

GCE

Mathematics

Unit 4732: Probability and Statistics 1

Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to ≥ 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

"oe" means "or equivalent"

(Questio	n	Answer	Marks	Guidance		
1	(i)		$S_{xx} = 200.39 - \frac{33.7^2}{6}$		or 11.108 or 11.1 or $\frac{1333}{120}$		
			$S_{yy} = 28314 - \frac{410^2}{6}$		or 297.333 or 297 or $\frac{892}{3}$		
			$S_{xy} = 2313.9 - \frac{33.7 \times 410}{6}$	M1	or 11.067 or 11.1 or $\frac{166}{15}$	Correct sub in a correct S formula or correct value of one S seen	
			$r = \frac{\text{"}11.067'}{\sqrt{\text{"}11.108'\times\text{"}297.333"}}$	M1		Correct sub in 3 correct <i>S</i> formulae and a correct <i>r</i> formula	
			= 0.193 (3 sf)	A1		No working: 0.193 M1M1A1	
				[3]		Ignore comment about $0 < r < 0.2$	
1	(ii)		(For these 6 clubs)		Allow without "For these 6 clubs" & "top"	Allow "Salary has little effect on points"	
			No/little/poor/weak oe				
			relationship/corr'n/link oe		or "no strong corr'n between etc"	Ignore all else including "positive"	
			between (top) salaries and no. of points	B1	In context.	NOT if use "goals" instead of "points"	
				[1]			
1	(iii)		Extrapolation oe		Outside range of values. Salary is less than the others.	NOT "Corr'n does not imply causation"	
			Corr'n poor/weak or no rel'nship/link oe		r small or r close to 0 or r not close to 1	NOT "Could be other factors"	
			or Points not close to line		or Results do not correlate well	NOT if use "goals" instead of "points"	
			Small sample or only (top) 6 clubs oe	B1 B1	Any two; allow without context		
				[2]			
2	(i)		35	B1	Allow 30 to 40 inclusive		
				[1]			
2	(ii)		$\frac{50\pm2}{400} \times 100$ oe	M1	NOT $\frac{50\pm 2}{450} \times 100$	NOT $\frac{100\pm 2}{400\text{or}450} \times 100$	
			= 12% to 13%	A1		NOT $\frac{350\pm2}{400}$ × 100 (unless sub from 100)	
				[2]			
2	(iii)		eg 7.5, 87.5 or 5, 90 or 5-10, 85-90	B1	or any values in intervals 5 - 10 & 85 - 90	NOT "Because it's cumulative frequency"	
			"Classes" or "intervals" or "groups" or "mid-	B1	No raw data given. Not have each data value	NOT "Because it's a line of best fit"	
			points" or "bounds" seen		Exact values not given or can't be read off oe	NOT "Because graph is difficult to read"	
			Data lost oe			NOT "because graph is a curve"	
				[2]	Ignore all else for 2nd B1, not 1st B1	NOT "Cont data has no exact data pts"	

C	uestion	Answer	Marks	Guidance		
2	(iv)	$Median = 39 \pm 1 \qquad drawn$	B1	or stated	Mark diagram even if contradicts	
		Quartiles = 25 ± 1 , 55 ± 1 drawn	B1	or stated	statements of values in (iv) or (iii)	
		Ends in ranges 5 - 10 & 85 - 90 drawn	B1f	or ft (iii)	If no diagram, award max B1B1B1 for	
		Correct B&W plot ± 1 drawn	B1f	or ft (iii) mark intention (allow unruled lines)	statements of med, quartiles & ends	
			[4]			
2	(v)	Stretched out at top end oe	B1	Positive skew,	NOT any of below:	
		Not symmetrical		Skewed to right (or to higher values)	more large extremes than small extremes	
		More concentrated towards lower end		Larger skewness at top	IQR is towards the lower end	
		More values (or data) in lower half of range		Larger plums more spread than smaller ones	skewed to the left (or to lower values)	
		Median closer to lowest value			majority below 39	
		Average towards lower end		Ignore all else	distribution towards lower end	
		More plums have lower masses		No need for context		
		Majority of distribution towards lower end				
		More below 50 (or 45)				
		Upper whisker longer than lower whisker	[1]			
3	(i)				One set reversed, max 4 mks, eg	
		Year 80 81 82 83 84 85 86 87 88		Y 80 83 81 82 84 85 87 86 88	Y 80 81 82 83 84 85 86 87 88	
		Age 1 2 3 4 5 6 7 8 9		Q1 2 3 4 5 6 7 8 9	A 9 8 7 6 5 4 3 2 1	
		Quality 1 3 4 2 5 6 8 7 9		A 1 4 2 3 5 6 8 7 9	Q 1 3 4 2 5 6 8 7 9	
					or similar	
		Attempt ranks	M1		Attempt ranks M1	
		Correct ranks	A1	Allow both sets of ranks reversed	Incorrect ranks A0	
		Attempt Σd^2 (= 8)	M1		Attempt Σd^2 (= 232) M1	
		$1 - \frac{6 \times "8"}{9 \times (8 1 - 1)}$	M1		$1 - \frac{6 \times "232"}{9 \times (81-1)}$ M1	
		$=\frac{14}{15}$ or 0.93 or 0.933 (3 sf)	A1	NB 0.93 is correct	$-\frac{14}{15}$ or -0.93 or -0.933 (3 sf) A1	
			[5]			
3	(ii)	Older is better oe or newer is worse oe	B1	No ft from (i)		
		As age increases, quality increases		-0.933 in (i) leads to same conclusion as +0.933 in (ii)	NOT as year increases quality increases	
		Must imply older is better oe,		Nothing contradictory seen, ie NOT ignore all else	NOT High/atman a/good combu/coments	
		ie "good (or positive) corr'n between age and quality" is not enough		In context; no need to include "rank"	NOT High/strong/good corr'n/agreement/ rel'nship between age and quality oe	
			[1]			

