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1.  Express  
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as a single fraction in its simplest form. 
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2.  The function f is defined by 

 
f :  x   2x,    x ∈ ℝ. 

 
(a) Find f –1(x) and state the domain of f –1

(2) 
. 

 
The function g is defined by  
 

g :  x   3x2 

 
+ 2,     x ∈ ℝ. 

(b) Find gf –1

(2) 
(x). 

(c) State the range of gf –1

(1) 
(x). 
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3.  Find the exact solutions of 
 
(i) e2x + 3 

(3) 
= 6, 

 
(ii) ln (3x + 2) = 4. 

(3) 
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4.  Differentiate with respect to x 

 
(i) x3 e3x

(3) 
, 

(ii) 
x

x
cos
2 , 

(3) 

(iii) tan2

(2) 
 x. 

 
Given that x = cos y2

 
, 

(iv) find 
x
y

d
d  in terms of y. 

(4) 
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5.  (a) Using the formulae 

 
sin (A±  B) = sin A cos B ± cos A sin B, 

cos (A ±  B) = cos A cos B  sin A sin B, 
 
 show that 
 
 (i) sin (A + B) – sin (A – B) = 2 cos A sin B, 

(2) 
 
 (ii) cos (A – B) – cos ( A + B) = 2 sin A sin B. 

(2) 
 

(b) Use the above results to show that  
 

)cos()cos(
)sin()sin(

BABA
BABA

+−−
−−+  = cot A. 

(3) 
 
Using the result of part (b) and the exact values of sin 60° and cos 60°, 
 
(c) find an exact value for cot 75° 

(4) 
in its simplest form. 
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5.  continued   
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6.  Figure 1 

                                                         y 
 
 
 
 
 
 
 
 
  –2  –1  O           1  2  3          x 

                                     (–0.5, –2) 
                                                                (0.4, –4) 
 
 
 
 

 
Figure1 shows a sketch of part of the curve with equation y = f(x), x ∈ ℝ. 
 
The curve has a minimum point at (−0.5, −2) and a maximum point at (0.4, −4). The lines 
x = 1, the x-axis and the y-axis are asymptotes of the curve, as shown in Fig. 1. 
 
On a separate diagram sketch the graphs of  
 
(a) y = f(x), 

(4) 

(b) y = f(x – 3), 
(4) 

(c) y = f(x). 
(4) 

 
In each case show clearly  
 
(i) the coordinates of any points at which the curve has a maximum or minimum point, 

(ii) how the curve approaches the asymptotes of the curve. 
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6.  continued   
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7.  (a) Sketch the curve with equation y = ln x. 

(2) 
 

(b) Show that the tangent to the curve with equation y = ln x at the point (e, 1) passes through 
the origin. 

(3) 
 
(c) Use your sketch to explain why the line y = mx cuts the curve y = ln x between x = 1 and  

x = e if 0 < m < 
e
1 . 

(2) 
 

Taking x0 = 1.86 and using the iteration xn + 1
nx

3
1

e = , 
 
(d) calculate x1, x2, x3, x4 and x5 , giving your answer to x5

(3) 
 to 3 decimal places. 

 
The root of ln x – 3

1 x = 0 is α.  
 
(e) By considering the change of sign of ln x − 3

1 x over a suitable interval, show that your 
answer for x5

(3) 
 is an accurate estimate of α, correct to 3 decimal places. 
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7.  continued   
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8.  In a particular circuit the current, I amperes, is given by  

 
I = 4 sin θ – 3 cos θ , θ > 0, 

 
where θ is an angle related to the voltage. 
 
Given that I = R sin (θ − α), where R > 0 and 0 ≤ α < 360°, 

 
(a) find the value of R, and the value of α to 1 decimal place. 

(4) 
 
(b) Hence solve the equation 4 sin θ – 3 cos θ = 3 to find the values of θ between 0 and 360°. 

(5) 
 
(c) Write down the greatest value for I.  

(1) 

(d) Find the value of θ between 0 and 360° at which the greatest value of I occurs. 
(2) 
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8.  continued   
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