

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics/Further Mathematics

Statistics 1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme							
1. (a)	$[S_{wt}] = 784 - \frac{119 \times 42}{6} =, -49$							
	$[\mathbf{S}_{tt}] = 2435 - \frac{119^2}{6} =$, 74.83 or 74 ⁵ / ₆ or $\frac{449}{6}$ (accept awrt <u>74.8</u>)							
(b)	$S_{ss} = 5 \times 10^7$ or <u>50 000 000</u> (o.e.) $S_{st} = -49 000$							
(c)	$r = \frac{"-49"}{\sqrt{50 \times "74.83''}} \text{ or } \frac{"-49000"}{\sqrt{"5 \times 10^7 "\times "74.83''}} = , -0.80105 = \text{awrt } -0.801$							
(d)	<i>r</i> is close to -1 <u>or</u> $ r $ is close to 1 <u>or</u> " strong " (o.e.) [negative] correlation so " yes " <u>or</u> does support the belief							
(e)	$b = \frac{"-49"}{"74.83"} = [-0.6547], \ a = \frac{42}{6} - b \times \frac{119}{6} = [19.9866] \ \underline{\text{or}} \ a = 7 - b \times 19.83$	M1, M1						
	So $w = 20.0 - 0.655t$	A1 (3)						
(f)	$\underline{s = 20\ 000 - 655t}$ or $\underline{c = 20\ 000}$ and $\underline{d = -655}$	B1ft B1ft						
(g)	Decrease in sales of [£] 655 (ignore any minus sign)	(2) B1ft						
		[14]						
	Notes							
(a)	M1 for a correct expression for S_{wt} or S_{tt} (May be implied by either correct answer) 1 st A1 for $[S_{wt}] = -49$ 2 nd A1 for $[S_{tt}] = awrt 74.8$ SC If <u>both</u> values correct but clearly mislabelled award M1A0A1							
(b)	2^{nd} B1ft for multiplying their S_{wt} by 1000							
(c)	M1 for a correct expression using their values provided S_{tt} and S_{ss} both > 0 A1 for awrt – 0.801 (Correct ans. only M1A1, – 0.80 with no working M1A0)							
(d)	B1ft for a correct comment that uses their <u>value</u> of <i>r</i> as support, provided 0.5 , $ r $, 1 For $ r < 0.5$ comment must be "does not support", because "weak" (o.e.) correlation.							
	NB "points lie close to a straight line" is B0 unless supported by mention of their	r value of r						
(e)	1 st M1 for a correct expression for <i>b</i> or awrt -0.66 or -0.65 Ft their answers from (a) 2 nd M1 for a correct expression for <i>a</i> ft their value for <i>b</i> A1 for a correct equation in <i>w</i> and <i>t</i> only with <i>a</i> = 20 or awrt 20.0 and <i>b</i> = awrt -0.655 (No functions)							
(f)	If their <i>a</i> and <i>b</i> are given to more than 3 sf, accept answers in (f) to 3sf or better. 1 st B1 ft for correct <i>c</i> or "their 20.0"×1000 2 nd B1ft for correct <i>d</i> or their "-0.655"×1000 Values can be in an <i>s</i> , <i>t</i> eq'n or <i>c</i> =, <i>d</i> = (Their <i>a</i> and <i>b</i> needn't be to 3 sf and ft their letter for <i>t</i>)							
(g)	B1ft for stating clearly <u>both</u> decrease (o.e.) <u>and</u> [£] 655. Ft their d and allow "inc.	rease" if $d > 0$						

Question	Scheme								
Number $2(a)$	Width $(w) - A$ on								
2. (u)	$6 (2.5) \frac{8}{8} = 6$								
	<u>Areas:</u> 16 cm represents 32 offices (o.e.) <u>or</u> their $h = \frac{1}{1 \text{ their } w} (351) \frac{\text{or}}{3.2} \times 0.6$	1011							
	So height (<i>h</i>) = <u>1.5</u> cm	A1							
	20.5	(3)							
(b)	e.g. $(45) + \frac{20}{25} \times 5$ or $(50) - \frac{3}{25} \times 5$ (o.e.); = (£) <u>49</u>	M1; A1							
		(2)							
	Σ fr 4420 442	(2)							
(c)	$\frac{2^{1}y}{90} = \frac{4420}{90}, \qquad = (\pounds) \underline{49.11} (\text{or better}) (\text{Allow} \frac{442}{9} \text{or} 49\frac{1}{9})$	M1, A1							
