OCR Maths FP1

Mark Scheme Pack

2005-2013

Mark Scheme 4725
June 2005
Mark Scheme 4725
June 2005

51\qquad
\qquad
\square
\square

1.	$\begin{aligned} & 6 \Sigma r^{2}+2 \Sigma r+\Sigma 1 \\ & 6 \Sigma r^{2}=n(n+1)(2 n+1) \\ & 2 \Sigma r=n(n+1) \\ & \Sigma 1=n \\ & n\left(2 n^{2}+4 n+3\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	Consider the sum of three separate terms Correct formula stated Correct formula stated Correct term seen Correct algebraic processes including factorisation and simplification Obtain given answer correctly
2.	(i) $\mathrm{A}^{2}=\left(\begin{array}{cc}3 & 8 \\ 4 & 11\end{array}\right)$ $\begin{aligned} & \mathbf{4 A}=\left(\begin{array}{ll} 4 & 8 \\ 4 & 12 \end{array}\right) \\ & \mathbf{A}^{2}=\mathbf{A} \mathbf{A}-\mathbf{I} \end{aligned}$ (ii) $\mathbf{A}^{-1}=4 \mathbf{I}-\mathbf{A}$	M1 A1 M1 A1 M1 A1	4 2 6	Attempt to find $\mathrm{A}^{2}, 2$ elements correct All elements correct Use correct matrix 4A Obtain given answer correctly Multiply answer to (i) by \mathbf{A}^{-1} or obtain \mathbf{A}^{-1} or factorise $\mathbf{A}^{2}-4 \mathbf{A}$ Obtain given answer correctly
3.	(i) $22-2 \mathrm{i}$ (ii) $\begin{aligned} & z^{*}=2-3 \mathrm{i} \\ & 5-14 \mathrm{i} \end{aligned}$ (iii) $\frac{4}{17}+\frac{1}{17}$ i	$\begin{array}{\|l\|} \hline \text { B1B1 } \\ \text { B1 } \\ \text { B1B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	2 3 2 7	Correct real and imaginary parts Correct conjugate seen or implied Correct real and imaginary parts Attempt to use w^{*} Obtain correct answer in any form

4.	$x^{2}-y^{2}=21 \text { and } x y=-10$ $\pm(5-2 \mathrm{i})$	M1 A1A1 M1 M1 A1	6	Attempt to equate real and imaginary parts of $(x+i y)^{2}$ and $21-20 \mathrm{i}$ Obtain each result Eliminate to obtain a quadratic in x^{2} or y^{2} Solve to obtain $x=(\pm) 5$ or $y=(\pm) 2$ Obtain correct answers as complex numbers
5.	(i) $\begin{aligned} & \frac{(r+1)^{2}-r(r+2)}{(r+2)(r+1)} \\ & \frac{1}{(r+1)(r+2)} \end{aligned}$ (ii) $\begin{aligned} & \frac{2}{3}-\frac{1}{2}+\frac{3}{4}-\frac{2}{3} \ldots \frac{n+1}{n+2}-\frac{n}{n+1} \\ & \frac{n+1}{n+2}-\frac{1}{2} \end{aligned}$ OR (iii) $\frac{1}{2}$	A1 M1 A1 M1 A1 M2 A1A1 B1 ft	1	Show correct process for subtracting fractions Obtain given answer correctly Express terms as differences using (i) At least first two and last term correct Show or imply that pairs of terms cancel Obtain correct answer in any form State that $\sum_{r=1}^{n} u_{r}=f(n+1)-f(1)$ Each term correct Obtain value from their sum to n terms
6.	(i) Circle Centre (0, 2) Radius 2 Straight line Through origin with positive slope (ii) 0 or $0+0 \mathrm{i}$ and $2+2 \mathrm{i}$	B1 B1 B1 B1 B1 B1ftB1f \mathbf{t}	5 2 7	Sketch(s) showing correct features, each mark independent Obtain intersections as complex numbers
8.	(a) (i) $\alpha+\beta=2 \quad \alpha \beta=4$ (ii) EITHER $\alpha^{2}+\beta^{2}=-4$ OR (iii) $x^{2}+4 x+16=0$	B1B1 M1 A1 M1 A1 B1	2	Values stated Use $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ Obtain given answer correctly Find numeric values of roots, square and add Obtain given answer correctly State or use $\alpha^{2} \beta^{2}=16$

	(b) (i) $p=2$ (ii) $a=44$	M1 A1 M1 A1 M1 A1ft	3 2 2 2 11	Or use substitution $u=x^{2}$ Write down a quadratic equation of correct form or rearrange and square Obtain $x^{2}+4 x+16=0$ Use sum or product of roots to obtain $6 p=12$ Or $6 p^{3}=48$ Obtain $p=2$ Attempt to find $\Sigma \alpha \beta$ numerically or in terms of p or substitute their 2,4 or 6 in equation Obtain $11 p^{2}$
9.	(i) $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ (ii) Shear, e.g. $(0,1)$ transforms to $(3,1)$	B1B1 B1B1	22	Each column correct
				One example or sensible explanation
	(iii) $\mathbf{M}=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$ (iv)	M1 A1 B1	2	Attempt to find DC (not CD) Obtain given answer Explicit check for $n=1$ or $n=2$
	$\begin{aligned} \mathbf{M}^{k}= & \left(\begin{array}{cc} 2^{k} 3\left(2^{k}-1\right) \\ 0 & 1 \end{array}\right) . \\ & \left(\begin{array}{cc} 2^{k+1} 3\left(2^{k+1}-1\right) \\ 0 & 1 \end{array}\right) . \end{aligned}$	M1 M1 A1 A1		Induction hypothesis that result is true for \mathbf{M}^{k} Attempt to multiply $\mathbf{M M}^{\mathrm{k}}$ or vice versa Element $3\left(2^{k+1}-1\right)$ derived correctly All other elements correct
		A1	6 12	Explicit statement of induction conclusion

Mark Scheme 4725
Mark Scheme 4725
January 2006
\qquad

\square

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

元

Mark Total

1.	(i) $2+16 i-i-8 i^{2}$ $10+15 i$ (ii) $\frac{1}{5}(10+15 i)$ or $2+3 i$	M1 A1 M1 A1 A1ft	2	Attempt to multiply correctly Obtain correct answer Multiply numerator \& denominator by conjugate Obtain denominator 5 Their part (i) or $10+15$ i derived again $/ 5$
2.	$\begin{aligned} & 1^{2}=\frac{1}{6} \times 1 \times 2 \times 3 \\ & \frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2} \\ & \frac{1}{6}(n+1)(n+2)\{2(n+1)+1\} \end{aligned}$	B1 M1 DM1 A1 A1		Show result true for $n=1$ or 2 Add next term to given sum formula, any letter OK Attempt to factorise or expand and simplify Correct expression obtained Specific statement of induction conclusion, with no errors seen
3.	(i) $\begin{aligned} & 2\left[\begin{array}{ll} 2 & 1 \\ 1 & 3 \end{array}\right]-1\left[\begin{array}{ll} 1 & 1 \\ 1 & 3 \end{array}\right]+3\left[\begin{array}{ll} 1 & 2 \\ 1 & 1 \end{array}\right] \\ & 2 \times 5-1 \times 2+3 \times-1 \end{aligned}$ (ii)	M1 A1 A1 B1ft	3 1 4	Show correct expansion process, allow sign slips Obtain correct (unsimplified) expression Obtain correct answer State that \mathbf{M} is non-singular as $\operatorname{det} \mathbf{M}$ non-zero, ft their determinant
4.	$\begin{aligned} & u^{2}+4 u+4 \\ & u^{3}+6 u^{2}+12 u+8 \end{aligned}$ $\begin{aligned} & u=\sqrt[3]{5} \\ & x=2+\sqrt[3]{5} \end{aligned}$	B1 M1 A1 A1ft A1ft	5	$u+2$ squared and cubed correctly Substitute these and attempt to simplify Obtain $u^{3}-5=0$ or equivalent Correct solution to their equation Obtain $2+$ their answer [Decimals score $0 / 2$ of final A marks]

\begin{tabular}{|c|c|c|c|c|}
\hline 5. \& $$
\begin{aligned}
& 8 \Sigma r^{3}-6 \Sigma r^{2}+2 \Sigma r \\
& 8 \Sigma r^{3}=2 n^{2}(n+1)^{2} \\
& 6 \Sigma r^{2}=n(n+1)(2 n+1) \\
& 2 \Sigma r=n(n+1) \\
& 2 n^{3}(n+1)
\end{aligned}
$$ \& M1
A1
A1
A1

M1

A1 \& 6 \& | Consider the sum of three separate terms |
| :--- |
| Correct formula stated or used a.e.f. |
| Correct formula stated or used a.e.f. |
| Correct term seen |
| Attempt to factorise or expand and simplify Obtain given answer correctly |

\hline
\end{tabular}

6.	(i) $\frac{1}{2}\left(\begin{array}{cc}8 & -2 \\ -3 & 1\end{array}\right)$
(ii)	

(ii) Either

$$
\frac{1}{2}\left(\begin{array}{cc}
14 & 2 \\
-5 & 0
\end{array}\right)
$$

Or

$$
\begin{aligned}
& \frac{1}{5}\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right) \\
& \mathbf{B}=\mathbf{A}^{-1} \mathbf{C}
\end{aligned}
$$

$$
\mathbf{B}=\frac{1}{5}\left(\begin{array}{ll}
0 & -2 \\
5 & 14
\end{array}\right)
$$

$$
\frac{1}{2}\left(\begin{array}{cc}
14 & 2 \\
-5 & 0
\end{array}\right)
$$

Or

$$
\begin{aligned}
\mathbf{A B} & =\binom{2 a+c 2 b+d}{a+3 c b+3 d} \\
a=0, c & =1, b=-0.4, d=2.8
\end{aligned}
$$

$\frac{1}{2}\left(\begin{array}{cc}14 & 2 \\ -5 & 0\end{array}\right)$

Transpose leading diagonal and negate other diagonal Divide by determinant

State or imply $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
Use this result and obtain $\mathbf{B}^{-1}=\mathbf{C}^{-1} \mathbf{A}$, or equivalent matrix algebra

