## OXFORD CAMBRIDGE AND RSA EXAMINATIONS

## Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

## MATHEMATICS

Core Mathematics 3

## Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Solve the inequality $|2 x+1|>|x-1|$.

2 (i) Prove the identity

$$
\sin \left(x+30^{\circ}\right)+(\sqrt{ } 3) \cos \left(x+30^{\circ}\right) \equiv 2 \cos x
$$

where $x$ is measured in degrees.
(ii) Hence express $\cos 15^{\circ}$ in surd form.

3 The sequence defined by the iterative formula

$$
x_{n+1}=\sqrt[3]{\left(17-5 x_{n}\right)}
$$

with $x_{1}=2$, converges to $\alpha$.
(i) Use the iterative formula to find $\alpha$ correct to 2 decimal places. You should show the result of each iteration.
(ii) Find a cubic equation of the form

$$
x^{3}+c x+d=0
$$

which has $\alpha$ as a root.
(iii) Does this cubic equation have any other real roots? Justify your answer.


The diagram shows the curve

$$
y=\frac{1}{\sqrt{ }(4 x+1)}
$$

The region $R$ (shaded in the diagram) is enclosed by the curve, the axes and the line $x=2$.
(i) Show that the exact area of $R$ is 1 .
(ii) The region $R$ is rotated completely about the $x$-axis. Find the exact volume of the solid formed.

5 At time $t$ minutes after an oven is switched on, its temperature $\theta^{\circ} \mathrm{C}$ is given by

$$
\theta=200-180 \mathrm{e}^{-0.1 t}
$$

(i) State the value which the oven's temperature approaches after a long time.
(ii) Find the time taken for the oven's temperature to reach $150^{\circ} \mathrm{C}$.
(iii) Find the rate at which the temperature is increasing at the instant when the temperature reaches $150^{\circ} \mathrm{C}$.

6 The function f is defined by

$$
\mathrm{f}: x \mapsto 1+\sqrt{ } x \quad \text { for } x \geqslant 0
$$

(i) State the domain and range of the inverse function $\mathrm{f}^{-1}$.
(ii) Find an expression for $\mathrm{f}^{-1}(x)$.
(iii) By considering the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, show that the solution to the equation

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{f}^{-1}(x) \tag{4}
\end{equation*}
$$

is $x=\frac{1}{2}(3+\sqrt{ } 5)$.

7 (i) Write down the formula for $\tan 2 x$ in terms of $\tan x$.
(ii) By letting $\tan x=t$, show that the equation

$$
4 \tan 2 x+3 \cot x \sec ^{2} x=0
$$

becomes

$$
\begin{equation*}
3 t^{4}-8 t^{2}-3=0 \tag{4}
\end{equation*}
$$

(iii) Hence find all the solutions of the equation

$$
\begin{equation*}
4 \tan 2 x+3 \cot x \sec ^{2} x=0 \tag{4}
\end{equation*}
$$

which lie in the interval $0 \leqslant x \leqslant 2 \pi$.


The diagram shows the curve $y=(\ln x)^{2}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) The point $P$ on the curve is the point at which the gradient takes its maximum value. Show that the tangent at $P$ passes through the point $(0,-1)$.


The diagram shows the curve $y=\tan ^{-1} x$ and its asymptotes $y= \pm a$.
(i) State the exact value of $a$.
(ii) Find the value of $x$ for which $\tan ^{-1} x=\frac{1}{2} a$.

The equation of another curve is $y=2 \tan ^{-1}(x-1)$.
(iii) Sketch this curve on a copy of the diagram, and state the equations of its asymptotes in terms of $a$.
(iv) Verify by calculation that the value of $x$ at the point of intersection of the two curves is 1.54 , correct to 2 decimal places.

Another curve (which you are not asked to sketch) has equation $y=\left(\tan ^{-1} x\right)^{2}$.
(v) Use Simpson's rule, with 4 strips, to find an approximate value for $\int_{0}^{1}\left(\tan ^{-1} x\right)^{2} \mathrm{~d} x$.