		(2)							
(b)	226687.5 -2 $1000000000000000000000000000000000000$	M1 A1							
(u)	$\sqrt{-90} - x^2 = \sqrt{106.8487}, = 10.3367 = awrt (£) 10.3$								
		(2)							
(e)	Mean \approx median so distribution is symmetric (no skew or very little skew) [Allow mean > median or $k(\overline{x}, Q)$ ($k > 0$) so two skew if compatible with	Blft							
	[Anow mean > median of $k(x - Q_2)$ (k>0) so +ve skew in compatible with their figures] [If using quertiles we must see $Q_1 = 44.0$ and $Q_2 = 55.5$ used]								
	then rightes [In using quarties we must see $Q_1 = 44.0$ and $Q_3 = 55.5$ used]	(1)							
(f)	Symmetric (or little skew) so normal (or Rika's suggestion) may be suitable	B1ft							
		(1)							
(g)	$\frac{c-50}{10} = 0.8416$ [N.B. use of (1 - 0.8416) is B0]	M1, B1							
	10 c = 58.416 = (f) 58.42 awrt 58.4	A1 (3)							
		[14]							
	Notes								
(a)	M1 for a correct calculation of areas 1 cm ² = 2 offices (o.e.) A1 for $h = 1.5$ cm. (Correct answer only 2/2)								
	At for $n = 1.5$ cm (Correct answer only $2/2$)								
(b)	M1 for a correct expression without end point. Allow " $n + 1$ " so e.g. $(45) + \frac{20.5}{25} \times 5$								
	A1 for 49 or, if $(n + 1)$ used, allow 49.1 (Correct answer of 49 only 2/2)								
(c)	M1 for an attempt at $\sum_{j=1}^{j}$ with at least 2 compating ducts of $\sum_{j=1}^{j}$ for an 4000 c $\sum_{j=1}^{j}$	£. <5000							
	101 for an attempt at $\frac{90}{90}$ with at least 5 correct products of $\sum 1y$ of $4000 \le \sum 1$	$\frac{1}{2} \leq 5000$							
	A1 for 49.11 (Allow 49.1 from correct working) (Correct answer only 2/2, 49.1	only MIA0)							
(d)	M1 for a correct expression including $$, ft their mean. Allow use of s								
	A1 for awrt 10.3 Allow $s = awrt 10.4$ if clearly used. [NB use of 49.1 gives 10	$0.389 \Rightarrow A0$							
	(Correct answer of 10.3 with no working is $2/2$)								
(e)	B1ft for reason and "symmetric" (or other correct) statement [Allow positive s	skewl							
	Allow ft of their (b) and their (c). For "symmetric" need $ \overline{x} - Q_2 < 1$ "correlation	on" is B0							
10									
(f)	B1ft Suggest normal is or isn't suitable with suitable reason based on (e) or n	nean and med							
(g)	M1 for stand ing using "c", 50 and 10 and setting equal to $\pm z$ value where $0.84 \le z \le 0.85$								
	B1 for using $z = \pm 0.8416$ or better (calc gives 0.8416212) in standard' attempt e.g. $\sqrt{10}$ for 10								
	A1 for awrt 58.4 (accept 3sf here) (Ans only of awrt 58.4 is M1B0A1 but 58.416 or better is 3/3)								

Question Number	Scheme								
3. (a)	$p = P(B \cap C) = P(B) \times P(C) = 0.6 \times 0.25 = 0.15$								
	$p = 1(B + 1C) = -1(B) \times 1(C) = 0.0 \times 0.25 = \frac{0.10}{a}$ a = [P(C) - n] = 0.10								
	$q = [1(c) p] = \underline{0.10}$								
(b)	r = 1 - 0.08 - [P(B) + q] = 1 - 0.08 - 0.6 - 0.1 (o.e.) or $1 - 0.08 - (0.6 + 0.25 - n)$								
	= 0.22								
(c)	$s = [P(A) - r] = \underline{0.28}$ $t = [P(B) - p - s \text{ or use } P(B \cap C') - s = 0.6 \times 0.75 - "0.28"] = \underline{0.17}$								
(L)									
(a)	$P(A) \times P(B) = 0.5 \times 0.6 = 0.3$ which is <u>not</u> equal to $s = 0.28$								
	So A and B are <u>not</u> independent								
	(s+n) or $(0.6-t)$ ("0.28"+"0.15") or $(0.6-"0.17")$	(2)							
