Q	Answer	Mark	Comments
1	Gradient = $-\frac{1}{2}$	B1	
	$y-7 = -\frac{1}{2}(x-4)$	M1	Substituting "their" value for the gradient into the equation $y - y_1 = m(x - x_1)$
	$y = -\frac{1}{2}x + 9$	A1	Equation correct, in this or equivalent form
2	Stretch;	B1	
	Parallel to y-axis;	B1	Accept 'vertical stretch'
	Scale factor 2	B1	
3 a	$2^{x} = (2^{3})^{3x-1}$	B1	
	x = 3(3x - 1)	M1	Attempt at an equation in <i>x</i> using index laws or taking logs on both sides
	$x = \frac{3}{8}$	A1	laws of taking logs on both sides
b	$\log\left(\frac{x \times x^2}{\frac{1}{x^2}}\right) \text{ or } \log x + 2\log x - \frac{1}{2}\log x$	M1	Apply either $\log a + \log b - \log c = \log\left(\frac{ab}{c}\right)$ or
	$\log\left(x^{\frac{5}{2}}\right)$ or $\frac{5}{2}\log x$	M1	$\log a^k = k \log a$ for each term Use laws of indices or Collect up like terms (this scores both M1 & A1 marks)
	$\frac{5}{2}\log x$	A1	Apply $\log a^k = k \log a$ and express as single logarithm in $\log x$

4	$C_{radiant} D_{R} \times C_{radiant} O_{R} = 1$	M1	
4	Gradient $PR \times$ Gradient $QR = -1$	M1	Use of $m_1 \times m_2 = -1$ for perpendicular lines
	$\frac{4}{8} \times \frac{3-k}{2} = -1 \Longrightarrow k = 7$	A1	
	PQ is the diameter of the circle, since angle subtended at circumference is 90°		
	Centre of circle is at midpoint of <i>PQ</i> : (2, 3)	B1	Correct deduction; leading to correct method to find radius
	$r^2 = (5-2)^2 + (7-3)^2$		
	<i>r</i> = 5	M1	Correctly calculating the radius
	Area of circle: $\pi r^2 = 25\pi$	A1	Accept decimal form
5	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 3$	M1 A1	Attempt at differentiating equation of <i>C</i> Correct expression obtained for derivative
	At $x=2$, $m=2(2)-3=1$	M1	Use of derivative to find gradient of tangent at $x = 2$
	y = 0 at $x = 2$	B1	Evaluate y at $x = 2$
	y = x - 2	A1	
6	$\left(1-\cos^2 x\right)-3\cos x+2=0$	M1	Use of identity
	$\cos^2 x + 3\cos x - 3 = 0$	A1	Three term quadratic in $\cos x$
	$\cos x = \frac{-3 \pm \sqrt{3^2 - 4(1)(-3)}}{2} = \frac{-3 \pm \sqrt{21}}{2}$	M1 A1	
	$\cos x = 0.7913$ or -3.7913 (reject)	A1	
	$x = 37.7^{\circ} \text{ or } 322.3^{\circ}$	A1	
7 a	$\frac{1^{8} + {}^{8}C_{1}(1)^{7}(2x)^{1} + {}^{8}C_{2}(1)^{6}(2x)^{2} + {}^{8}C_{3}(1)^{5}(2x)^{3}$	M1	Uses binomial theorem to expand bracket
	$1 + 16x + 112x^2 + 448x^3$	A1 A1	1 + 16x Completely correct
b	$1 + 16(0.01) + 112(0.01)^2 + 448(0.01)^3$	B1 M1	Selects $x = 0.01$ Substitute "their" chosen value of x into a
	1.171648	A1	
L		***	

