Name	 Class	
	_ Date	

Materials

For this paper you must have:

- The booklet of formulae and statistical tables
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Answer **all** questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily have to use all the space provided.

Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
Total	

Answer ALL questions. Write your answer in the spaces provided.	
Find the equation of the line perpendicular to $2x - y = 4$ which passes through the point (4, 7)	[3
Fully describe the transformation that many the sum with equation $y = y^2 - 2$ and	
Fully describe the transformation that maps the curve with equation $y = x^2 - 3$ onto the curve with equation $y = 2x^2 - 6$	[3
	[3
	[3
	[3
	[3
	[3

Given that 2	$x^{x} = 8^{3x-1}$, work out the value of x	[3 marl
write $\log x$	$+\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 mar
	$+\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 mar
	$+\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 mar
	$+\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 mar]
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	[3 mar]
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	[3 marl
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	[3 marl
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	[3 mar]
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	[3 marl
	+ $\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 mar]
	+ $\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 mar]
	+ $\log x^2 - \log \sqrt{x}$ as a single logarithm in terms of $\log x$	[3 marl
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	
	+ log x^2 – log \sqrt{x} as a single logarithm in terms of log x	

Given that angle <i>PRQ</i> is	s 90°, find the value of k and the area of the disc.	[5 m
	Turn over for the next question	

The curve <i>C</i> has equation $y = x^2 - 3x + 2$ Find the equation of the tangent to <i>C</i> at $x = 2$	[5 marks]
Find the equation of the tangent to C at $x = 2$	[5 marks]
Turn over for the next question	

Solve the equation

6

 $\sin^2 x - 3\cos x + 2 = 0$

Give **all** solutions in degrees, correct to 1 decimal place, in the interval $0 \le x \le 360^{\circ}$ Fully justify your answer. [6 marks]

Turn over for the next question

	Find the first four terms of the binomial expansion of $(1 + 2x)^8$ in ascending powers of Give each term in its simplest form.	[4 marks
b	Hence calculate an approximate value for 1.02^8	[2 mark
b	Hence calculate an approximate value for 1.02 ⁸	[2 mark
b	Hence calculate an approximate value for 1.02 ⁸	[2 mark
b	Hence calculate an approximate value for 1.02 ⁸	[2 mark
b	Hence calculate an approximate value for 1.02 ⁸	[2 mark
b	Hence calculate an approximate value for 1.02 ⁸	[2 marks
b	Hence calculate an approximate value for 1.02 ⁸	[2 mark
b	Hence calculate an approximate value for 1.02 ⁸	[2 marks

8	Point <i>A</i> has position vector $6\mathbf{i} + 5\mathbf{j}$. Point <i>B</i> has position vector $p\mathbf{i} + q\mathbf{j}$	
a	Given that vector $\overrightarrow{AB} = 14\mathbf{i} - 7\mathbf{j}$, find the values of p and q	[2 marks]
b	Work out the magnitude and direction of \overrightarrow{AB}	[4 marks]

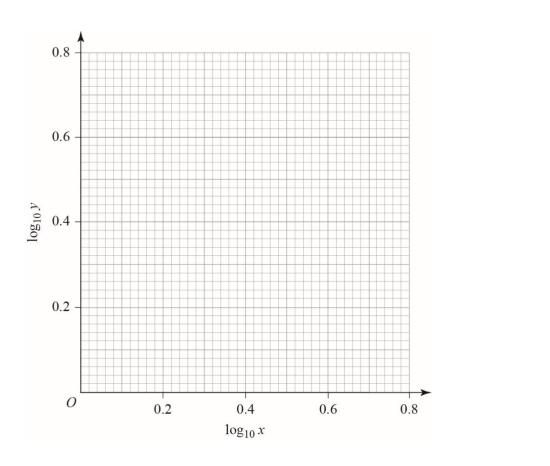
rove that $\frac{1 - \cos \theta}{\sin \theta} \equiv \frac{\sin \theta}{1 + \cos \theta}$	[4 m
Determine the range of values of k for the equation $x^2 = 4kx + 2k = 0$ to have two	
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 m
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n
Determine the range of values of k for the equation $x^2 - 4kx + 2k = 0$ to have two distinct real roots.	[4 n

11	a	Sketch, in the interval $-180^\circ \le x \le 180^\circ$, the graph of $f(x) = 0.5 + \sin x$	
		Show clearly the coordinates of the maximum and minimum points, and the points who graph crosses the axes.	ere the [2 marks]
	b	Hence state, with a reason, the number of solutions of the equation $0.5 + \sin x = 1$ in	
		the interval $-180^\circ \le x \le 180^\circ$.	[2 marks]
		Turn over for the next question	
		· · · · · · · · · · · · · · · ·	

Show that ((x-1) is a factor of	f(x) and find th	e other two roo	ts of the equation	n f(x) = 0
	<i>i i</i>) is a factor of			is of the equation	[5 m
Sketch the c	urve $y = f(x)$, show	wing clearly the	points where the	ne curve cuts the	axes. [2 m

e turning points on the curve $y = f(x)$ can be written in the fo integers to be found and <i>b</i> is the smallest possible integer.
[5 ma

Turn over for the next question


13 a	The derivative, $f'(x)$, of a function $f(x)$ is given by	
	$f'(x) = x^{\frac{1}{2}} - 3x^2 + 1, \ x \ge 0$	
	Find the function $f(x)$	[4 marks]
b	Given that the points $(1, 2)$ and $(4, q)$ lie on the curve $y = f(x)$, work out the value of q	[4 marks]

14 An engineer conducts a test and records the following data for two variables, x and y

x	1	2	3	4	5
у	3	3.346	3.737	3.959	4.139
$\log_{10} x$					
$\log_{10} y$					

The engineer deduces that the relationship between *x* and *y* can be modelled by an equation of the form $y = ax^b$

a By plotting values of $\log_{10} y$ against $\log_{10} x$, state, with a reason, which value of y is likely to have been recorded incorrectly. [3 marks]

b	Draw an appropriate straight line on your graph in part a to find the values of <i>a</i> and <i>b</i> , giving your answers to two significant figures. Hence express <i>y</i> in terms of <i>x</i>	[4 marks]

Turn over for the next question

15	A botanical garden is modelled as a quadrilateral ABCD shown be	low.	
	$A \xrightarrow{D} \\ \alpha \xrightarrow{C} \\ B$	Diagram not to scale	
	Angle $ADC = 80^{\circ}$ AD = 125 m, $BC = 110$ m and $CD = 158$ m. Angle $BAC = 31^{\circ}$		
	Find, correct to the nearest square metre, the area of the garden.	[8 marks]

[5 ma	arks
Turn over for the next question	

Given th	hat <i>n</i> is an odd number, prove that $n^2 + n$ is even.	[3 marks]
Philome shown b	na is solving a mathematics problem set by her teacher. Her working is elow:	
Find all	the solutions to the equation $x^2 - 3x = 0$	
Solution	: Add 3x to both sides: $x^2 = 3x$	
	Cancel x from both sides: $x = 3$	
	na has made a mistake and has not found all of the solutions. Identify her and find all the solutions to the equation.	[2 marks]

19	Prove that the function $f(x) = 2-5x+2x^2-x^3$ is a decreasing function.	
		[6 marks]
	End of questions	