(e)	$\frac{(3+p) \cdot 0! (0.0+1)}{P(4+10) \cdot p(0) \cdot 10! (0.0+1)}, = \frac{(0.28+0.15) \cdot 0! (0.0+0.17)}{0.5+0.25}$	M1, A1ft							
	$P(A \cup C) \text{ or } [P(A) + P(C)] \text{ or } (r+s+p+q) $ 0.5+0.25								
	43	A 1							
	= 75	AI (3)							
		[11]							
	Notes								
(a)	M1 for a correct expression								
	(using independence) for $p \text{ or } 0.15$	C							
	A1 for $q = 0.10$ (both correct 2/2)	2							
	Mark (h) & (a) tagether								
	$M1 \text{for a correct expression for r using} \qquad (0.28) \qquad (0.15)$								
(b)	$P(B \cup C)$ Can ft their $a \in [0, 0, 32]$								
	A1cao for $r = 0.22$ (correct ans only 2/2)								
	0.08								
(c)	1 st B1ft for $s = 0.28$ or $0.5 - \text{their "}0.22$ "								
	2^{nd} B1ft for $t = 0.17$ or Fully correct Venn diagram will score th								
	0.6 – their "0.15" – their "0.28" first 6 marks								
ALT	Find t then s then rIf text and VD disagree use text	<u>xt</u> values							
(c)	2 nd B1 for $t = 0.17$ [from $1 - 0.08 - P(A) - P(C)$]								
	1 st B1ft for $s = 0.28 \text{ or } P(B) - "0.17" - "0.15"$								
(b)	M1 for $r = P(A) - s$ and the A1 for 0.22								
s = 0.3	They assume A and B are independent and get $s = 0.3$ [from P(A)×P(B)]								
(c)	1 st B0 for $s = 0.3$ BUT can get 2 nd B1ft for either case in the scheme								
(D)	M1 for $r = P(A) - s$ BU1 then A0cao for $r = 0.2$								
(d)	M1 for a correct $P(A) \times P(B) = 0.5 \times 0.6$ or 0.3 and a clear comparison with th	eir $s \neq 0.3$							
	Or calculation of $P(A B) = \frac{7}{2}$ or 0.467 or their s and comparison with $P(A) = 0$	0.5(0.8)							
	$\underbrace{OI}_{15} \text{ calculation of } I(A/B) = \frac{1}{15} \underbrace{OI}_{15} OI$	J.J (0.e.)							
	A1 dep. on M1 being earned and clear statement that A and B are <u>not</u> independent	ent							
SC $s = 0.3$	dep on 1 st B1ft for $s = 0.5 - 0.2$ in (c); for correct calc. <u>and</u> conclusion seen (B1). On epe	n M0A1							
		· · · · ·							
(e)	M1 for a correct ratio expression of probs: num. $<$ den. Allow 1 – (0.08+their)	\tilde{t}) on den.							
	Any sight of multiplication on the numerator e.g. 0.6×0.75 is M0								
	1^{-1} A11t for correct ratio or it using their values in numerator but correct denomin	lator.							
	2^{nd} A1 for $\frac{43}{75}$ or accept awrt 0.573								

Question Number	Scheme							
4.								
(a)	$a = \frac{1}{3}$ and $e = 1$	B1						
	$c = \left[1 - \frac{5}{6}\right] = \frac{1}{6}$							
	$"\frac{1}{3}"+2b = \frac{5}{6} \underline{\text{or}} "\frac{1}{3}"+2b + "\frac{1}{6}" = 1$							
	$\Rightarrow b = \frac{1}{4}$	A1						
	$d = a + b = \frac{1}{3} + \frac{1}{4} \text{ or } d = \frac{5}{6} - \frac{1}{4} \text{ (o.e.) so } d = \frac{7}{12}$	B1ft						
		(5)						
(b)	$\left[P(X^2 = 1) = a + b = \right] \frac{7}{12}$	B1ft						
		(1)						
	Notos	[0]						
	Probabilities not in [0, 1] score 0 for corresponding A or B marks							
	Allow exact decimals or equivalent fractions							
	The streated accuracy of equivalent fractions							
(a)	In part (a) you may see answers in the tables.							
	If answers in the table and answers on the page disagree take the answers on the page.							
	If jumbled working is followed by a list of answers on the page mark the list.							
	M1 for an equation for b . Follow through their value of a and possibly c if both in [0,1]							
	Must be seen as an equation with b the only unknown.							
