Q		Answer	Mark	Comments
1	a	f(2) = 8 - 36 + 52 - 24 = 0	M1	Substitution (seen or implied) to indicate use of factor theorem
			A1 OR	Must be evaluated
			M1 A1	Long division to show $(x-2)$ is a factor
	b	$\frac{x^2 - 7x + 12}{(x-2) x^3 - 9x^2 + 26x - 24}$	M1	Long division or inspection
		$f(x) = (x-2)(x^2-7x+12)$	M1	Express as product of linear factor and three-term quadratic (with at least 2
		f(x) = (x-2)(x-3)(x-4)	A1	correct terms) Correct factors
2	a i	<i>a</i> = 2	B1	
	a ii	<i>b</i> =16	B1	
	b	$\log_3(2x) = \log_3\left(\frac{6}{x}\right)$	M1	Use rules of log laws to combine RHS
		$2x = \frac{6}{x}$	M1	Forming an equation in x
		$x = \sqrt{3}$	A1	Note: $x = \pm \sqrt{3}$ is <i>not</i> correct since x cannot be negative
3		$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 6x - 4$	M1	Attempt at differentiating equation of
			A1	Correct expression obtained for derivative
		At $x = 1$, $m_{\text{tangent}} = 6 \times 1^2 + 6 \times 1 - 4 = 8$	M1	Use of derivative to find gradient of tangent at $x = 1$
		At $x = 1$, $m_{\text{normal}} = -\frac{1}{m_{\text{tangent}}} = -\frac{1}{8}$	A1	Use of $m_{\text{normal}} \times m_{\text{tangent}} = -1$ for \perp lines
		$y(1) = 2 \times 1^3 + 3 \times 1 - 4 \times 1 - 1 = 0$	B1	Evaluate y at $x = 1$
		$y = -\frac{1}{8}(x-1)$		
		$y = \frac{1}{8} - \frac{1}{8}x$	A1	Or equivalent form of this straight line

4	$f'(x) = 3x^2 - 4x + 3$	A1	Derivative completely correct
	Discriminant $\Rightarrow 16 - 4 \times 3 \times 3 = -20 < 0$	M1	Evaluate $b^2 - 4ac$ and show it is less
	Hence $f'(x) = 0$ has no solutions, and so	-	than zero
	there are no turning points on the graph.	R1	Make a deduction and conclude
		R1	A completely correct argument which is clear and easy to follow
5 a	$1 + 7(-x^2) + 21(-x^2)$	M1	Must have coefficients
	$1 - 7x^2 + 21x^4$	A1	All three terms correct
b	$^{7}C_{5} \times (1)^{2} \times (-1)^{5}$	M1	Including either $^{7}C_{5}$ or 21
	=-21	A1	
6 a	$\frac{1}{\cos^2 \theta} - \tan^2 \theta$ $= \frac{1}{\cos^2 \theta} - \left(\frac{\sin \theta}{\cos \theta}\right)^2$ $= \frac{1 - \sin^2 \theta}{\cos^2 \theta}$ $= \frac{\cos^2 \theta}{\cos^2 \theta}$	M1	Use of $\frac{\sin\theta}{\cos\theta} = \tan\theta$ Use of $\sin^2\theta = 1 - \cos^2\theta$
	$-\cos^2\theta$		Complete group f
	=1	R1	A completely correct argument which is clear and easy to follow
b	$2\cos x = \frac{1}{\cos^2 x} - \tan^2 x = 1$	M1	Use of result from a
	$\cos x = \frac{1}{2}$	M1	
	$x = -60^{\circ}, \ 60^{\circ}$	A1	Both solutions required
7	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	M1	Use of definition of derivative
	$= \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$	M1	Substitute $f(x) = 3x^2$
	$=\lim_{h\to 0}\frac{3x^2+6xh+3h^2-3x^2}{h}$		
	$=\lim_{h\to 0}(6x+3h)$	A1	Simplified expression
	=6x	B1	Let $h \rightarrow 0$ and conclude
		R1	Complete and accurate proof

8 a	$ \mathbf{p} = \sqrt{3^2 + 4^2} = 5$	M1	
	A vector parallel to \mathbf{p} with magnitude 20 is $4\mathbf{p} = 16\mathbf{i} - 12\mathbf{j}$	M1 A1	Recognising required vector is 4 p Correctly calculating 4 p
b	$\hat{\mathbf{p}} = \frac{1}{5}\mathbf{p} = \frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$	M1	Recognising required vector is $\frac{1}{5}$ p
		A1	Correctly calculating $\frac{1}{5}\mathbf{p}$
9	$ AB = \sqrt{3^2 + 1^2} = \sqrt{10}$	M1	Attempt at finding distance between any
	$ BC = \sqrt{1^2 + 5^2} = \sqrt{26}$	A1	Distance between any two points
	$\left AC\right = \sqrt{2^2 + 4^2} = \sqrt{20}$	A1	All three distances between A, B and C correctly calculated
	$\cos ABC = \frac{10 + 26 - 20}{2 \times \sqrt{10} \times \sqrt{26}} = 0.4961$	M1	Use of cosine rule with "their" lengths
	$ABC = 60.3^{\circ}$	A1	
10 a	$f(x) = (x-2)^2 + k - 4$	B1	Seen or implied
	y 1	B1	Correct shape of graph
		B1	y-intercept labelled at $(0, k)$
	(0, <i>k</i>)	B1	Minimum point labelled at $(2, k-4)$
	O $(2, k-4)$ $(2, k-4)$		
b	$x^{2}-4x+k = -2$ $x^{2}-4x+(k+2) = 0$	M1	Equating $f(x) = -2$ and forming three term quadratic in <i>k</i>
	16-4(k+2)>0	M1	Use of $b^2 - 4ac > 0$ for quadratic to have
	<i>k</i> < 2	A1	two distinct solutions

11 a	V = (30 - 2x)(25 - 2x)x	M1	At least two factors correct
	$=4x^3 - 110x^2 + 750x$	A1	
b	$\frac{dV}{dx} = 12x^2 - 220x + 750 = 0 \text{ at max. } V$	M1 A1	Attempt to differentiate V and equate to 0 Expression for $\frac{dV}{dx}$ correct
	$x = \frac{220 \pm \sqrt{220^2 - 4(12)(750)}}{24}$	M1	Use of quadratic formula
	x = 4.5268 or $x = 13.806$	A1	Both solutions found
	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = 24x - 220$	M1	Expression for $\frac{d^2V}{dx^2}$ correct
	$\left. \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right _{x=4.5268} < 0 \implies \max. \text{ at } x = 4.5268$	A1	Determine $x = 4.5268$ is a max.
	V(4.5268) =	M1	Substitution of $x = 4.5268$ into
	(30-2(4.5268))(25-2(4.5268))(4.5268)		expression for V
	$V = 1512 \text{ cm}^3$	A1	Appropriate degree of accuracy
12	$(x+1)^{2} + (y-2)^{2} = 16$	B1	Attempt to write circle as $(x+a)^{2} + (y-b)^{2} = r^{2}$
		B1	Equation of circle correct
	$(x+1)^{2} + (2x-2)^{2} = 16$	M1	Substitute $y = 2x$ into equation for circle
	$5x^2 - 6x + 5 = 16$	M1	Attempt at expansion and simplification
	$5x^2 - 6x - 11 = 0$	A1	Correct three term quadratic
	(x-1)(5x-11)=0	M1	Factorise or formula
	$x = -1 \text{ or } \frac{11}{5}$	A1	Accept decimal equivalent
	$y = -2 \text{ or } \frac{22}{5}$	A1	Accept decimal equivalent
	$ AB = \sqrt{\left(\frac{11}{5} + 1\right)^2 + \left(\frac{22}{5} + 2\right)^2} = 7.16$	M1 A1	