C)uestic	n	Answer	Marks	Guidance		
4	(i)		$S_{xx} = 481.13 - \frac{60.5^2}{8}$			Alternative method:	
			or 23.59875 or 23.6 or $\frac{18879}{800}$			44.9 = 8a + 60.5b M1	
			$S_{xy} = 334.65 - \frac{60.5 \times 44.9}{8}$			334.65 = 60.5a + 481.13b M1	
			or -4.90625 or -4.91 or $-\frac{157}{32}$	M1	Correct sub in any correct S_{xx} or S_{xy} formula or correct value of either S	hence $a = 7.18$ or $b = -0.208$ A1	
			$b = \frac{334.65 - \frac{60.5 \times 44.9}{8}}{481.13 - \frac{60.5^2}{8}} $ oe			y = -0.208x + 7.18 A1	
			or -0.20790 or -0.208 or $-\frac{3925}{18879}$	M1	Correct sub in both Ss and in a correct b formula		
			$y - \frac{44.9}{8} = \text{``-0.20790''}(x - \frac{60.5}{8})$	M1	or $a = \frac{44.9}{8}$ - "-0.20790" × $\frac{60.5}{8}$		
			y = -0.208x + 7.18 (or + 7.19) (3 sf)	A1	or $y = -\frac{3925}{18879}x + 7.18/9$ Must include "y ="	no wking, correct ans M1M1M1A1	
					Allow $y = -0.21x + 7.2$ (awrt 2 sf)	If find x on y line, can score first M1 only or ans $x = 31$ -4.2 y seen first M1 only	
				[4]			
4	(ii)		"-0.208" × 9.2 + "7.18"	M1			
			= 5.27 or 5.28 (km/l) (3 sf)	A1ft [2]	ft their equn from (i)	but no ft from x on y line	
	(***)		$(7.56, 5.61)$ $(3 sf)$ or $(\frac{121}{16}, \frac{449}{80})$ oe		Towns while of our line if there	NOT (605 449)	
4	(iii)		$(7.30, 3.01)$ (3.81) or $(\frac{1}{16}, \frac{80}{80})$ or	B1	Ignore calc'n of reg line, if done	NOT $(\frac{60.5}{8}, \frac{44.9}{8})$	
4	(i)		Use reg line of x on y (either equn or line)	[1] M1	Mart and if a minute of the mark of the ma	If $\underline{\text{calc}} x$ on y reg line (allow errors)M1	
4	(iv)		Ose reg line of x on y (either equil of line)	IVII	Must specify or imply x on y , otherwise M0A0 NOT "Use either x on y or y on x "	in care x on y reg line (allow errors)wir	
			Sub $y = 5.8$ or fuel = 5.8 or km/l = 5.8	A1	NOT "and read off y coord"	Subst 5.8 into their x on y line A1	
				[2]	_	Ignore all else	
5	(i)	(a)	$(1-0.27)^7 \times 0.27$	M1	alone		
			= 0 0298 (3 sf)	A1			
				[2]			
	l						