	NB $b = d - a$ is not a suitable equation and use of this is M0							
	1° A1 for $b = \frac{1}{4}$ or 0.25 (Correct answer only 1s 2/2)							
	3 rd B1ft for $d = \frac{1}{12}$ or their <i>a</i> + their <i>b</i> but their <i>d</i> must satisfy $\frac{1}{3} < d < \frac{3}{6}$							
(b)	B1ft for $\frac{7}{12}$ or their a + their b or their d							
	Please check the two B1ft marks carefully							

Question	Scheme								
INUITIDEL	-20-18)	 							
5. (a)	$\left[P(T > 20) = \right] P\left(Z > \frac{-5}{5} \right)$	M1							
	P(Z > 0.4) = 1 - 0.6554	M1							
	= <u>0.3446</u> or awrt <u>0.345</u>	A1							
	P(T > 20)	(3)							
(b)	Require $P(T > 20 T > 15)$ or $\frac{\Gamma(T > 20)}{P(T > 15)}$	M1							
	"(a)" "(a)" " 0.3446 " " 0.345 "								
	$\frac{1}{P(Z > \frac{15-18}{5})} = \frac{1}{P(Z > -0.6)}, = \frac{1}{0.7257} \frac{\text{or}}{0.726}$	M1, A1ft							
	= 0.47485 = awrt 0.475	A1							
	D(T > d T > 15) = 0.5 or $D(T < d T > 15) = 0.5$	(4) (4)							
(C)	P(T > d T > 15) = 0.5 <u>or</u> $P(T < d T > 15) = 0.5P(T > d) or P(15 < T < d) = 0.5 \times "0.7257" = [0.36285]$	A1ft							
	P(T < d) = "0.63715"	M1							
	So $\frac{d-18}{5} = 0.35$ (calculator gives 0.35085)	A1							
	d = 19.754 = awrt 19.8	A1cso							
	(Accept 19 mins 45(secs) or 19:45 but 19.45 is A0)	(5)							
	Notor	[12]							
(a)	Notes								
	2^{nd} M1 for attempting $1 - p$ [where $0.5]. Beware 1 - 0.4 (or their z value) is M0$								
	A1 for awrt 0.345 (Correct ans only 3/3)								
(b)	1^{st} M1 for either correct conditional probability statement (allow "in words" or any letter except Z)								
	1^{st} M1 can be implied by 2^{nd} M1 so a mark of M0M1 should not be given.								
	2^{-1} N11 for using their (a) on num, and attempting to standardise P(1 > 15) (no \pm)on denom. Num.>Deno. is M0								
	Allow one digit transcription errors from (a) e.g. 0.3464 or 0.3466 etc for 2 nd M1 and 1 st A1ft								
	1 st A1ft for their 0.3446 on numerator and denominator of 0.7257 (or better: 0.7257469) provided Num < Denom. Allow 0.726 on the denominator								
	"0.3446"								
	Sight of $\frac{0.0110}{0.7257 \text{ or } 0.726}$ will score M1M1A1ft								
	2^{nd} A1 for awrt 0.475								
(c)	1 st M1 for a correct conditional probability statement that includes the 0.5								
	1 st A1ft for $P(T > d)$ or $P(15 < T < d) = 0.5 \times$ their $P(T > 15)$ [provided $P(T > 15)$	5) > 0.5]							
	Follow through (3sf) their $P(T > 15) = 0.7257$ or better from part (b). (Sight of 0.5× their 0.7257 = "0.36285" or better scores 1 st M1 and 1 st A1ft (Allow 0.726)							
	2^{nd} M1 (dep on 1 st M1) for P($T < d$) = 1 – "0.36285" or "0.36285" + 1 – "0.725	57"							
	= [0.637]	1~0.6372]							
	Sight of their 0.63/15 or better (calc: 0.63/126) scores first 3 marks (Al $d-18$	low 0.637)							
	$2^{na} A1$ for $\frac{a}{5} = 0.35$ (or better) (Calc could give 0.350788)								
	3^{rd} A1cso for ($d =$) awrt 19.8 (accept 19.7 not awrt 19.7) Must come from co	orrect work.							
