Q	Answer	Mark	Comments
1 a	$R = \frac{4}{11}$	B1	Basic structure and first level probabilities correct
	$R = \frac{5}{11}$ $Y = \frac{7}{11}$ $Y = \frac{7}{12}$ $R = \frac{5}{11}$ $Y = \frac{6}{11}$	B1	Complete set of correct second level probabilities
b	$\frac{5}{12} \times \frac{7}{11} + \frac{7}{12} \times \frac{5}{11} = \frac{35}{66}$	M1 M1 A1	Any correct multiplication Adding terms Accept unsimplified fraction
с	$\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} + \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} = \frac{9}{44}$	M1 M1 A1	Any correct multiplication Adding terms Accept unsimplified fraction
2 a	$\overline{x} = 18.6 \text{ °C}$ $\sigma = 3.17$	B1 B1	
b	$\bar{x} = \frac{\bar{y}+4}{3} = 22.2$	M1 A1	
	$\sigma_x = \frac{\sigma_y}{3} = 3.50$	M1 A1	
с	The maximum daily temperatures in June 2015 are on average higher than June 1987, but also have a greater spread.	B1	

3	a	Variance $=\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$		
		$\frac{\sum x^2}{5} - \left(\frac{43}{5}\right)^2 = 6.64$ $\sum x^2 = 5\left(6.64 + \left(\frac{43}{5}\right)^2\right) = 403$	M1 substitu A1	Correct expression including ted values Correct solution
	b	$\sigma_y^2 = 10^2 \times \sigma_x^2$ $\sigma_x^2 = \frac{\sigma_y^2}{10^2}$	M1	Correct conversion formula
		$\sigma_x^2 = \frac{458.8}{10^2} = 4.59$ (to 3 sf)	A1	
		The second set of data is less spread out than the first set.	A1	Correct comparison.
4	a	B(20, 0.15)	B1	
	b i	$^{20}C_2(0.15)^2(0.85)^{18} = 0.2293$	M1 A1	
	b ii	$1 - P(X \le 3) = 1 - 0.6477 = 0.3523$	M1 A1	
	c	H ₀ : $p = 0.15$ H ₁ : $p \neq 0.15$	B1	For both
		Assuming $X \sim B(25, 0.15)$ for new	M1	
		sample, $P(X \le 1) = 0.0931$	A1	
		0.0931 > 0.05 (half of 10% sig. level) So accept H ₀	A1	
		There is insufficient evidence at the 10% significance level to suggest the new process has altered the number of flawed jugs.	A1	

5 a	$s = ut + \frac{1}{2}at^2$		
	$30 = 0 + \frac{1}{2} \times 9.81 \times t^2$	M1	Correct equation
	$t = \sqrt{\frac{30}{4.905}} = 2.47$ seconds (to 3 sf)	A1	
b	$v^{2} = u^{2} + 2as$ $v^{2} = 0 + 2 \times 9.81 \times 30$ $v = \sqrt{588.6} = 24.3 \text{ ms}^{-1}$	M1 A1	Or equivalent method
с	Assuming no air resistance or wind OR The stone is modelled as a particle which has no size and doesn't spin	B1	
6	For P: $s = 5 \times 15 + \frac{1}{2} \times 2 \times 15^2$	M1	Use of $s = ut + \frac{1}{2}at^2$ (with $t = 15$ s) to
	s = 300 m	A1	find distance <i>P</i> travels past <i>A</i>
	For Q: $s = 6 \times 13$	M1	Use of $s = vt$ (with $t = 13$ s) to find distance Q travels past A
	s = 78 m	A1	distance & travers past //
	Distance between $P\&Q$ = 300 - 78 = 222 m	A1	
7 a	$v = \int a \mathrm{d}t = \int (2+3t) \mathrm{d}t$	M1	
	$v = 2t + \frac{3}{2}t^2 + c$	A1	
	$2 = 2(0) + \frac{3}{2}(0)^{2} + c \implies c = 2$	M1	Use $v = 2$ at $t = 0$ to calculate c
	$v = 2t + \frac{3}{2}t^2 + 2$	A1	
b	$s = \int_{1}^{5} \left(2t + \frac{3}{2}t^{2} + 2 \right) \mathrm{d}t$	M1	Attempt to integrate with correct limits
	$s = \left[t^{2} + \frac{1}{2}t^{3} + 2t\right]_{1}^{5}$	A1	Expression integrated correctly
	s = 97.5 - 3.5 = 94 m	M1 A1	

8 a	At Q:		
	$7g - T = 7a \tag{1}$	M1	Use of $F = ma$ at P
	At P:		
	$T - 2g = 2a \tag{2}$	M1	Use of $F = ma$ at Q
	$(1) + (2) \implies 5g = 9a$	M1	Solve simultaneous equations by
	$a = \frac{5g}{9} = \frac{50}{9}$ m s ⁻² in the direction of Q	A1	elimination or substitution Must state magnitude and direction
	downwards $T = \frac{280}{9}$ N	A1	Accept $31\frac{1}{9}$ N or 31.1 N
b	Tension is constant throughout the length of the string.	B1	
9	$3-2+a=0 \implies a=-1$	M1	Both <i>a</i> and <i>b</i> required
	$2+4+b=0 \implies b=-6$		
	$F_3 = -\mathbf{i} - 6\mathbf{j}$	A1	
	Magnitude = $\sqrt{1^2 + 6^2} = \sqrt{37}$ N	M1 A1	Accept decimal equivalent (6.08 or better)
	$\tan^{-1}\left(\frac{6}{1}\right) = 80.5^{\circ}$	M1	,
	Direction = -99.5° to i	A1	Direction must be specified relative to i (or j)