

GCE

Mathematics

Unit 4721: Core Mathematics 1

Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

1. These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
soi	Seen or implied

PMT

4721

- 2. Here are the subject specific instructions for this question paper
- 3.
- a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

June 2016

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

4. Here is the mark scheme for this question paper.

=

June	2016
------	------

Question		Answer		Guidance		
1	(i)	$ \frac{4x^2 - 12x + 9 - 2(9 - 6x + x^2)}{2x^2 - 9} $	M1 A1 [2]	Square to get at least one 3/4 term quadratic Fully correct www	ISW after correct answer	
1	(ii)	$-\frac{6x^3-4x^3}{-10}$	B1 B1 [2]	$-6x^3$ or $-4x^3$ soi www in these terms Condone $-10x^3$	Ignore other terms If only embedded in full expansion then award B1B0	
2		$\frac{3 + \sqrt{20}}{3 + \sqrt{5}} \times \frac{3 - \sqrt{5}}{3 - \sqrt{5}}$ $\frac{-1 + 3\sqrt{5}}{9 - 5}$	M1 B1 A1	Attempt to rationalise the denominator – must attempt to multiply $\sqrt{20} = 2\sqrt{5}$ soi Either numerator or denominator correct and simplified to no more than two terms	Alternative: M1 Correct method to solve simultaneous equations formed from equating expression to $a\sqrt{5}+b$ B1 $\sqrt{20} = 2\sqrt{5}$ soi	
		$-\frac{1}{4}+\frac{3}{4}\sqrt{5}$	A1 [4]	Fully correct and fully simplified. Allow $\frac{-1+3\sqrt{5}}{4}$, order reversed etc. Do not ISW if then multiplied by 4 etc.	A1 Either <i>a</i> or <i>b</i> correct A1 Both correct	
3		$x^{2} + (3x + 4)^{2} = 34$ $10x^{2} + 24x - 18 = 0$ $5x^{2} + 12x - 9 = 0$ $(5x - 3)(x + 3) = 0$ 3	M1* A1 M1dep*	Substitute for <i>x/y</i> or valid attempt to eliminate one of the variables Correct three term quadratic in solvable form Attempt to solve resulting three term quadratic	If x eliminated: $10y^2 - 8y + 290 = 0$ $5y^2 - 4y + 145 = 0$ (5y - 29)(y + 5) = 0	
		(5x - 3)(x + 3) = 0 $x = \frac{3}{5}, x = -3$ $y = \frac{29}{5}, y = -5$	A1 A1 [5]	Correct <i>x</i> values Correct <i>y</i> values	Award A1 A0 for one pair correctly found from correct quadratic Spotted solutions: If M0 DM0 SC B1 $x = \frac{3}{5}, y = \frac{29}{5}$ www SC B1 $x = -3, y = -5$ www	
					Must show on both line and curve (Can then get 5/5 if both found www and exactly two solutions justified)	

Mark Scheme

June 2016	Jun	e	20	1	6
-----------	-----	---	----	---	---

Qu	estion	Answer	Marks	Guidance	
4		Let $y^{\frac{1}{4}} = x$ $2x^2 - 7x + 3 = 0$	M1*	Use a substitution to obtain a quadratic or $\frac{1}{4}$	No marks if whole equation raised to fourth power etc.
		(2x-1)(x-3) = 0	M1dep*	factorise into two brackets each containing y^4 Correct method to solve resulting quadratic	No marks if straight to formula with no evidence of substitution at
		$x = \frac{1}{2}, x = 3$	A1	Both values correct	start and no raising to fourth power/fourth rooting at end.
		$y = \left(\frac{1}{2}\right)^4, y = 3^4$	M1dep*	Attempt to raise to the fourth power	No marks if $y^{\frac{1}{4}} = x$ and then
		$y = \frac{1}{16}, y = 81$	A1 [5]	Correct final answers	$2x - 7x^2 + 3 = 0.$ Spotted solutions:
		Alternative by rearrangement and squaring: $2y^{\frac{1}{2}} - 7y^{\frac{1}{4}} + 3 = 0, \ 7y^{\frac{1}{4}} = 2y^{\frac{1}{2}} + 3$ $49y^{\frac{1}{2}} = 4y + 12y^{\frac{1}{2}} + 9, \ 37y^{\frac{1}{2}} = 4y + 9$	M2*	Rearrange and square both sides twice	If M0 DM0 or M1 DM0 SC B1 $y = 81$ www SC B1 $y = \frac{1}{16}$ www
		$16y^{2} - 1297y + 81 = 0$ (16 y - 1)(y - 81) = 0 $y = \frac{1}{16}, y = 81$	A1 M1dep* A1	Correct quadratic obtained Correct method to solve resulting quadratic Correct final answers	(Can then get 5/5 if both found www and exactly two solutions justified)
		OR methods may be combined:			
		e.g. after $37y^{\frac{1}{2}} = 4y + 9$			
		$4y - 37y^{\frac{1}{2}} + 9 = 0$ $4x^2 - 37x + 9 = 0$	M1*	Rearrange, square both sides and substitute	
		(4x-1)(x-9) = 0 x = $\frac{1}{4}$, x = 9	M1dep* A1	Correct method to solve resulting quadratic	
		$y = \left(\frac{1}{4}\right)^2, y = 9^2$	M1dep* A1 [5]	Attempt to square Correct final answers	