Beware	$0.5 \times 0.7257 = 0.36285$ and using this (instead of 0.35) as z value leads to 19.8 h	ut is AOAO							
20,0010	$\frac{1}{100}$ (instead of 0.55) as ξ value reads to 19.0 b	w 10 / 10/ 10							

Questi	on er	Scheme						Marl	Marks		
6. ((a)	$[E(X)] = [0 \times \frac{1}{12}] + 3 \times \frac{2}{3} + 6 \times \frac{1}{4}$, $= \frac{7}{2}$ or 3.5							M1, A1		
		а Г	a 7	2	_						(2)
((b)	$[\mathrm{E}(X^2)] = \lfloor 0$	$)^2 \times \frac{1}{12} + $	$3^2 \times \frac{2}{3} + 6$	$x^{2} \times \frac{1}{4}$ (=	15)		2		M1	
					[Va	$\operatorname{ar}(X)] = '$	$'15'' - (''\frac{7}{2})$	")2		M1	
		$=\frac{11}{4}$ or 2.75							or <u>2.75</u>	A1	
	(c)	5n+2(1-n)=3 or [allow $n+a=1$ and $5n+2a=3$ for M1]						M1A1	(3)		
	$So p = \frac{1}{3} $ (*)							1	A1 cso		
											(3)
((d)	$P(Y = 2) = \frac{1}{2}$	$\frac{2}{3}$ and P	(Y = 5) =	$\frac{1}{3}$					B1	(1)
	(e)	P(S = 30) = 3	P(X = 6	and $Y =$	5)					M1	(1)
					$= \frac{1}{4} \times$	$\frac{1}{3} = \frac{1}{12}$				Alcso	
		F. 7	4	6	10	15	25	(20)			(2)
	(f)		2	0 16	6	8	1	(30)		M1A1A	.1
		[P(S = s)]	$\frac{\overline{36}}{36}$	$\frac{\overline{36}}{\overline{36}}$	$\frac{\overline{36}}{36}$	$\overline{36}$	$\frac{1}{36}$	$\left(\frac{1}{36}\right)$		241	(3)
	(g)	$E(3) = \frac{1}{36} [4 \times$	<2+0×1	0+12×0	+13×8+	F23×1+;	00×3] − 11⊒	$\frac{5}{10}$ or $\frac{1}{10}$	$\frac{37}{11}$ or 11 416		
							- II ₁	2 01 1	2 01 11.410	AI	(2)
((h)	$E(X^2) = 15 a$	and $E(S)$	= 11.410	5 or	$E(X^{2}) >$	E(S)		1	B1ft	
		so <u>Charlotte</u> has the higher total score							dBlft	(2)	
										[18]	
	(a)	NotesM1for a fully correct expression (allow missing 0 term). Correct ans only is 2/2									
	(b)	1 st M1 for a	fully co	rrect exp	ression (allow mi	ssing 0 te	erm) for E	$E(X^2)$. Allow	Var(X) la	bel
	()	2^{nd} M1 for t	heir $\tilde{E}(X)$	$^{2}) - their$	$E(X)^2$		0	,	~ /		
	(c)	1 st M1 for a	ttemptin	g a linea	r eq'n in	p(or x etc)	c). Must	see = 3 an	d have 2 terms i	in <i>p</i> , 1 corr	rect
		1^{st}A1 for a 2^{nd}A1 for a	a fully co	rrect equ	ation for	<i>p</i> <u>or</u> for	solving t	their equations	s leading to con	rrect eqn	in p
	(d)	B1 for c	$p - \frac{1}{3}$ worrect va	lues for l	P(Y=2)	and $P(Y =$	= 5). Nee	dn't be in	ı. 1 formal table l	out labelle	ed.
	(a)	M1 for 6x4	5 – 20. or	D(20) = 1	$\mathbf{D}(6,5)$	• D(20) -	$\mathbf{D}(\boldsymbol{\epsilon}) \sim \mathbf{D}(\boldsymbol{\epsilon})$) or S -(VV -) 6×5 or)	$V = 6$ and \tilde{c}	V _ 5
	(e)	Alcso dep d	$o = 50 \frac{\text{or}}{\text{sc}}$	P(30) = 1	with no	r P(30) = incorrect	working	$\frac{\text{or}}{\text{seen e.g.}} = (1)$	$30 = \frac{1}{2} \times \frac{1}{4}$ is a	A = 0 and $A = 0$	r = 5
	(8)								5 4		20
	(f)	1 st M1 for a 1 st A1 for 6	on attemp	t at prob	$2^{nd} A1 f$	tion with for a fully	at least 3	3 correct prob. dist	(s and P(S = s)) ribution include	$\int Exc' s = 3$ ling $s = 3$	30 0
	(σ)	M1 for atte	mnting F(S) using	their valu	es Must	see 3 n	roducts (c	correct ft) decim	als to 3sf	
	5/	A1 for $11\frac{4}{1}$	$\frac{5}{2}$ <u>Or</u> $\frac{137}{12}$	\circ or any	exact equ	uivalent.	(Correct a	ans. only	2/2, awrt 11.4	only M1	A0)
	(b .)	1 st B1 for co	rroot corr	noricon c	f their E	() and E(V^{2}) loball	nd in (h) -	r(h)[ovnession	ne on vol-	a l
	(11)	$2^{nd} d B1 dep$	pendent o	parison of on a corre	ect comp	arison of	their valu	ues for ch	ioosing correct	t player.	-8]

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom