

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4723

Core Mathematics 3

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

_				
1	EITH	<i>IER</i> : $4x^2 + 4x + 1 > x^2 - 2x + 1$	M1	For squaring both sides
		i.e. $3x^2 + 6x > 0$	A1	For reduction to correct quadratic
		So $x(x+2) > 0$	M1	For factorising, or equivalent
		Hence $x < -2$ or $x > 0$	A1	For both critical values correct
			A1	For completely correct solution set
	OR:	Critical values where $2x+1=\pm(x-1)$	M1	For considering both cases, or from graphs
		i.e. where $x = -2$ and $x = 0$	B1	For the correct value -2
			A1	For the correct value 0
		Hence $x < -2$ or $x > 0$	M1	For any correct method for solution set using
				two critical values
			A1 5	For completely correct solution set
2	(i)	$\sin x(\frac{1}{2}\sqrt{3}) + \cos x(\frac{1}{2}) + (\sqrt{3})(\cos x(\frac{1}{2}\sqrt{3}) - \sin x(\frac{1}{2}))$	M1	For expanding both compound angles
			$ _{A1}$	For completely correct expansion
			M1	For using exact values of sin 30° and cos 30°
		$=\frac{1}{2}\cos x + \frac{3}{2}\cos x = 2\cos x$, as required	A1 4	For showing given answer correctly
	 (ii)	$\sin 45^{\circ} + (\sqrt{3})\cos 45^{\circ} = 2\cos 15^{\circ}$	M1	For letting $x = 15^{\circ}$ throughout
	(11)			
		Hence $\cos 15^\circ = \frac{1+\sqrt{3}}{2\sqrt{2}}$	A1 2	For any correct exact form
			6	
3	(i)	$x_2 = \sqrt[3]{7} = 1.9129$	B1	For 1.91 seen or implied
		$x_3 = 1.9517$, $x_4 = 1.9346$	M_1	For continuing the correct process
		$\alpha = 1.94$ to 2dp	A1 3	For correct value reached, following x_5 and
				x_6 both 1.94 to 2dp
		3/47 5 \ 3 5 47 0	N 1	
	(11)	$x = \sqrt[3]{(17 - 5x)} \implies x^3 + 5x - 17 = 0$	M1	For letting $x_n = x_{n+1} = x$ (or α)
			A1 2	For correct equation stated
	(iii)	<i>EITHER</i> : Graphs of $y = x^3$ and $y = 17 - 5x$ only		
		cross once	M1	For argument based on sketching a pair of
				graphs, or a sketch of the cubic by calculator
		Hence there is only one real root	A1√	For correct conclusion for a valid reason
		OR: $\frac{d}{dx}(x^3 + 5x - 17) = 3x^2 + 5 > 0$	M1	For consideration of the cubic's gradient
		ux		
		Hence there is only one real root	$\begin{vmatrix} A1 \sqrt{} & 2 \\ \hline 7 \end{vmatrix}$	For correct conclusion for a valid reason
1	(\$)	$\int_{1}^{2} (4x+1)^{-\frac{1}{2}} dx = \left[1(4x+1)^{\frac{1}{2}}\right]^{2} + 1(2x+1) = 1$	M1	For integral of the form $k(4x+1)^{\frac{1}{2}}$
4	(1)	$\int_0^2 (4x+1)^{-\frac{1}{2}} dx = \left[\frac{1}{2} (4x+1)^{\frac{1}{2}} \right]_0^2 = \frac{1}{2} (3-1) = 1$	11/11	
			A1	For correct indefinite integral
			M1	For correct use of limits
			A1 4	For given answer correctly shown
	(ii)	$\pi \int_{0}^{2} \frac{1}{4x+1} \mathrm{d}x = \pi \left[\frac{1}{4} \ln(4x+1) \right]_{0}^{2} = \frac{1}{4} \pi \ln 9$	M1	For integral of the form $k \ln(4x+1)$
		v U 124 1 I	A1	For correct $\frac{1}{2} \ln(4x \pm 1)$ with or without π
				For correct $\frac{1}{4}\ln(4x+1)$, with or without π
			M1 A1 4	Correct use of limits and π For correct (simplified) exact value
			A1 4 8	1 of correct (simplified) exact value
1				