Qı	uestion	Answer	Marks	cs Guidance	
5	(i)	$(2^{-2})^3$ or $2^{15} \div 2^{21}$	B1	Valid attempt to simplify	Correct use of either index law
		2-6	B1 [2]	Correct answer. Accept $p = -6$.	$\left(\frac{1}{2}\right)^6$ oe is B1
5	(ii)	$5 \times (2^{2})^{\frac{2}{3}} + 3 \times (2^{4})^{\frac{1}{3}}$ = $5 \times 2^{\frac{4}{3}} + 3 \times 2^{\frac{4}{3}} or 10 \times 2^{\frac{1}{3}} + 6 \times 2^{\frac{1}{3}}$	M1 B1	Attempts to express both terms or a combined term as a power of 2 Correctly obtains $2^{\frac{4}{3}}$ or $2^{\frac{1}{3}}$ for either term	e.g. Both $4 = 2^2$ and $16 = 2^4$ soi If MO
		$= 8 \times 2^{\frac{1}{3}}$ = 2 ^{$\frac{13}{3}$}	A1 [3]	Correct final answer	SC B1 for $8 \times 16^{\frac{1}{3}}$ or $8 \times 4^{\frac{2}{3}}$
6	(i)	$ \begin{aligned} & -2(x^2 - 6x - 2) \\ &= -2[(x - 3)^2 - 2 - 9)] \\ &= -2(x - 3)^2 + 22 \end{aligned} $	B1 B1 M1 A1 [4]	or $a = -2$ b = -3 $4 + 2b^2$ c = 22 If <i>a</i> , <i>b</i> and <i>c</i> found correctly, then ISW slips in format.	$-2(x - 3)^{2} - 22 B1 B1 M0 A0 -2(x - 3) + 22 4/4 (BOD) -2(x - 3x)^{2} + 22 B1 B0 M1 A0 -2(x^{2} - 3)^{2} + 22 B1 B0 M1 A0 -2(x + 3)^{2} + 22 B1 B0 M1 A0 -2x(x - 3)^{2} + 22 B0 B1 M1 A0 -2(x^{2} - 3) + 22 B1 B0 M1 A0$
				If signs of all terms changed at start, can only score SC B1 for fully correct working to obtain $2(x-3)^2 - 22$ If done correctly and then signs changed at end, do not ISW, award B1B1M1A0	
6	(ii)	(3, 22)	B1ft B1ft [2]	Allow follow through "– their b " Allow follow through "their c "	May restart. Follow through marks are for their final answer to (i)

June 2016

Qu	uestion	Answer	Marks	Guidance	
7	(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 B1 [3]	Negative cubic with a max and a min Cubic that meets <i>y</i> -axis at (0, 0) only Double root at (0,0) and single root at (3, 0) and no other roots	For first mark must clearly be a cubic – must not stop at or before <i>x</i> axis, do not allow straight line sections drawn with a ruler/tending to extra turning points etc. Must not be a finite plot.
7	(ii)	$y = (x-2)^{2}(5-x)$ or $y = 3(x-2)^{2} - (x-2)^{3}$	M1 A1 [2]	Translates curve by $+2$ or -2 parallel to the <i>x</i> -axis; must be consistent Fully correct, must have " <i>y</i> =". ISW expansions	e.g. for M1 $(x-2)^2(3-(x-2))$ but not $(x-2)^2(3-x-2)$
7	(iii)	Stretch Scale factor one-half parallel to the <i>y</i> -axis	B1 B1 [2]	Must use the word "stretch" Must have "factor" or "scale factor". For "parallel to the <i>y</i> axis" allow "vertically", "in the <i>y</i> direction".	Do not accept "in/on/across/up the y axis". Allow second B1 after "squash" etc. but not after "translate" etc.
8	(i)	$y_{1} = 50, y_{2} = 2(5+h)^{2}$ $\frac{(50+20h+2h^{2})-50}{(5+h)-5}$ $20+2h$	B1 M1 A1 [3]	Finds y coordinates at 5 and $5 + h$ Correct method to find gradient of a line segment; at least 3/4 values correct Fully correct working to give answer AG	Need not be simplified
8	(ii)	e.g. "As <i>h</i> tends to zero, the gradient will be 20"	B1 [1]	Indicates understanding of limit See Appendix 2 for examples	e.g. refer to <i>h</i> tending to zero or substitute $h = 0$ into $20 + 2h$ to obtain gradient at A
8	(iii)	Gradient of normal = $-\frac{1}{20}$ $y - 50 = -\frac{1}{20}(x - 5), x = 0$ $50^{1/4}$	B1 M1 A1 [3]	Gradient of line must be numerical negative reciprocal of their gradient at A through their A Correct coordinate in any form e.g. $\frac{201}{4}, \frac{1005}{20}$	Any correct method e.g. labelled diagram.