)uestic	n	Answer	Marks	Guidance			
5	(i)	(b)	$(1-0.27)^8$	M1	alone	NOT $(1 - 0.27)^8 \times$		
					or 1 - $P(X = 1,2,3,4,5,6,7,8)$ all terms correct	NOT 1- (1-0.27) ⁸		
					(=1-0.91935)	, ,		
			= 0.0806 (3 sf) or 0.08065	A1				
				[2]				
5	(ii)		Bin stated	B1	or implied by ${}^{8}C_{2}$ or ${}^{8}C_{6}$ or $(1-0.27)^{a} \times 0.27^{b}$ $(a+b=8)$	or by ans 0.309. Allow "Bio"		
			${}^{8}C_{2} \times (1 - 0.27)^{6} \times 0.27^{2}$	B1	NOTE. Must see sub in formula for this B1	Allow correct +		
			0.309 (3 sf)	B1		Correct ans, no working: B1B0B1		
				[3]				
5	(iii)		Their (ii) × 0.27 seen together	M1	or $({}^{8}C_{2} \times (1 - 0.27)^{6} \times 0.27^{2}) \times 0.27$ seen together			
			Their (ii) $\times 0.27 \times (1 - 0.27)^2 \times 0.27$	M1	or ${}^{8}C_{2} \times (1 - 0.27)^{6} \times 0.27^{2} \times 0.27 \times (1 - 0.27)^{2} \times 0.27$	or ${}^{8}C_{2} \times (1 - 0.27)^{8} \times 0.27^{4}$		
			ie wholly correct method ft(ii)		ie wholly correct method	0 4		
						SC: $(1 - 0.27)^8 \times 0.27^4$ oe alone		
			= 0.0120 (3 sf)	A1ft	Allow 0.012; ft their (ii) only	M0M1A0		
				[3]				
6	(i)		$7!$ or 5040 or 7P_7 seen	M1	or $5! \times (^{6}C_{2} + 6)$ NOT $5! \times ^{6}C_{2}$	or $\frac{2}{7} \times \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ alone M2		
			$1 \div \frac{7!}{2}$ or $\frac{2}{7!}$	M1	$\frac{1}{5 \times (6C2+6)}$	or \geq 5 correct fracs mult: or 6 correct fracts mult \times M1		
			$=\frac{1}{2520}$ or 0.000397 (3 sf)	A1	or $\frac{2}{5040}$ oe	of o correct fracts mate /		
			2520 01 01000357 (3 31)		5040 00			
	(**)	()		[3]	7			
6	(ii)	(a)	5	B1	Ignore any working seen			
	(**)	(1-)	5 C ₂ alone (or \times 2 C ₂)	[1] M1	alone, eg NOT ${}^5C_2 \times$ or ${}^5C_2 +$	But allow ⁵ C ₂ as denom of prob M1A0		
6	(ii)	(b)	· · · · · · · · · · · · · · · · · · ·	IVII	alone, eg NO1 $C_2 \times$ or $C_2 +$	But allow C_2 as denom of prob MTA0		
			or ${}^{6}C_{3} \div 2(!)$ or $\frac{2}{7} \times {}^{7}C_{3}$ or ${}^{5}P_{2} \div 2$					
			= 10	A1				
			-	[2]				
6	(ii)	(c)	"5" + "10" + ${}^{5}C_{3}$	M1	or ${}^{6}C_{3} + {}^{"}5"$ or ${}^{7}C_{3} - {}^{"}10"$ or ${}^{7}C_{3} - {}^{5}C_{2}$	Allow as denom of a prob M1A0		
			= 25	A1f	ft (a) &/or (b) only if working seen			
				[2]				