8 a	p - 6 = 14 so $p = 20$	B1	
	q - 5 = -7 so $q = -2$	B1	
b	$ AB = \sqrt{14^2 + (-7)^2} = \sqrt{245}$	M1 A1	
	$\theta = \tan^{-1}\left(-\frac{7}{14}\right) = -26.6^{\circ}$	M1 A1	
9	$\frac{1 - \cos\theta}{\sin\theta} \times \frac{1 + \cos\theta}{1 + \cos\theta}$	M1 Attempt at product	
	$\equiv \frac{1 - \cos^2 \theta}{\sin \theta (1 + \cos \theta)}$		
	$\equiv \frac{\sin^2\theta}{\sin\theta(1+\cos\theta)}$	M1 Use of $\sin^2 \theta = 1 - \cos^2 \theta$	
	$\equiv \frac{\sin \theta}{2}$	A1	
	$\equiv \frac{1}{1 + \cos \theta}$	R1 A completely correct argument which is clear and easy to follow	
	Alternatively:	clear and easy to follow	
	$\frac{1 - \cos\theta}{\sin\theta} \times \frac{\sin\theta}{\sin\theta}$	M1 Attempt at product	
		M1 Attempt at product	
	$\equiv \frac{(1 - \cos \theta) \sin \theta}{\sin^2 \theta}$		
	$\sin^2\theta$	M1 Use $f : {}^{2} 0 = 1 = {}^{2} 0$	
	$\equiv \frac{(1 - \cos\theta)\sin\theta}{(1 - \cos^2\theta)}$	M1 Use of $\sin^2 \theta = 1 - \cos^2 \theta$	
	$\equiv \frac{(1 - \cos \theta) \sin \theta}{(1 - \cos \theta)(1 + \cos \theta)}$		
	$(1-\cos\theta)(1+\cos\theta)$		
	$\equiv \frac{\sin \theta}{1 + 1 + 1}$	A1	
	$1 + \cos \theta$	R1 A completely correct argument which is clear and easy to follow	
10	$(-4k)^2 - 4(1)(2k) > 0$ $16k^2 - 8k > 0$	M1 States that discriminant > 0 for real and distinct roots	
	8k(2k-1) > 0	M1 Attempt to solve	
	$k = 0$ or $\frac{1}{2}$	A1 Critical values stated	
	$k < 0, k > \frac{1}{2}$	A1 Correct regions identified (both required)	
		Accept $k < 0$ or $k > \frac{1}{2}$ but not 'and'	

11 a	: ¹	B1	Correct shape of graph
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Coordinates of max/min points and axes interceptions all marked correctly
b	two solutions the graph of $y = 0.5 + \sin x$ cuts the line $y = 1$ twice when $-180^\circ \le x \le 180^\circ$	B1 B1	Explanation
12 a	f(1) = 1 - 2 - 5 + 6 = 0	M1 A1 (OR	Use of Factor Theorem with $x=1$ Expression evaluated to show $f(1)=0$ M1 A1 Long division and explanation that no remainder $\Rightarrow (x-1)$ is a factor)
	$\frac{x^2 - x - 6}{(x - 1)\sqrt{x^3 - 2x^2 - 5x + 6}}$ f (x) = (x-1)(x ² - x - 6) f (x) = (x-1)(x-3)(x+2) x = 3 or x = -2	M1	Long division or inspection or comparing coefficients or further application of the factor theorem
	$f(x) = (x-1)(x^2 - x - 6)$	M1	Express as product of linear factor and three-term quadratic
	f(x) = (x-1)(x-3)(x+2)	A1	Correct factors
	x = 3 or x = -2		
b	$ \begin{array}{c} $	B1 B1	Correct shape of graph Co-ordinates of axes intersections marked
с	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 5$	M1	Use of $\frac{dy}{dx}$ with one of these terms correct
		A1	All correct and nothing extra
	$3x^2 - 4x - 5 = 0$	M1	Equating "their" $\frac{dy}{dx}$ to 0
	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-5)}}{3(2)} = \frac{4 \pm \sqrt{76}}{6}$	M1	Use of quadratic formula or completing