Mark Scheme

June	2016	
------	------	--

Questior	n Answer	Marks	Guidance	
9	$x^{2} + (2 - 2k)x + 11 + k = 0$	M1*	Attempt to rearrange to a three-term quadratic	Each Ms depend on the previous M
	$(2-2k)^2-4(11+k)$	M1dep*	Uses $b^2 - 4ac$, involving k and not involving x	
	$4k^2 - 12k - 40 > 0$	A1	Correct simplified inequality obtained www	
	$k^2 - 3k - 10 > 0$			
	(k-5)(k+2)	M1dep*	Correct method to find roots of 3-term quadratic	
		A1	5 and -2 seen as roots	
	k < -2, k > 5	M1dep*	$b^2 - 4ac > 0$ and chooses "outside region"	-2 > k > 5 scores M1A0
		A1	Fully correct, strict inequalities.	Allow " $k < -2$ or $k > 5$ " for A1
		[7]		Do not allow " $k < -2$ and $k > 5$ "
10 (i)	Centre of circle (4, 3)	B1	Correct centre	
	$(x-4)^2 - 16 + (y-3)^2 - 9 - 20 = 0$	M1	$(x \pm 4)^2 - 4^2$ and $(y \pm 3)^2 - 3^2$ seen (or implied by	Or $r^2 = 4^2 + 3^2 + 20$ soi
	$r^2 = 45$		correct answer)	
	r = 45		$\sqrt{45}$ or better www	ISW after $\sqrt{45}$
	$r = \sqrt{45}$	A1		
		[3]		
10 (ii)	At A, $y = 0$ so $x^2 - 8x - 20 = 0$	M1	Valid method to find A e.g. put $y = 0$ and	Alterative for finding gradient:
	(x-10)(x+2) = 0		attempt to solve quadratic (allow slips) or	M1 Attempt at implicit
			Pythagoras' theorem	differentiation as evidenced by
	A = (10, 0)	A1	Correct answer found	$2y \frac{dy}{dx}$ term
	Gradient of radius = $\frac{3-0}{4-10} = -\frac{1}{2}$	M1	Attempts to find gradient of radius (3 out of 4	$\int \frac{2y}{dx} dx$
	$\frac{1}{4-10} = \frac{-1}{2}$		terms correct for their centre, their A)	A1 $2x+2y\frac{dy}{dx}-8-6\frac{dy}{dx}=0$ and
	Gradient of tangent $= 2$	B1		$A\mathbf{I} = 2x + 2y - 8 - 6 - 6 = 0$ and $dx = 0$
	y - 0 = 2(x - 10)			substitution of $(10, 0)$ to obtain 2.
		M1	Equation of line through their A , any non-zero	
	y = 2x - 20		gradient	
		A1	Correct answer in any three-term form	
10 (***)		[6]		
10 (iii)	A' = (-2, 6)	B1	Finds the opposite end of the diameter	
	y-6=2(x+2)	M1	Line through their A' parallel to their line in (ii)	Not through centre of circle
	y = 2x + 10	A1	Correct answer in any three-term form	
10 (1)		[3]		
10 (iv)	$OC = \sqrt{3^2 + 4^2} = 5$	M1	Attempts to find the distance from O to their	ISW incorrect simplification
	$(0 <) r < \sqrt{45} - 5$		centre and subtract from their radius	
	$\left \left(0 \right) r \right \sqrt{43-3}$	A1	Correct inequality, condone \leq	
		[2]		