Matrix multn., two elements correct, for any pair
All elements correct ft their (i)

Find \mathbf{A}^{-1}

Premultiply by \mathbf{A}^{-1} stated or implied
Matrix multn. Two elements correct All elements correct

Correct \mathbf{B}^{-1}

Find $\mathbf{A B}$

Solve one pair of simultaneous equations
Each pair of answers
Correct \mathbf{B}^{-1}

7.	(a) (i) $\sqrt{13}$ (ii) -0.59 (b) $1-2 i$ (c)	B1 M1 A1 A1 M1 A1A1 A1 B1 B1	3 4 4 2 10	Obtain correct answer, decimals OK Using $\tan ^{-1 \mathrm{~b}} / \mathrm{a}$, or equivalent trig allow + or Obtain 0.59 Obtain correct answer Express LHS in Cartesian form \& equate real and imaginary parts Obtain $x=1$ and $y=-2$ Correct answer written as a complex number Sketch of vertical straight line Through (-0.5, 0)
8.	(i) $\begin{aligned} &\binom{0}{0}\binom{2}{0}\binom{2}{-2}\binom{0}{-2} \\ & \text { (ii) Either }\left(\begin{array}{ll} 1 & 0 \\ 0 & -1 \end{array}\right) \\ &\left(\begin{array}{ll} 2 & 0 \\ 0 & 2 \end{array}\right) \\ & \text { Or }\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right) \\ &\left(\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array}\right) \\ & \text { Or }\left(\begin{array}{ll} 2 & 0 \\ 0 & 1 \end{array}\right) \\ &\left(\begin{array}{ll} 1 & 0 \\ 0 & -2 \end{array}\right) \end{aligned}$		9	For correct vertex (2, -2) For all vertices correct For correct diagram Reflection, in x-axis Correct matrix Enlargement, centre O s.f. 2 Correct matrix Reflection, in the y-axis Correct matrix Enlargement, centre O s.f. -2 Correct matrix Stretch, in x-direction s.f. 2 Correct matrix Stretch, in y-direction s.f. -2 Correct matrix

\begin{tabular}{|c|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
(i) \(\frac{r+2-r}{r(r+2)}\)
\[
\frac{2}{r(r+2)}
\] \\
AG \\
(ii)
\[
\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}
\] \\
(iii) (a)
\[
\frac{3}{2}
\] \\
(b)
\[
\frac{1}{n+1}+\frac{1}{n+2}
\]
\end{tabular} \& \& \begin{tabular}{|c}
2 \\
\\
\\
\\
\\
\\
\\
5 \\
1 \\
1 \\
2 \\
10
\end{tabular} \& \begin{tabular}{l}
Show correct process for subtracting fractions \\
Obtain given answer correctly \\
Express terms as differences using (i) \\
Express \(1^{\text {st }} 3\) (or last 3) terms so that cancelling occurs \\
Obtain \(1+\frac{1}{2}\) \\
Obtain \(-\frac{1}{n+2},-\frac{1}{n+1}\) \\
Obtain correct answer in any form \\
Obtain value from their sum to \(n\) terms \\
Using (iii) (a) - (ii) or method of differences again [\(n \rightarrow \infty\) is a method error] \\
Obtain answer in any form
\end{tabular} \\
\hline 10. \& \begin{tabular}{l}
(i)
\[
\alpha+\beta+\gamma=9
\] \\
(ii)
\[
p=\frac{9-\alpha}{2}
\] \\
(iii) \(\alpha \beta \gamma=29\) \\
(iv)
\[
\alpha\left(p^{2}+q^{2}\right)=29
\]
\[
q=\sqrt{\frac{29}{\alpha}-\frac{(9-\alpha)^{2}}{4}}
\] \\
(iv) Alternative method
\[
2 p \alpha+p^{2}+q^{2}=27
\]
\[
q=\sqrt{27-\frac{(9-\alpha)^{2}}{4}-\alpha(9-\alpha)}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1ft \\
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 1
4
4
1
1

5

11 \& | State or use other root is p - iq |
| :--- |
| Substitute into (i) |
| Obtain $2 p+\alpha=9$ |
| Obtain correct answer a.e.f. |
| Substitute into (iii) |
| Obtain unsimplified expression with no i's |
| Rearrange to obtain q or q^{2} |
| Substitute their expression for p a.e.f. |
| Obtain correct answer a.e.f. |
| Substitute into $\alpha \beta+\beta \gamma+\gamma \alpha=27$ |
| Obtain unsimplified expression with no i's |
| Rearrange to obtain q or q^{2} |
| Substitute their expression for p a.e.f. |
| Obtain correct answer a.e.f. |