(1	(i)	200 °C	B1	1	For value 200
(i	 ii)	$150 = 200 - 180e^{-0.1t} \Rightarrow e^{-0.1t} = \frac{50}{180}$	M1		For isolating the exponential term
		Hence $-0.1t = \ln \frac{5}{18} \Rightarrow t = 12.8$	M1		For taking logs correctly
			A1	3	For correct value 12.8 (minutes)
(ii	ii)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 18\mathrm{e}^{-0.1t}$	M1		For differentiation attempt
		_	A1		For correct derivative
		Hence rate is $18e^{-0.1 \times 12.8} = 5.0$ °C per minute	M1		For using their value from (ii) in their $\dot{\theta}$
			A1	4	For value 5.0(0)
				8	
j (i	i)	Domain of f^{-1} is $x \ge 1$	B1		For the correct set, in any notation
	(-)	Range is $x \ge 0$	B1	2	Ditto
(i	ii)	If $y = 1 + \sqrt{x}$, then $x = (y - 1)^2$	M1		For changing the subject, or equivalent
		Hence $f^{-1}(x) = (x-1)^2$	A1	2	For correct expression in terms of <i>x</i>
(ii	 ii)	The graphs intersect on the line $y = x$	B1		For stating or using this fact
		Hence x satisfies $x = (x-1)^2$	B1		For either $x = f(x)$ or $x = f^{-1}(x)$
		i.e. $x^2 - 3x + 1 = 0 \Rightarrow x = \frac{3 \pm \sqrt{5}}{2}$	M1		For solving the relevant quadratic equation
		So $x = \frac{1}{2}(3 + \sqrt{5})$ as x must be greater than 1	A1	4	For showing the given answer fully
				8	
' (i	(i)	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	B1	1	For correct RHS stated
		$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$ $\frac{8t}{1 - t^2} + 3 \times \frac{1}{t} \times (1 + t^2) = 0$	B1		For correct RHS stated For $\cot x = \frac{1}{t}$ seen
		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$	B1 B1		For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen
		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$	B1 B1 M1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required	B1 B1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$	B1 B1 M1 A1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$ Hence $t = \pm \sqrt{3}$	B1 B1 M1 A1 M1 A1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$	B1 B1 M1 A1 M1 A1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly For any two correct angles
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$ Hence $t = \pm \sqrt{3}$	B1 B1 M1 A1 M1 A1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$ Hence $t = \pm \sqrt{3}$	B1 B1 M1 A1 M1 A1	4	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly For any two correct angles
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$ Hence $t = \pm \sqrt{3}$	B1 B1 M1 A1 M1 A1	1	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly For any two correct angles
(ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$ Hence $t = \pm \sqrt{3}$	B1 B1 M1 A1 M1 A1	4	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly For any two correct angles
 (ii		$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$ Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$ i.e. $3t^4 - 8t^2 - 3 = 0$, as required $(3t^2 + 1)(t^2 - 3) = 0$ Hence $t = \pm \sqrt{3}$	B1 B1 M1 A1 M1 A1	4	For $\cot x = \frac{1}{t}$ seen For $\sec^2 x = 1 + t^2$ seen For complete substitution in terms of t For showing given equation correctly For factorising or other solution method For $t^2 = 3$ found correctly For any two correct angles

4723 Specimen Paper [Turn over

8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\ln x}{x}$	M1		For relevant attempt at the chain rule
			A1		For correct result, in any form
		$\frac{d^2y}{dx^2} = \frac{x(2/x) - 2\ln x}{x^2} = \frac{2 - 2\ln x}{x^2}$	M1		For relevant attempt at quotient rule
			A1	4	For correct simplified answer
	(ii)	For maximum gradient, $2-2\ln x = 0 \Rightarrow x = e$	M1 A1		For equating second derivative to zero For correct value e
		Hence P is $(e, 1)$	A1√		For stating or using the <i>y</i> -coordinate
		The gradient at <i>P</i> is $\frac{2}{e}$	A1√		For stating or using the gradient at <i>P</i>
		Tangent at P is $y-1=\frac{2}{e}(x-e)$	M1		For forming the equation of the tangent
		Hence, when $x = 0$, $y = -1$ as required	A1	6	For correct verification of $(0, -1)$
				10	
9		$a = \frac{1}{2}\pi$	B1	1	For correct exact value stated
	(ii)	$x = \tan(\frac{1}{4}\pi) = 1$	M1		For use of $x = \tan(\frac{1}{2}a)$
			A1√	2	For correct answer, following their <i>a</i>
	(iii)		B1 B1		For <i>x</i> -translation of (approx) +1 For <i>y</i> -stretch with (approx) factor 2
		Asymptotes are $y = \pm 2a$	B1	3	For correct statement of asymptotes
	(iv)	$x an^{-1} x 2 an^{-1} (x-1)$ 1.535 0.993 0.983 1.545 0.996 0.998	M1	2	For relevant evaluations at 1.535, 1.545
		Hence graphs cross between 1.535 and 1.545	A1		For correct details and explanation
	(v)	Relevant values of $(\tan^{-1} x)^2$ are (approximately)	M1		For the relevant function values seen or
		0, 0.0600, 0.2150, 0.4141, 0.6169			implied; must be radians, not degrees
		$\frac{1}{12}\{0+4(0.0600+0.4141)+2\times0.2150+0.6169\}$	M1	_	For use of correct formula with $h = \frac{1}{4}$
		Hence required approximation is 0.245	A1	3	For correct (2 or 3sf) answer
				4	