PMT

Mark Scheme

June 2016

Question	Answer	Marks	Guidance	
11	$y = 4x^{2} + ax^{-1} + 5$ $\frac{dy}{dx} = 8x - ax^{-2}$ At stationary point, $8x - ax^{-2} = 0$ $a = 8x^{3}$ oe When $a = 8x^{3}, y = 32$ $32 = 4x^{2} + 8x^{2} + 5$ $x = \frac{3}{2}$ oe	B1 M1 A1 M1 A1 M1 A1	ax^{-1} soiAttempt to differentiate – at least one non-zeroterm correctFully correctSets their derivative to 0Obtains expression for a in terms of x, or x interms of a wwwSubstitutes their expression and 32 into equationof the curve to form single variable equationObtains correct value for x. Allow $x = \sqrt{\frac{27}{12}}$.Ignore $-\frac{3}{2}$ given as well.	$x = \frac{\sqrt[3]{a}}{2}$ oe , $a = 18x$ oe also fine or expression for a e.g. $a^{\frac{2}{3}} = 9$
	$a = 27$ OR $y = 4x^{2} + ax^{-1} + 5$ $\frac{dy}{dx} = 8x - ax^{-2}$ $32 = 4x^{2} + ax^{-1} + 5$ $a = 27x - 4x^{3}$ At stationary point, $8x - ax^{-2} = 0$ $8x - (27x - 4x^{3})x^{-2} = 0$ $x = \frac{3}{2}$ oe $a = 27$	A1 [8] B1 M1 A1 M1 A1 M1 A1 A1	Obtains correct value for <i>a</i> . Ignore –27 given as well. ax^{-1} soi Attempt to differentiate – at least one non-zero term correct Fully correct Substitutes 32 into equation of the curve to find expression for <i>a</i> Obtains expression for <i>a</i> in terms of <i>x</i> www Sets derivate to zero and forms single variable equation Obtains correct value for <i>x</i> . Allow $x = \sqrt{\frac{27}{12}}$. Ignore – $\frac{3}{2}$ given as well. Obtains correct value for <i>a</i> . Ignore –27 given as well.	

APPENDIX 1

Allocation of method mark for solving a quadratic

e.g.
$$2x^2 - x - 6 = 0$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

(2x-3)(x+2)	M1	$2x^2$ and -6 obtained from expansion
(2x-3)(x+1)	M1	$2x^2$ and $-x$ obtained from expansion
(2x+3)(x+2)	M0	only $2x^2$ term correct

2) If the candidate attempts to solve by using the formula

a) If the formula is quoted incorrectly then M0.

b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$\frac{-1\pm\sqrt{\left(-1\right)^2-4\times2\times-6}}{2\times2}$	earns M1 (minus sign incorrect at start of formula)
$\frac{1\pm\sqrt{(-1)^2-4\times2\times6}}{2\times2}$	earns M1 (6 for c instead of -6)
$\frac{-1\pm\sqrt{(-1)^2-4\times2\times6}}{2\times2}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{1\pm\sqrt{(-1)^2-4\times2\times-6}}{2\times-6}$	M0 (2 c on the denominator)

Notes – for equations such as $2x^2 - x - 6 = 0$, then $b^2 = 1^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for *a* in both occurrences in the formula would be two sign errors and score **M0**.

c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

Mark Scheme

June 2016

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm ; we are looking for evidence that the candidate knows a

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last (complete) attempt.

June 2016

APPENDIX 2 – this section contains additional subject specific information

Example responses to 8ii	
<i>h</i> is zero so the gradient is 20 B1	The gradient at A is 20 B0
At A $x = 5$, $h = 0$ so gradient equals 20 B1	The gradient at A is 20 so $h = 0$ B0
As <i>h</i> approaches 0, the gradient of AB approaches 20 which is the gradient of A	At A, gradient is 20 so it's 2h more B0
B1	
As <i>h</i> were infinitely small, $20 + 2h$ is the same as the gradient at A, otherwise it's greater than the gradient at A B1	$\frac{dy}{dx} = 20$, so it is the gradient of A plus a bit more B0
It's greater than the gradient at A BI	dx dx
The smaller h is the closer the gradient of AB is to the gradient of the curve at	2h + 20 = 20 so $h = 0$ B0
A B1	
As h tends to zero the gradient gets closer and closer to the actual value B1	They're getting closer to each other B0
The gradient of AB tends to the gradient of the tangent of the curve as <i>h</i> tends	
to zero B1	
The answer of (i) is converging towards the gradient at A B1	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2016