\hline
\end{tabular}

Mark Scheme 4725

1.	i) $\left(\begin{array}{ll}7 & 4 \\ 0 & -1\end{array}\right)$ (ii) $\quad\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ $k=3$	B1 B1 B1 B1	2 2 4	Two elements correct All four elements correct $\mathbf{A}-\mathbf{B}$ correctly found Find k
2	(i) (ii) $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$		2 2 4	For 2 other correct vertices For completely correct diagram Each column correct
3.	(i) $2+3 i$ (ii) $p=-4$ $q=13$	B1 M1 A1 M1 A1	1 4 5	Conjugate seen Attempt to sum roots or consider x terms in expansion or substitute $2-3 i$ into equation and equate imaginary parts Correct answer Attempt at product of roots or consider last term in expansion or consider real parts Correct answer

\begin{tabular}{|c|c|c|c|c|}
\hline 4. \& \[
\begin{aligned}
\& \Sigma r^{3}+\Sigma r^{2} \\
\& \Sigma r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\& \Sigma r^{3}=\frac{1}{4} n^{2}(n+1)^{2} \\
\& \frac{1}{12} n(n+1)(n+2)(3 n+1)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 5 \& \begin{tabular}{l}
Consider the sum as two separate parts \\
Correct formula stated \\
Correct formula stated \\
Attempt to factorise and simplify or expand both expressions \\
Obtain given answer correctly or complete verification
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(i) -7 i \\
(ii)
\[
\begin{gathered}
2+3 i \\
-5+12 i
\end{gathered}
\] \\
(iii) \(\frac{1}{5}(4-7 \mathrm{i})\) or equivalent
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2
3
3

3

8 \& | Real part correct |
| :--- |
| Imaginary part correct |
| $\mathrm{i} z$ stated or implied or $\mathrm{i}^{2}=-1$ seen |
| Real part correct |
| Imaginary part correct |
| Multiply by conjugate |
| Real part correct |
| Imaginary part correct |
| N.B. Working must be shown |

\hline 6.. \& | (i) Circle, Centre O radius 2 |
| :--- |
| One straight line |
| Through O with + ve slope |
| In $1^{\text {st }}$ quadrant only |
| (ii) $1+i \sqrt{3}$ | \& | B1 B1 |
| :--- |
| B1 |
| B1 |
| B1 |
| M1 |
| A1 | \& 7 \& | Sketch showing correct features |
| :--- |
| Attempt to find intersections by trig, solving equations or from graph Correct answer stated as complex number |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 7. \& \begin{tabular}{l}
(i)
\[
\mathbf{A}^{2}=\left(\begin{array}{ll}
4 \& 0 \\
0 \& 1
\end{array}\right) \quad \mathbf{A}^{3}=\left(\begin{array}{ll}
8 \& 0 \\
0 \& 1
\end{array}\right)
\] \\
(ii) \(\quad \mathbf{A}^{\mathrm{n}}=\left(\begin{array}{ll}2^{n} \& 0 \\ 0 \& 1\end{array}\right)\) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3
1
1

4

4 \& | Attempt at matrix multiplication |
| :--- |
| Correct \mathbf{A}^{2} |
| Correct \mathbf{A}^{3} |
| Sensible conjecture made |
| State that conjecture is true for $n=1$ or 2 |
| Attempt to multiply \mathbf{A}^{n} and \mathbf{A} or vice versa |
| Obtain correct matrix |
| Statement of induction conclusion |

\hline 8. \& | (i) $\begin{gathered} a\left[\begin{array}{ll} a & 0 \\ 2 & 1 \end{array}\right]-4\left[\begin{array}{ll} 1 & 0 \\ 1 & 1 \end{array}\right]+2\left[\begin{array}{ll} 1 & a \\ 1 & 2 \end{array}\right] \\ a^{2}-2 a \end{gathered}$ |
| :--- |
| (ii) $a=0 \text { or } a=2$ |
| (iii) (a) |
| (b) | \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1A1ft |
| B1 B1 |
| B1 B1 | \& 3

3
3

4

10 \& | Correct expansion process shown |
| :--- |
| Obtain correct unsimplified expression |
| Obtain correct answer |
| Solve their $\operatorname{det} \mathbf{M}=0$ |
| Obtain correct answers |
| Solution, as inverse matrix exists or \mathbf{M} nonsingular or $\operatorname{det} \mathbf{M} \neq 0$ |
| Solutions, eqn. 1 is multiple of eqn 3 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
\[
\begin{array}{ll}
\text { (i) } \alpha+\beta+\gamma=2 \& \alpha \beta \gamma=-4 \\
\alpha \beta+\beta \gamma+\gamma \alpha=3 \&
\end{array}
\] \\
(ii)
\[
\begin{aligned}
\& \alpha+1+\beta+1+\gamma+1=5 \\
\& p=-5
\end{aligned}
\] \\
(iii)
\[
q=-2
\]
\end{tabular} \& \begin{tabular}{l}
B1 B1 \\
B1 \\
M1 \\
A1ft \\
A1ft \\
M1* \\
A1 \\
DM1 \\
A1ft \\
A1ft \\
M2 \\
A1 \\
M1 \\
A2 \\
A1 A1
\end{tabular} \& 3

