 \sqrt{5}$	3 [3]	B2 for - 31 or $\mathbf{B 1}$ for $9-40$ or $\mathbf{S C 1}$ for 49 and $\mathbf{B 1}$ for $6 \sqrt{5}$ if 0 , allow M1 for three terms correct in $9-6 \sqrt{5}+12 \sqrt{5}-40$	
6	(ii)	$22 \sqrt{2}$	2 [2]	M1 for $\sqrt{72}=6 \sqrt{2}$ soi or for $\frac{32}{\sqrt{2}}=16 \sqrt{2}$ soi or for $\frac{12+32}{\sqrt{2}}$ oe	
7		$81 x^{4}-216 x^{3}+216 x^{2}-96 x+16$	4 [4]	M3 for 4 terms correct or for all coefficients correct except for sign errors or for correct answer seen then further 'simplified' or for all terms correct eg seen in table but not combined or M2 for 3 terms correct or for correct expansion seen without correct evaluation of coefficients [if brackets missing in elements such as $(3 x)^{2}$ there must be evidence from calculation that $9 x^{2}$ has been used] or M1 for 14641 row of Pascal's triangle seen	condone eg $+(-96 x)$ or $+-96 x$ instead of $-96 x$ any who multiply out instead of using binomial coeffts: look at their final answer and mark as per main scheme if 3 or more terms are correct, otherwise M0 binomial coefficients such as ${ }^{4} \mathrm{C}_{2}$ or $\binom{4}{2}$ are not sufficient - must show understanding of these symbols by at least partial evaluation;

	uest	Answer	Marks	Guidance	Question
8	(i)	$(3 x)^{2}=h^{2}+(2 x+1)^{2} \mathrm{oe}$ $9 x^{2}=h^{2}+4 x^{2}+4 x+1$ and completion to given answer, $h^{2}=5 x^{2}-4 x-1$	B1 B1 [2]	for a correct Pythagoras statement for this triangle, in terms of x, with correct brackets for correct expansion, with brackets or correct signs; must complete to the given answer with no errors in any interim working may follow $3 x^{2}=h^{2}+(2 x+1)^{2}$ oe for B0 B1	condone another letter instead of h for one mark but not both unless recovered at some point eg B1 for $h^{2}=9 x^{2}-\left(4 x^{2}+4 x+1\right)$ and completion to correct answer but B0 for $h^{2}=9 x^{2}-4 x^{2}+4 x+1$
8	(ii)	$[0=] 5 x^{2}-4 x-8$ $\frac{4 \pm \sqrt{(-4)^{2}-4 \times 5 \times-8}}{2 \times 5}$ or ft $\frac{4+\sqrt{176}}{10} \text { or } \frac{2}{5}+\frac{\sqrt{44}}{5} \mathrm{oe}$	B1 M1 A1 [3]	for subst and correctly rearranging to zero for use of formula in their eqn rearranged to zero, condoning one error; ft only if their rearranged eqn is a 3-term quadratic; no ft from $5 x^{2}-4 x-1[=0]$ isw wrong simplification; A0 if negative root also included	or M1 for $\left(x-\frac{2}{5}\right)^{2}=\left(\frac{2}{5}\right)^{2}+\frac{8}{5}$ oe, (condoning one error), which also implies first M1 if not previously earned M0 for factorising ft
9	(i)	the diagonals of a rhombus also intersect at 90° ABCD is a square \Rightarrow the diagonals of quadrilateral ABCD intersect at 90°	B1 B1 [2]	oe for kite or other valid statement/sketch B0 if eg rectangle or parallelogram etc also included as having diagonals intersecting at 90° oe; B0 if no attempt at explanation (explanation does not need to gain a mark)	accept 'diamond' etc reference merely to 'other shapes' having diagonals intersecting at 90° is not sufficient; sketches must have diagonals drawn, intersecting approx. at right angles but need not be ruled Do not accept \rightarrow oe

	esti	Answer	Marks	Guidance	Question
9	(ii)	eg 8 is an integer but $\sqrt{8}$ is not an integer x^{2} is an integer $\Leftarrow x$ is an integer	B1 B1 [2]	oe with another valid number, or equivalent explanation B1 for the square root of some integers is a surd / irrational number / decimal B0 if no attempt at explanation	0 for 'the square root of some integers is a fraction' Do not accept \leftarrow oe
10	(i)	graph of cubic correct way up crossing x-axis at $-3,2$ and 5 crossing y-axis at 30	B1 B1 B1 [3]	B0 if stops at x-axis on graph or nearby; may be in coordinate form mark intent for intersections with both axes or $x=0, y=30$ seen if consistent with graph drawn	must not have any ruled sections; no curving back; condone slight 'flicking out' at ends but not approaching a turning point; allow max on y-axis or in 1 st or 2 nd quadrants; condone some 'doubling' or 'feathering' (deleted work still may show in scans) allow if no graph, but marked on x-axis condone intercepts for x and / or y given as reversed coordinates allow if no graph, but eg B0 for graph with intn on y-axis nowhere near their indicated 30
10	(ii)	correct expansion of two of the linear factors correct expansion and completion to given answer, $x^{3}-4 x^{2}-11 x+30$	M1 A1 [2]	may be 3 or 4 terms must be working for this step before given answer	condone lack of brackets if correct expansions as if they were there or for direct expansion of all three factors, allow M1 for $x^{3}+3 x^{2}-2 x^{2}-5 x^{2}-6 x-15 x+10 x+$ 30 , condoning an error in one term , and A1 if no error for completion by stating given answer