4752 Walk Scheme Suite 2								
(Question		Answer	Marks				
7	(i)	(a)	Binomial seen or implied	B1	by tables or ¹⁰ C ₃ or ¹⁰ C ₇	or by $0.25^a \times 0.75^b$ $(a+b=10)$		
			$0.7759 - 0.5256 \text{ or } {}^{10}\text{C}_3 \times (1 - 0.25)^7 \times 0.25^3$	M1				
			= 0.250 (3 sf)	A1	Allow 0.25			
				[3]				
7	(i)	(b)	1 - 0.5256 or	M1	or $P(X = 3,4,5,6,7,8,9,10)$ all correct terms	NOT $1 - 0.7759$ (P($X > 3$) from table)		
			$1 - ((1 - 0.25)^{10} + 10(1 - 0.25)^9 \times 0.25$					
			+ ${}^{10}\text{C}_2(1-0.25)^8 \times 0.25^2$)		Allow ¹⁰ C ₈ instead of ¹⁰ C ₂			
			= 0.4744 or 0.474 (3 sf)	A1				
				[2]				
7	(ii)		0.4744 or 0.474) or 0.5256 or 0.526 seen	M1	Their (i)(b) seen, or result of 1-(i)(b) seen	eg B(6, 0.474) or $P(X \ge 3) = 0.474$		
			$1 - (1 - \text{``}0.4744\text{''})^6$ oe	M1	or $P(X = 1,2,3,4,5,6)$ all correct terms seen			
			= 0.979 (3 sf)	A1f	ft from (i)(b)			
				[3]				
8	If 0.3	and (0.6 or 0.3 and 0.7 or similar used, can score	r`				
	(i)		Correct structure with no extra branches	B1	Allow extra branches with correct 0 & 1	ignore probs and R & B		
			Probs and R and B all correct	B1dep	Ignore other probs			
				[2]				
8	(ii)		$\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$	M1	or $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$	ft their tree, eg "without replacement"		
					NOT $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$	gives $\frac{2}{3} \times \frac{3}{5} \times \frac{2}{4} (=\frac{1}{5})$ M1A0		
					$1 \times 1 = \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3}$	gives $\frac{1}{3} \wedge \frac{1}{5} \wedge \frac{1}{4} \left(-\frac{1}{5}\right)$ WITAO		
			$=\frac{8}{27}$ or 0.296 (3 sf)	A1	No ft from tree for A1			
				[2]				
				[-]				
L		1						

	Question	Answer	Marks	Guidan	ce	
8	(iii)	into the 6 cases below and mark accordingly.	Must decid	up these into 3 cases, as in middle column. Other de which case a candidates is using, and use the combined into cases. For example	corresponding scheme.	
		NB. Listing Adnan and Beryl separately gains no marks. They must be combined into cases. For example $(\frac{2}{3})^3 \times \frac{1}{3} = \frac{8}{81}$ is correct for P(Adnan 4 throws and Beryl 1throw), but it could also come from P(Adnan gets RRRB) which scores no marks by itself. If correct 6 (or 3) cases, or equiv, are given, but extra cases also given, award 1st M1, and possibly 2nd M1, but no more. No ft from tree, but if clearly state cases may score 1st M1 only.				
		All six cases seen or implied: 2&1; 3&2, 3&1; 4&3, 4&2, 4&1 or 2&1; 3 & (< 3); 4& (< 4)	M1	All three cases soi: R & B; RR & RB; RRR & RRB M1 or R & B; RR & RB; RRRR & RRB; RRRB & RRB ie 3 cases: (\ge 2 & 1) (\ge 3 & 2) (4 & 3)	All four cases soi: B&B RB & RB; RRB & RRB; RRRX & RRRX ie 1&1 or 2&2 or 3&3 or 4&4 M1	
		$P(2\&1) = \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3}$ or $\frac{2}{27}$			$(\frac{1}{3})^2 + (\frac{2}{3} \times \frac{1}{3})^2 + (\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3})^2 + (\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3})^2$	
		$P(3\&2) = (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3}$ or $\frac{8}{243}$		NB Must be clearly part of 3-case method	or $\frac{1}{9} + \frac{4}{81} + \frac{16}{729} + \frac{64}{729}$ or $\frac{197}{729}$ all correct M1	
		$P(3\&1) = (\frac{2}{3})^2 \times \frac{1}{3} \times \frac{1}{3}$ or $\frac{4}{81}$		P(RR & RB) = $(\frac{2}{3})^2 \times \frac{2}{3} \times \frac{1}{3}$ or $\frac{8}{81}$	$\frac{1}{2}(1-\frac{197}{729})$ M1	
		$P(4&3) = (\frac{2}{3})^3 \times (\frac{2}{3})^2 \times \frac{1}{3}$		P(RRR & RRB) = $(\frac{2}{3})^3 \times (\frac{2}{3})^2 \times \frac{1}{3}$ or $\frac{32}{729}$	$\frac{266}{729}$ or 0.365 (3 sf) A1	
		or $(\frac{2}{3})^4 \times (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times (\frac{2}{3})^2 \times \frac{1}{3}$ or $\frac{32}{729}$		Both these correct expressions or results and add all 3 cases oe ie completely correct method M1		
		$P(4\&2) = (\frac{2}{3})^3 \times \frac{2}{3} \times \frac{1}{3}$		$\frac{266}{729}$ or 0.365 (3 sf)		
		or $(\frac{2}{3})^4 \times \frac{2}{3} \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3}$ or $\frac{16}{243}$				
		$P(4\&1) = (\frac{2}{3})^3 \times \frac{1}{3}$		May see other groupings of 6 cases into 3 cases eg		
		or $(\frac{2}{3})^4 \times \frac{1}{3} + (\frac{2}{3})^3 \times (\frac{1}{3})^2$ or $\frac{8}{81}$		4&(1or2or3) 3&(1or2) 2&1 M1		
		Correct expressions (or results) for 3 of these 6 probs	M1	$\frac{8}{27} \times \frac{19}{27}$ oe or $\frac{152}{729}$ M1		
		Correct expressions (or results) for the other 3 of these 6 probs & no extra cases, and add all 6 cases ie completely correct method	M1	$\frac{4}{27} \times \frac{5}{9} + \frac{2}{9} \times \frac{1}{3} \text{ oe or } \frac{20}{243} + \frac{2}{27} \text{ or } \frac{38}{243}$ ie completely correct method M1	NB $\frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$ often seen, usually scores 0. Must be clearly part of 3-case method to score.	
		$\frac{266}{729}$ or 0.365 (3 sf)	A1	$\frac{266}{729}$ or 0.365 (3 sf)		
		See next page for more	[4]			