5

11 \& | Write down correct values |
| :--- |
| Sum new roots |
| Obtain numeric value using their (i) |
| p is negative of their answer |
| Expand three brackets $\alpha \beta \gamma+\alpha \beta+\beta \gamma+\gamma \alpha+\alpha+\beta+\gamma+1$ |
| Use their (i) results |
| Obtain 2 |
| q is negative of their answer |
| Alternative for (ii) \& (iii) |
| Substitute $x=u-1$ in given equation |
| Obtain correct unsimplified equation for u |
| Expand |
| Obtain $u^{3}-5 u^{2}+10 u-2=0$ |
| State correct values of p and q. |

\hline
\end{tabular}

Mark Scheme 4725
\qquad

[^0]
9號

1.	(i) $a=-3$ (ii) $2 a-3=7$ or $3 a-6=9$ $a=5$	B1	M1	

\begin{tabular}{|c|c|c|c|c|}
\hline \& (ii)
\[
\text { (iii) }-1 \pm \mathrm{i} \sqrt{3}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 3
7 \& \begin{tabular}{l}
Attempt to solve quadratic equation or substitute \(x+\mathrm{i} y\) and equate real and imaginary parts \\
Obtain answers as complex numbers Obtain correct answers, simplified Correct root on \(x\) axis, co-ords. shown \\
Other roots in \(2^{\text {nd }}\) and \(3^{\text {rd }}\) quadrants \\
Correct lengths and angles or coordinates or complex numbers shown
\end{tabular} \\
\hline 6. \& \begin{tabular}{l}
(i)
\[
u_{n+1}-u_{n}=2 n+4
\] \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& 3

5

8 \& | Correct expression for u_{n+1} |
| :--- |
| Attempt to expand and simplify |
| Obtain given answer correctly |
| State $u_{1}=4$ (or $u_{2}=10$) and is divisible by 2 |
| State induction hypothesis true for |
| u_{n} |
| Attempt to use result in (ii) |
| Correct conclusion reached for u_{n+1} |
| Clear,explicit statement of induction conclusion |

\hline 7. \& | (i) $\alpha+\beta=-5 \quad \alpha \beta=10$ |
| :--- |
| (ii) $\alpha^{2}+\beta^{2}=5$ |
| (iii) $x^{2}-\frac{1}{2} x+1=0$ | \& \[

$$
\begin{aligned}
& \text { B1 B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1ft }
\end{aligned}
$$
\] \& 2

2
2

4 \& | State correct values |
| :--- |
| Use $(\alpha+\beta)^{2}-2 \alpha \beta$ |
| Obtain given answer correctly, using value of -5 |
| Product of roots $=1$ |
| Attempt to find sum of roots |
| Obtain $\frac{5}{10}$ or equivalent |
| Write down required quadratic equation, or any multiple. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 8. \& \begin{tabular}{l}
(i)
\[
(r+1)^{2} r!
\] \\
(ii)
\[
(n+2)!-2!
\] \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { B1ft }
\end{aligned}
\] \& 3

4
1
1

8 \& | Factor of r ! or $(\mathrm{r}+1)$! seen |
| :--- |
| Factor of $(r+1)$ found |
| Obtain given answer correctly |
| Express terms as differences using |
| (i) |
| At least $1^{\text {st }}$ two and last term correct |
| Show that pairs of terms cancel |
| Obtain correct answer in any form |
| Convincing statement for nonconverging, ft their (ii) |

\hline \multirow[t]{5}{*}{9.} \& (i) $\binom{0}{0}\binom{0}{-1}\binom{3}{0}\binom{3}{-1}$ \& | M1 |
| :--- |
| A1 | \& 2 \& | For at least two correct images |
| :--- |
| For correct diagram, co-ords.clearly written down |

\hline \& (ii) 90° clockwise, centre origin \& B1 B1 \& \& Or equivalent correct description

\hline \& $$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$ \& B1 \& 3 \& Correct matrix, not in trig form

\hline \& (iii) Stretch parallel to x-axis, s.f. 3 \& B1 B1 \& \& Or equivalent correct description, but must be a stretch for $2^{\text {nd }}$ B1

\hline \& $$
\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$ \& B1 B1 \& 4

9 \& Each correct column

\hline
\end{tabular}

10.	(i) $\Delta=\operatorname{det} \mathbf{D}=3 a-6$ $\mathbf{D}^{-1}=\frac{1}{\Delta}\left(\begin{array}{rrr} 3 & -2 & 4 \\ -3 & a & -2 a \\ -3 & a & a-6 \end{array}\right)$ (ii) $\frac{1}{\Delta}\left(\begin{array}{r}5 \\ 2 a-9 \\ 5 a-15\end{array}\right)$	M1M1A1M1A1B1A1M1A1A1A1 ft all 3	4 11	Show correct expansion process for 3×3 Correct evaluation of any 2×2 det Obtain correct answer Show correct process for adjoint entries Obtain at least 4 correct entries in adjoint Divide by their determinant Obtain completely correct answer Attempt product of form $\mathbf{D}^{-1} \mathbf{C}$, or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse

Mark Scheme 4725
 Mark Scheme 4725 June 2007

```

```震
都 19
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \begin{tabular}{l}
EITHER \\
\(a=2\)
\[
b=2 \sqrt{3},
\] \\
OR
\[
a=2 \quad b=2 \sqrt{3}
\]
\end{tabular} & M1
A1
M1
A1
M1
M1
A1 A1 & 4
4 & \begin{tabular}{l}
Use trig to find an expression for \(a\) (or \(b\)) Obtain correct answer \\
Attempt to find other value Obtain correct answer a.e.f. \\
(Allow 3.46) \\
State 2 equations for \(a\) and \(b\) \\
Attempt to solve these equations \\
Obtain correct answers a.e.f. \\
\(\mathrm{SR} \pm\) scores A1 only
\end{tabular} \\
\hline 2 & \[
\begin{aligned}
& \left(1^{3}=\right) \frac{1}{4} \times 1^{2} \times 2^{2} \\
& \frac{1}{4} n^{2}(n+1)^{2}+(n+1)^{3} \\
& \frac{1}{4}(n+1)^{2}(n+2)^{2}
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 \\
M1(indep) \\
A1 \\
A1
\end{tabular} & 5 & \begin{tabular}{l}
Show result true for \(n=1\) \\
Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly \\
Specific statement of induction conclusion
\end{tabular} \\
\hline 3 & \[
\begin{aligned}
& 3 \Sigma r^{2}-3 \Sigma r+\Sigma 1 \\
& 3 \Sigma r^{2}=\frac{1}{2} n(n+1)(2 n+1) \\
& 3 \Sigma r=\frac{3}{2} n(n+1) \\
& \sum_{n^{3}} 1=n
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & 6
6 & \begin{tabular}{l}
Consider the sum of three separate terms \\
Correct formula stated \\
Correct formula stated \\
Correct term seen \\
Attempt to simplify \\
Obtain given answer correctly
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
(i) \(\frac{1}{2}\left(\begin{array}{cc}5 & -1 \\ -3 & 1\end{array}\right)\) \\
(ii)
\[
\frac{1}{2}\left(\begin{array}{cc}
2 & 0 \\
23 & -5
\end{array}\right)
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
M1 (indep) \\
Alft \\
A1ft
\end{tabular} & 4 & \begin{tabular}{l}
Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get \(1^{\text {st }}\) column Divide by the determinant or solve \(2^{\text {nd }}\) pair to get \(2^{\text {nd }}\) column \\
Attempt to use \(B^{-1} A^{-1}\) or find \(B\) \\
Attempt at matrix multiplication \\
One element correct, a.e.f, \\
All elements correct, a.e.f. \\
NB ft consistent with their (i)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 5 & \begin{tabular}{l}
(i) \(\frac{1}{r(r+1)}\) \\
(ii)
\[
1-\frac{1}{n+1}
\] \\
(iii)
\[
\begin{aligned}
& S_{\infty}=1 \\
& \frac{1}{n+1}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1 c.a.o.
\end{tabular} & 1

3
3

3
7 & \begin{tabular}{l}
Show correct process to obtain given result \\
Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be \(n\) not any other letter \\
State correct value of sum to infinity Ft their (ii) \\
Use sum to infinity - their (ii) \\
Obtain correct answer a.e.f.
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
(i) (a)
\[
\alpha+\beta+\gamma=3, \alpha \beta+\beta \gamma+\gamma \alpha=2
\] \\
(b)
\[
\begin{gathered}
\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
=9-4=5 \\
\text { (ii) (a) } \frac{3}{u^{3}}-\frac{9}{u^{2}}+\frac{6}{u}+2=0 \\
2 u^{3}+6 u^{2}-9 u+3=0 \\
\text { (b) } \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=-3
\end{gathered}
\]
\end{tabular} & \begin{tabular}{l}
B1 B1 \\
M1 \\
A1 ft \\
M1 \\
A1 \\
M1 \\
A1ft
\end{tabular} & 2
2
2
2
8 & \begin{tabular}{l}
State correct values \\
State or imply the result and use their values \\
Obtain correct answer \\
Use given substitution to obtain an equation \\
Obtain correct answer \\
Required expression is related to new cubic stated or implied -(their "b" / their "a")
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 7 & \begin{tabular}{l}
(i)
\[
a(a-12)+32
\] \\
(ii) \\
\(\operatorname{det} \mathbf{M}=12\) \\
non-singular \\
(iii) EITHER \\
OR
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} & 2
3
3

