

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4736

Decision Mathematics 1

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

This mark scheme consists of 4 printed pages.

1	(i)		В1		For correct graph
		K_5 is Eulerian since every node is even	B1	2	For a correct statement
	(ii)	A path is (e.g.) <i>A</i> – <i>B</i> – <i>C</i>	B1	1	For any correct path
	(iii)	A cycle is (e.g.) A–B–C–A	B1	1	For any correct cycle
				4	
2	(i)	Using Kruskal's algorithm, the arc of least weight is chosen first and so is certainly included The arc of second least weight is chosen next since just two arcs cannot form a cycle	B1 B1 B1	3	For identifying the first choice For identifying the second choice For correct justification
	(ii)	5 4 3	B1 M1 A1 A1	4	For any connected graph with 4 nodes and at least 3 arcs For including a cycle For a network having the required property For making the minimum connector clear
				7	
3	(i)	1st pass: 63 83 2 giving 36 832 2nd pass: 368 32 2 giving 36 832 3rd pass: 368 32 2 giving 36 832 3rd pass: 368 32 2 giving 36 832	B1 B1		For correct result of first pass For correct result of second pass
		4th pass: $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 M1		For correct shuttle process in third pass For correct shuttle process in final pass
		<u>3 2</u> 3 6 8 giving 2 3 3 6 8	A1	5	For shuttle sort completed correctly
	(ii)	The number of operations to be carried out, and thus the time to complete the algorithm, is (approximately) proportional to the square of the number of items to be sorted	M1 A1 A1	3	For idea of dependency on 'size' of problem For number of operations, or time required For square of list size

4	(i)	STEP A B C 1 6 13 0 2 6 13 6 4 12 6 6 4 24 3 6 2 24 3 30 4 48 1 30 2 48 1 78 3 48 1 78 6 Output 78 $\overline{}$ $\overline{}$	B1 M1 M1 A1 A1 5	For assigning value to <i>C</i> in first Step 2 For updating <i>A</i> and <i>B</i> in first Step 4 For continuing algorithm and updating <i>C</i> For correct new value 30 for <i>C</i> For correct output
	(ii)	STEP A B C 1 A 8 0 4 2A 4 0 4 4A 2 0 4 8A 1 0 2 8A 1 8A 3 8A 1 8A 6 Output 8A The output is the product of the inputs	M1 M1 A1 B1 4 9	For values of <i>A</i> doubling For values of <i>B</i> halving For output 8 <i>A</i> For identifying multiplication
5	(i)	A minimum connector on reduced network has arcs <i>CE</i> , <i>ED</i> , <i>BD</i> , <i>AB</i> , giving length 23 km Two shortest arcs from <i>F</i> have weights 7, 8 Hence lower bound is $23+7+8=38$ km	M1 A1 M1 A1 4	For attempt at a relevant minimum connector For correct weight 23 For identifying the two shortest arcs at <i>F</i> For showing given answer correctly
	(ii)	The best upper bound is 47 km The best lower bound is 40 km	B1 B1 2	For the correct answer For the correct answer
	(iii)	Other orders are <i>CED</i> , <i>DCE</i> , <i>DEC</i> , <i>ECD</i> , <i>EDC</i> Shortest is <i>ABDCEFA</i> , of length 42 km	M1 A1 A1 3 9	For calculation of at least one other length For any correct bound less than 47 km For the correct value 42
6	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 A1 B1 B1	For correct use of temporary labels For updating <i>E</i> and <i>D</i> For all permanent labels correct For correct order of assignment stated For correct value 40
		Route is $A-B-C-D$	B1 6	For correct route
	(ii)	The Route Inspection algorithm is used A, B, C and E are odd nodes AB = 16 $AC = 27$ $AE = 37CE = \frac{10}{26} BE = \frac{21}{48} BC = \frac{11}{48}$	B1 B1 M1	For stating or implying the correct algorithm For identifying the odd nodes For pairing odd nodes correctly
		Double up on <i>AB</i> and <i>CE</i> Sum of arcs is 172 Hence shortest time is $172 + 26 = 198$ minutes	M1 M1 A1 6	For selecting appropriate pair for doubling For adding weights on all the arcs For correct value 198
	(iii)	Nearest neighbour algorithm gives $A-B-C-E-D-A$ Hence required path is $A-B-C-E-D$	M1 A1 B1 <u>3</u> 15	1

(i)										
(1)	<i>У</i>									
	10									
	8	\searrow				1				
	_							M1		For lines $x + 4y = 22$ and $x + y = 10$
	6		\times			_		M1		For line $-x + 2y = 8$
	4	\geq	\rightarrow	\leq				A1		For correct diagram including shading
	4			$\overline{\}$	+			B1√		For vertices (0, 0), (0, 4), (10, 0)
	2							B1√		For vertex (2, 5)
								B1√		For vertex (6, 4)
	0	2	4	6	8	$x \rightarrow x$				
	Hence maximum $P = 18$, occurring at (2, 5)						5)	B1		For the correct value 18
								B1	8	For identifying the correct vertex
(ii)	Р	x	v	s	t	и		+		
	1	1	_4	0	0	0	0	B1		For the correct pay-off row
	0	1	4	1	0	0	22	M1		For the use of three slack variables
	0	-1	2	0	0	1	8	A1		For all constraints correct
	Pivot	on 2 in	row 3					M1		For choice of pivot
	1	-1	0	0	0	2	16			
	0	3	0	1	0	-2	6			
	0	$1\frac{1}{2}$	0	0	1	$-\frac{1}{2}$	6	M1		For pivoting correctly
	0	$-\frac{1}{2}$	1	0	0	$\frac{1}{2}$	4	A1√		For correct tableau
	Now pivot on 3 in row 1 $1 0 0 \frac{1}{2} 0 1\frac{1}{2} 18$					11	18	M1	For choice of pivot	
	$\frac{1}{0}$		0	$\frac{1}{3}$	0	$\frac{1\frac{1}{3}}{2}$				
		1		$\frac{1}{3}$		$-\frac{2}{3}$	2			
	0	0	0	$-\frac{1}{2}$	1	$\frac{1}{2}$	3	M1		For pivoting correctly
	0	0	1	$\frac{1}{6}$	0	$\frac{1}{6}$	5	A1		For correct tableau
	Hence	P = 18	3 when	x = 2, y	v = 5			B1√	10	For reading off correctly from final tableau
(iii)	Vertices $(0, 0) \rightarrow (0, 4) \rightarrow (2, 5)$ indicated						l	M1		For indication of starting at the origin
								A1	2	For the correct correspondence indicated
									20	
								1		
								1		
								1		
								1		