	Questio	n	Answer	Marks	Guidance		
8	(iii)	cont	4 COMMON INCORRECT METHODS:		ANOTHER EXAMPLE	ANOTHER INCORRECT METHOD	
			All six cases seen or implied: M1		$\frac{RB}{B}$ $\frac{RRB}{B+RB}$ $\frac{RRRB}{B+RB+RRB}$ $\frac{RRRR}{B+RB+RRB}$	$\left(\frac{2}{3}\right)^3 \times \frac{1}{3} + \left(\frac{2}{3}\right)^2 \times \frac{1}{3} + \frac{2}{3} \times \frac{1}{3}$	
			$\frac{2}{27} + \frac{8}{243} + \frac{4}{81} + \frac{32}{2187} + \frac{16}{729} + \frac{8}{243}$ oe M1M0		ie 2&1 3&(1or2) 4&(1or2or3)	$(\frac{2}{3})^2 \times \frac{1}{3} \times \frac{2}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times \frac{2}{3}$	
			$= \frac{494}{2187} \text{ or } 0.226 $ A0		This scores the 1st M1 for all 3 cases soi	$+ \left(\frac{2}{3}\right)^3 \times \frac{1}{3} \times \left(\frac{2}{3}\right)^2$	
			$\frac{2}{3} \times \frac{1}{3} + \left(\frac{2}{3}\right)^2 \times \frac{1}{3} + \left(\frac{2}{3}\right)^3 \times \frac{1}{3} + \left(\frac{2}{3}\right)^4$		(The last two "fractions" together make the 3rd case)	ie attempt 4&1, 3&1, 2&1; 3&2, 4&2; 4&3	
			or $\frac{2}{3} \times \frac{1}{3} + (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3}$ M0M0M0M0			Some of these overlap, but 1st, 5th, 6th correct.	
			P(2&1) + P(3&2) + P(4&3)			Overall M1M1M0A0	
			$= \frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} + \left(\frac{2}{3}\right)^2 \times \frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} +$				
			$(\frac{2}{3})^4 \times (\frac{2}{3})^2 \times \frac{1}{3} + (\frac{2}{3})^3 \times \frac{1}{3} \times (\frac{2}{3})^2 \times \frac{1}{3}$ M0M1M0A0				
8	(iv)		Unlimited number of throws oe	B1	Not fixed number of throws	Allow Throw die until blue obtained	
			Not stop at 4 throws oe		Turn continues until blue obtained	NOT Continue until 1st success	
						NOT "Not stop at 4 throws or when blue obtained"	
				[1]		Ignore all else	
9	(i)		a + b, a + 2b, a + 3b	B1	All three seen	Ignore an else	
			a+b+a+2b+a+3b=1 oe	B1dep	Must see this line oe before final answer	Must include "= 1"	
					or "Probabilities add up to 1" oe stated		
			$(3a+6b=1 \mathbf{AG})$				
				[2]			
9	(ii)		$a+b+2(a+2b)+3(a+3b)=\frac{5}{3}$	M1	ft their probs		
			$6a + 14b = \frac{5}{3}$ or $18a + 42b = 5$	A1f	or any correct three term equn, ft their probs		
			eg $6 \times \frac{1-6b}{3} + 14b = \frac{5}{3}$ or $2b = -\frac{1}{3}$				
			or $6a + 14 \times \frac{1-3a}{6} = \frac{5}{3}$ or $3a = 2$	A1	or any correct equn in a or b only. cao		
			$a=\frac{2}{3}, b=-\frac{1}{6}$	A1	cao		
				[4]			

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