8 & \begin{tabular}{l}
Show correct expansion process \\
Show evaluation of a \(2 \times 2\) \\
determinant \\
Obtain correct answer a.e.f. \\
Substitute \(a=2\) in their determinant \\
Obtain correct answer and state a consistent conclusion \\
\(\operatorname{det} \mathrm{M}=0\) so non-unique solutions \\
Attempt to solve and obtain 2 inconsistent equations \\
Deduce that there are no solutions \\
Substitute \(a=4\) and attempt to solve \\
Obtain 2 correct inconsistent \\
equations \\
Deduce no solutions
\end{tabular} \\
\hline 8 & \begin{tabular}{l}
(i) Circle, centre \((3,0)\), \(y\)-axis a tangent at origin Straight line, through \((1,0)\) with + ve slope In \(1^{\text {st }}\) quadrant only \\
(ii) Inside circle, below line, above \(x\)-axis
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { B1B1 } \\
\text { B1 } \\
\text { B2ft }
\end{array}
\] & 6
2
8 & \begin{tabular}{l}
Sketch showing correct features N.B. treat 2 diagrams asa MR \\
Sketch showing correct region SR: B1ft for any 2 correct features
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 9 & \begin{tabular}{l}
(i) \(\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)\) \\
(ii) Rotation (centre \(O\)), \(45^{\circ}\), clockwise \\
(iii) \\
(iv) \(\binom{0}{0}\binom{1}{1}\binom{1}{-1}\binom{2}{0}\) \\
(v) \(\operatorname{det} \mathbf{C}=2\) \\
area of square has been doubled
\end{tabular} & B1
B1B1B1
B1
M1
A1
B1
B1 & 3
1
1
2 & \begin{tabular}{l}
Correct matrix \\
Sensible alternatives OK, must be a single transformation \\
Matrix multiplication or combination of transformations \\
For at least two correct images For correct diagram \\
State correct value \\
State correct relation a.e.f.
\end{tabular} \\
\hline 10 & \begin{tabular}{l}
(i)
\[
x^{2}-y^{2}=16 \text { and } x y=15
\]
\[
\pm(5+3 \mathrm{i})
\] \\
(ii)
\[
\begin{aligned}
& z=1 \pm \sqrt{16+30 \mathrm{i}} \\
& 6+3 \mathrm{i}, \quad-4-3 \mathrm{i}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1A1 \\
M1 \\
M1 \\
A1 \\
M1* \\
A1 \\
*M1 dep \\
A1 A1ft
\end{tabular} & 6
5
5
11 & \begin{tabular}{l}
Attempt to equate real and imaginary parts of \((x+\mathrm{iy})^{2}\) and \(16+30 \mathrm{i}\) \\
Obtain each result \\
Eliminate to obtain a quadratic in \(x^{2}\) or \(y^{2}\) \\
Solve to obtain
\[
x=(\pm) 5 \text { or } y=(\pm) 3
\] \\
Obtain correct answers as complex numbers \\
Use quadratic formula or complete the square \\
Simplify to this stage \\
Use answers from (i) \\
Obtain correct answers
\end{tabular} \\
\hline
\end{tabular}
\(\square\)
(

\section*{4725 Further Pure Mathematics 1}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \begin{tabular}{l}
(i) \\
(ii) \(\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 B1
\end{tabular} & 2 & \begin{tabular}{l}
For 2 other correct vertices seen, correct direction of shear seen For completely correct diagram, must include scales \\
Each column correct
\end{tabular} \\
\hline 2 & \[
\begin{aligned}
& \frac{a}{6} n(n+1)(2 n+1)+b n \\
& a=6 \quad b=-3
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 A1
\end{tabular} & 5 & \begin{tabular}{l}
Consider sum as two separate parts Correct answer a.e.f. \\
Compare co-efficients Obtain correct answers
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
(i) \(7 u^{3}+24 u^{2}-3 u+2=0\) \\
(ii) EITHER \\
correct value is \(-\frac{3}{7}\) \\
OR \\
correct value is \(-\frac{3}{7}\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1ft \\
M1 \\
A1
\end{tabular} & 2
2 & \begin{tabular}{l}
Use given substitution Obtain correct equation a.e.f. \\
Required expression related to new cubic Their c/their a \\
Use \(\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}\) or equivalent \\
Obtain correct answer
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
(i) \(\quad z^{*}=3+4 \mathrm{i}\) \\
(ii) \(3-5 \mathrm{i}\)
\[
-16-30 i
\] \\
(iii)
\[
\frac{9}{25}+\frac{12}{25} \mathrm{i}
\]
\end{tabular} & B1
B1
B1
B1ft
B1ft
M1
A1
A1 & 2 & \begin{tabular}{l}
Conjugate seen or implied Obtain correct answer \\
Correct \(z-i\) or expansion of \((z-I)^{2}\) seen Real part correct \\
Imaginary part correct \\
Multiply by conjugate \\
Numerator correct \\
Denominator correct
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
(i) \(\left(\begin{array}{c}-13 \\ 1 \\ -10\end{array}\right)\) \\
(ii) \(\left(\begin{array}{ccc}8 & 16 & -4 \\ 0 & 0 & 0 \\ 6 & 12 & -3\end{array}\right)\) \\
(iii) (8)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1A1A1 \\
M1 \\
A1
\end{tabular} & 2 & \begin{tabular}{l}
4B seen or implied or 2 elements correct Obtain correct answer \\
Obtain a \(3 \times 3\) matrix Each row (or column) correct \\
Obtain a single value Obtain correct answer, must have matrix
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & \begin{tabular}{l}
(i) \\
(ii)
\[
2 \sqrt{3}+2 i
\]
\end{tabular} & \[
\begin{aligned}
& \text { B1 } \\
& \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & 5