13 a	Gradient = $-\frac{2}{3}$	B1	
b	y - 1 = "their a "(x - 1)	FT1	
	$y = -\frac{2}{3}x + \frac{5}{3}$	M1	Attempt to write equation in the form y = mx + c (where <i>m</i> and <i>c</i> are clear fractions) or $ay = bx + c$ (if already multiplied thro by denominator). <i>m</i> must be correct
	2x + 3y = 5	A1	
с	$x^2 - 4x - 3 = -\frac{2}{3}x + \frac{5}{3}$	M1	Equating y or substituting
	$3x^2 - 10x - 14 = 0$	A1	Forming a correct three term quadratic in this, or equivalent, form
	$x = \frac{10 \pm \sqrt{100 + 168}}{6}$	M1	Use of quadratic formula to solve "their" quadratic
	$x = \frac{5 \pm \sqrt{67}}{3}$	A1	
14 a	$AC^2 = 12^2 + 15^2 - 2 \times 12 \times 15 \times \cos 64^\circ$	M1	Use of cosine rule with correct
	AC = 14.5 m	A1	lenguis/angle substituted
	Area = $\frac{1}{2} \times 12 \times 15 \times \sin 64^{\circ}$	M1	Use of Area = $\frac{1}{2}ab\sin C$ with correct
	Area = 80.9 m^2	A1	lengths/angle substituted
b	Depth = 5 m ³ \div 80.9 m ² = 0.0168 m (to 3 sf)	M1 A1	
15	(2x-1)(x+2)=0	M1	Factorise (or formula) to find limits
	x = 0.5, -2	A1	Correct limits
	$\int_{-2}^{0.5} \left(2x^2 + 3x - 2 \right) \mathrm{d}x$	M1	Attempt to integrate curve (ignore limits)
	$= \left[\frac{2}{3}x^{3} + \frac{3}{2}x^{2} - 2x\right]_{-2}^{0.5}$	A1	Expression integrated correctly (ignore limits)
	$= \left(\frac{2}{3}(0.5)^3 + \frac{3}{2}(0.5)^2 - 2(0.5)\right)$	M1	Attempt to evaluate with "their" limits
	$-\left(\frac{2}{3}(-2)^{3}+\frac{3}{2}(-2)^{2}-2(-2)\right)$		
	$=(-)5.208 \text{ cm}^2$	A1	Correct value, with or without minus sign

$5.208 \times \text{\pounds} 35.50 \times 50 = \text{\pounds} 9244.24$	M1 A1	Correct three terms multiplied together Correct cost obtained (rounding may vary)
Use of factor theorem to find a factor of $n^3 + 6n^2 + 11n + 6$	M1	
Attempt to fully factorise $n^3 + 6n^2 + 11n + 6$	M1	Accept an attempt to write the expression as product of linear factor and three term
(n+1)(n+2)(n+3)	A1	Three correct linear factors
Factors are consecutive numbers for all	A1	Must state consecutive
numbers, one must be a multiple of three, the expression must be divisible by three for all n .	e of three, by three R1 Co pro	Completes rigorous and well-explained proof
	$5.208 \times \pounds 35.50 \times 50 = \pounds 9244.24$ Use of factor theorem to find a factor of $n^3 + 6n^2 + 11n + 6$ Attempt to fully factorise $n^3 + 6n^2 + 11n + 6$ (n+1)(n+2)(n+3) Factors are consecutive numbers for all <i>n</i> . Since in any set of three consecutive numbers, one must be a multiple of three, the expression must be divisible by three for all <i>n</i> .	$5.208 \times \pounds 35.50 \times 50 = \pounds 9244.24$ M1 A1Use of factor theorem to find a factor of $n^3 + 6n^2 + 11n + 6$ M1Attempt to fully factorise $n^3 + 6n^2 + 11n + 6$ M1 $(n+1)(n+2)(n+3)$ A1Factors are consecutive numbers for all n . Since in any set of three consecutive numbers, one must be a multiple of three, the expression must be divisible by three for all n .M1