Paper Reference (complete below) Centre No. Surname	Initia	al(s)
6663/01 Candidate No. Signature		
Paper Reference(s)	Examiner's us	se only
6663		
Edexcel GCE	Team Leader's	use only
Core Mathematics C1		
Advanced Subsidiary	Question Number	
Mock Paper	1	
	2	
Time: 1 hour 30 minutes	3	
	4	
	5	
	6	
Materials required for examination	7	
Mathematical Formulae Nil	8	
	9	
Calculators may NOT be used in this examination.	10	
Instructions to Candidates		
In the boxes above, write your centre number, candidate number, your surname, initials and		
signature. You must write your answer for each question in the space following the question. If you need more space to complete your answer to any question, use additional answer sheets.	1.	
Information for Candidates		
A booklet 'Mathematical Formulae and Statistical Tables' is provided.		
Full marks may be obtained for answers to ALL questions.		

Advice to Candidates

This paper has ten questions.

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

Turn over

Total

Find $\int \left(x^2 - \frac{1}{x^2} + \sqrt[3]{x}\right) dx.$		bla
$\int_{0}^{\infty} \left(x - \frac{x^2}{x^2} + \sqrt{x}\right) dx$	(4)	

4.	A sequence $a_1, a_2, a_3,$ is defined by	
	$a_1 = k$, $a_{n+1} = 4a_n - 7$,	
	where k is a constant.	
	(a) Write down an expression for a_2 in terms of k .	(1)
	(b) Find a_3 in terms of k , simplifying your answer.	(2)
	Given that $a_3 = 13$,	
	(c) find the value of k .	(2)
		_
		_
		_
		_
		_

Leave
blank

5.	(a)	Show that eliminating <i>y</i> from the equations	
		2x + y = 8,	
		$3x^2 + xy = 1$	
		produces the equation	
		$x^2 + 8x - 1 = 0.$	(2)
	(b)	Hence solve the simultaneous equations	
		2x + y = 8,	
		$3x^2 + xy = 1$	
		giving your answers in the form $a + b\sqrt{17}$, where a and b are integers.	(5)

		Leave
		blank
5.	continued	
		1

6.

$$f(x) = \frac{(2x+1)(x+4)}{\sqrt{x}}, \quad x > 0.$$

(a) Show that f(x) can be written in the form $Px^{\frac{3}{2}} + Qx^{\frac{1}{2}} + Rx^{-\frac{1}{2}}$, stating the values of the constants P, Q and R.

(3)

(b) Find f'(x).

(3)

(c) Show that the tangent to the curve with equation y = f(x) at the point where x = 1 is parallel to the line with equation 2y = 11x + 3.

parametric the fine with equation $2y = 11x + 3$.	(3)

~-	ontinued	
—	ontinued	
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		

Leave
blank

7.	(a)	Factorise completely $x^3 - 4x$. (3)
	(b)	Sketch the curve with equation $y = x^3 - 4x$, showing the coordinates of the points where
		the curve crosses the x -axis. (3)
	(c)	On a separate diagram, sketch the curve with equation
		$y = (x-1)^3 - 4(x-1),$
		showing the coordinates of the points where the curve crosses the x -axis. (3)

		Leave blank
7.	continued	

		Leave blank
8.	The straight line l_1 has equation $y = 3x - 6$.	Oldlik
	The straight line l_2 is perpendicular to l_1 and passes through the point $(6, 2)$.	
	(a) Find an equation for l_2 in the form $y = mx + c$, where m and c are constants. (3)	
	The lines l_1 and l_2 intersect at the point C .	
	(b) Use algebra to find the coordinates of <i>C</i> . (3)	
	The lines l_1 and l_2 cross the x-axis at the points A and B respectively.	
	(c) Calculate the exact area of triangle <i>ABC</i> . (4)	

- **9.** An arithmetic series has first term a and common difference d.
 - (a) Prove that the sum of the first n terms of the series is

$$\frac{1}{2}n[2a+(n-1)d].$$

(4)

A polygon has 16 sides. The lengths of the sides of the polygon, starting with the shortest side, form an arithmetic sequence with common difference d cm.

The longest side of the polygon has length 6 cm and the perimeter of the polygon is 72 cm.

Find

(b) the length of the	ne shortest side of the polygon,	(5)
(a) the value of d		
(c) the value of d .		(2)

	continued		

10. For the curve *C* with equation y = f(x),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 + 2x - 7.$$

(a) Find $\frac{d^2y}{dx^2}$.

(2)

(b) Show that $\frac{d^2y}{dx^2} \ge 2$ for all values of x.

(1)

Given that the point P(2, 4) lies on C,

(c) find y in terms of x,

(5)

(d) find an equation for the normal to C at P in the form ax + by + c = 0, where a, b and c are integers.

(5)

continued	