			the square
	$x = \frac{2 \pm \sqrt{19}}{3}$	A1	· · · · · · · · · · ·
	J		
13 a	$f(x) = \int f'(x) dx = \int x^{\frac{1}{2}} - 3x^{2} + 1 dx$	M1	Attempt at integrating $f'(x)$
	$f(x) = \int f'(x) dx = \int x^{\frac{1}{2}} - 3x^{2} + 1 dx$ $f(x) = \frac{2}{3}x^{\frac{3}{2}} - x^{3} + x + c$	A1 A1 B1	Two terms correct All three terms correct Inclusion of $+ c$
b	$2 = \frac{2}{3} \times 1^{\frac{2}{3}} - 1^{3} + 1 + c$	M1	Correct substitution of $(1, 2)$
	$2 = \frac{2}{3} \times 1^{\frac{2}{3}} - 1^{3} + 1 + c$ $c = \frac{4}{3}$	A1	
	$q = \frac{2}{3} \times 4^{\frac{3}{2}} - 4^{3} + 4 + \frac{4}{3} = -53\frac{1}{3}$	M1 A1	
14 a	0.8 A 0.6 - x x x x	M1	Points plotted correctly
	$\begin{array}{c} 0.2 \\ 0.2 \\ 0 \\ 0 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.8 \\ 0.6 \\ 0.8 \end{array}$		
	3.346	A1	
	(log 2, log 3.346) doesn't follow a straight line relationship with the other points	B1	Explanation of why 3.346 is incorrect
b	$\log y = \log a + b \log x$	M1	Use of correct log relationship
	$\log a = 0.48$ so $a = 3.0$ (2 s.f.)	A1	
	$b = \frac{\log 4.139 - \log 3}{\log 5 - \log 1} = 0.20 (2 \text{ s.f.})$	M1	Calculation of gradient. Accept ± 0.01
	$y = 3.0 \times x^{0.20}$	A1	<i>a</i> and <i>b</i> given to 2 s.f. Award mark for correct follow thro of acceptable gradient value calculated above

15	$AC^{2} = 125^{2} + 158^{2} - 2 \times 125 \times 158 \times \cos 80^{\circ}$ AC = 183.66 m	M1 A1	Use of cosine rule with correct lengths
	$\frac{\sin 31^{\circ}}{110} = \frac{\sin CBA}{("\text{their" AC})}$	M1	Use of sine rule to find <i>CBA</i>
	Angle $CBA = 59.3^{\circ}$	A1	
	Angle $BCA = 180 - 31 - 59.3 = 89.7^{\circ}$	A1	
	Area = $\frac{1}{2}AD \times DC \times \sin ADC$	M1	Use of Area = $\frac{1}{2}ab\sin C$ for both triangles
	$+\frac{1}{2}AC \times BC \times \sin BCA$		
	$=\frac{1}{2}\times125\times158\times\sin 80^{\circ}$	M1	Correct substitution
	$+\frac{1}{2}$ × ("their" AC) × 110 × sin("their"BCA)		
	$=9725+10\ 101$		
	$=19\ 826\ m^2$	A1	
16	$\frac{1}{2} \times 5 \times 9 \times \sin \alpha = 10$	M1	Uses Area = $\frac{1}{2}ab\sin C$ for half of kite
	$\sin \alpha = \frac{4}{9}$	A1	Finds value of $\sin \alpha$
	For acute α , $\sin \alpha = \frac{4}{9} \Rightarrow \cos \alpha = \frac{\sqrt{65}}{9}$	M1	Attempt to find $\cos \alpha$
	But, since α is the largest interior angle in the kite, it must be obtuse.	R1	Logical reasoning explained to deduce that α is obtuse
	Therefore $\cos \alpha = -\frac{\sqrt{65}}{9}$	R1	Conclusion with reference to obtuse α
17	If <i>n</i> is odd, it is of the form $n = 2m+1$	B1	Correct form for <i>n</i>
	$n^{2} + n = (2m+1)^{2} + (2m+1)$	M1	Attempt to expand using "their" <i>n</i> . At least
	$=4m^2+6m+2$		two terms correct.
	$= 2\left(2m^2 + 3m + 1\right)$		
	which is a multiple of two and hence $n^2 + n$ is even.	R1	Full reasoning must be given
L		1	

18	Philomena has cancelled through by x. She cannot do this as x may take the value 0. Instead, she should factorise x. x(x-3)=0 so $x=0$ or $x=3$	R1 B1	
19	$f'(x) < 0$ for all values of $x \Rightarrow f(x)$ is a decreasing function	R1	Condition for decreasing stated
	$f'(x) = -5 + 4x - 3x^2$	M1	Finds $f'(x)$; at least two terms correct
	$f'(x) = -3(x - \frac{2}{3})^2 - 9$	A1	All terms correct
	Since $\left(x - \frac{2}{3}\right)^2 > 0$ for all x, so $f'(x) < 0$ for all x	M1	Method to show $f'(x) < 0$
	Hence, $f(x)$ is a decreasing function	A1	Correctly deduces $f'(x) < 0$
		R1	Complete rigorous proof with no errors