Question		Answer	Marks	Guidance	Question
10	(iii)	translation $\binom{0}{-36}$	B1 B1 [2]	0 for shift or move etc without stating translation or 36 down, or -36 in y direction oe	0 if eg stretch also mentioned if conflict, eg between ' -36 in y direction' and wrong vector, award B0 0 for ' -36 down'
10	(iv)	$-1-4+11-6=0$	B1	or B1 for correct division by $(x+1)$ or for the quadratic factor found by inspection, and the conclusion that no remainder means that $g(-1)=0$	NB examiners must use annotation in this part; a tick where each mark is earned is sufficient
		attempt at division by $(x+1)$ as far as $x^{3}+x^{2}$ in working	M1	or inspection with at least two terms of threeterm quadratic factor correct; or finding $f(6)=$ 0	M0 for trials of factors to give cubic unless correct answer found with clear correct working, in which case award the M1A1M1A1
		correctly obtaining $x^{2}-5 x-6$	A1	or $(x-6)$ found as factor	
		factorising the correct quadratic factor $x^{2}-5 x$ -6 , that has been correctly obtained	M1	for factors giving two terms of quadratic correct or for factors ft one error in quadratic formula or completing square; M0 for formula etc without factors found for those who have used the factor theorem to find $(x-6)$, M1 for working with cubic to find that $(x+1)$ is repeated	allow for $(x-6)$ and $(x+1)$ given as factors eg after quadratic formula etc
		$(x-6)(x+1)^{2}$ oe isw	A1	condone inclusion of ' $=0$ '	isw roots found, even if stated as factors just the answer $(x-6)(x+1)^{2}$ oe gets last 4 marks
			[5]		

Question		Answer	Marks	Guidance	Question
11	(i)	$\begin{aligned} & \text { [radius }=] \sqrt{125} \text { isw or } 5 \sqrt{5} \\ & {[\mathrm{C}=](10,2)} \end{aligned}$	B1 B1 [2]	condone $x=10, y=2$	
11	(ii)	verifying / deriving that $(21,0)$ is one of the intersections with the axes $\begin{aligned} & (-1,0) \\ & (0,-3) \text { and }(0,7) \end{aligned}$	B1 B1 B2 [4]	using circle equation or Pythagoras; or putting $y=0$ in circle equation and solving to get 21 and -1 ; condone omission of brackets B1 each; if B0 for D and E, then M1 for substitution of $x=0$ into circle equation or use of Pythagoras showing $125-10^{2}$ or $h^{2}+10^{2}=125 \mathrm{ft}$ their centre and/or radius	equation may be expanded first condone not written as coordinates condone not written as coordinates; condone not identified as D and E ; condone $\mathrm{D}=(0,7), \mathrm{E}=(0,-3)-$ will penalise themselves in (iii)

Question		Answer	Marks	Guidance	Question
11	(iii)		B1	ft their E	NB examiners must use annotation in this part; a tick where each mark is earned is sufficient
				or stating that the perp bisector of a chord always passes through the centre of the circle	must be explicit generalised statement; need more than just that C is on this perp bisector
		midpt $\mathrm{BE}=(21 / 2,7 / 2 \mathrm{ft})$ oe $\operatorname{grad} \mathrm{BE}=\frac{7-0}{0-21}$ oe isw	M1	ft their E; M0 for using grad $\mathrm{BC}(=-2 / 11)$	condone $-1 / 3 x$ oe
		grad perp bisector $=3 \mathrm{oe}$	M1	for use of $m_{1} m_{2}=-1$ oe soi; ft their grad BE; no ft from grad BC used	condone $3 x$ oe; allow M1 for eg $-1 / 3 \times 3=-1$
		$y-7 / 2=3(x-21 / 2)$ oe	M1	ft ; M0 for using grad BE or perp to BC allow this M1 for C used instead of midpoint	or use of $y=3 x+c$ and subst of ($21 / 2,7 / 2$) oe ft
		$y=3 x-28 \text { oe }$ verifying that $(10,2)$ is on this line	A1	must be a simplified equation	no ft; those who assume that C is on the line and use it to find $y=3 x-28$ can earn B0M1M1M1A1A0
					those who argue that the perp bisector of a chord always passes through the centre of the circle and then uses C rather than midpt of BE are eligible for all 6 marks
			A1	no ft; A 0 if C used to find equation of line, unless B1 earned for correct argument	
			[6]		

Question		Answer	Marks	Guidance	Question
12	(ii)	$3(x+2)^{2}+1$ www as final answer	B4	B1 for $a=3$ and B1 for $b=2$ and B2 for $c=1$ or M1 for $13-3 \times$ their b^{2} or for $13 / 3$ - their b^{2} or B3 for $3\left[(x+2)^{2}+\frac{1}{3}\right]$	condone omission of square symbol; ignore equating to zero in working or answer
		y-minimum $=1$ [hence curve is above x-axis]	B1	Stating min pt is $(-2,1)$ is sufft allow ft if their $c>0$ B 0 for only showing that discriminant is negative oe; need also to justify that it is all above not all below x-axis B 0 for stating \min point $=1$ or ft	must be done in this part; ignore wrong x-coordinate
			[5]		
12	(iii)	5 cao	B2 [2]	M1 for substitution of their $(-2,1)$ in $y=2 x+k$	allow M1 ft their $3(x+2)^{2}+1$; or use of $(-2,1)$ found using calculus; M0 if they use an incorrect minimum point inconsistent with their completed square form