3
8
8 & \begin{tabular}{l}
Horizontal straight line in 2 quadrants \\
Through (0,2) \\
Straight line \\
Through \(O\) with positive slope \\
In \(1^{\text {st }}\) quadrant only \\
State or obtain algebraically that \(y=2\) \\
Use suitable trigonometry \\
Obtain correct answer a.e.f. decimals OK must be a complex number
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
(i)
\[
a=-6
\] \\
(ii) \(\quad \mathbf{A}^{-1}=\frac{1}{a+6}\left(\begin{array}{cc}1 & -3 \\ 2 & a\end{array}\right)\)
\[
x=\frac{4}{a+6}, y=\frac{2-a}{a+6}
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
B1ft \\
M1 \\
A1ft \\
A1ft
\end{tabular} & 2

5
7 & \begin{tabular}{l}
Use \(\operatorname{det} \mathbf{A}=0\) \\
Obtain correct answer \\
Both diagonals correct \\
Divide by \(\operatorname{det} \mathbf{A}\) \\
Premultiply column by \(\mathbf{A}^{-1}\), no other method Obtain correct answers from their \(\mathbf{A}^{-1}\)
\end{tabular} \\
\hline 8 & \begin{tabular}{l}
(i)
\[
u_{2}=4, u_{3}=9, u_{4}=16
\] \\
(ii) \(u_{\mathrm{n}}=n^{2}\) \\
(iii)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & 2
1

4
7 & \begin{tabular}{l}
Obtain next terms All terms correct \\
Sensible conjecture made \\
State that conjecture is true for \(n=1\) or 2 \\
Find \(u_{n+1}\) in terms of n \\
Obtain \((n+1)^{2}\) \\
Statement of Induction conclusion
\end{tabular} \\
\hline 9 & \begin{tabular}{l}
(i) \(\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}\) \\
(ii) Either \(\alpha+\beta=5, \alpha \beta=7\)
\[
\alpha^{3}+\beta^{3}=20
\]
\[
x^{2}-20 x+343=0
\] \\
Or
\[
\begin{aligned}
& u^{\frac{2}{3}}-5 u^{\frac{1}{3}}+7=0 \\
& u^{3}-20 u+343=0
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 B1 \\
M1 \\
A1 \\
M1 \\
Alft \\
M1 A1 \\
M2 \\
A2
\end{tabular} & 2

6
8 & \begin{tabular}{l}
Correct binomial expansion seen \\
Obtain given answer with no errors seen \\
State or use correct values \\
Find numeric value for \(\alpha^{3}+\beta^{3}\) \\
Obtain correct answer \\
Use new sum and product correctly in quadratic expression \\
Obtain correct equation \\
Substitute \(x=u^{\frac{1}{3}}\) \\
Obtain correct answer \\
Complete method for removing fractional \\
powers \\
Obtain correct answer
\end{tabular} \\
\hline
\end{tabular}

\section*{4725 Further Pure Mathematics 1}

1 (i) \(\left(\begin{array}{cc}1 & 1 \\ 5 & -1\end{array}\right)\)
B1 Two elements correct
B1 All four elements correct
(ii) EITHER
\(\frac{1}{3}\left(\begin{array}{rr}2 & -1 \\ -5 & 4\end{array}\right)\)

B1 Both diagonals correct
B1 Divide by determinant

OR
2

B1 Solve sim. eqns. \(1^{\text {st }}\) column correct
B1 \(2^{\text {nd }}\) column correct

2 (i)
B1 Correct modulus
B1
(ii)(a)
(b)

Circle centre \(A(3,4)\)
Through \(O\), allow if centre is \((4,3)\)
Half line with + ve slope
Starting at (3, 0)
Parallel to \(O A\), (implied by correct arg shown)
\begin{tabular}{|c|c|c|c|}
\hline 3 (i) & \[
\frac{r}{(r+1)!}
\] & M1 & Common denominator of \((r+1)\) ! or \(r\) ! \((r+1)\) ! \\
\hline \multirow{3}{*}{(ii)} & & \begin{tabular}{|r|}
A1 \\
\hline 2
\end{tabular} & Obtain given answer correctly \\
\hline & \[
1-\frac{1}{(n+1)!}
\] & M1 & Express terms as differences using (i) \\
\hline & & \[
\begin{aligned}
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \hline 4
\end{aligned}
\] & At least \(1^{\text {st }}\) two and last term correct Show pairs cancelling Correct answer a.e.f. \\
\hline 4 & & B1 & Establish result is true, for \(n=1\) (or 2 or 3) \\
\hline & & M1 & Attempt to multiply \(\mathbf{A}\) and \(\mathbf{A}^{\text {n }}\), or vice versa \\
\hline & & M1 & Correct process for matrix multiplication \\
\hline & & A1 & Obtain \(3^{n+1}, 0\) and 1 \\
\hline & & A1 & Obtain \(1 / 2\left(3^{n+1}-1\right)\) \\
\hline & & A1 & Statement of Induction conclusion, only if 5 marks earned, but may be in body of working \\
\hline
\end{tabular}

10 (i)
(ii)
\((\mathbf{A B})^{-1}=\frac{1}{2}\left(\begin{array}{ccc}0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6-3 a & a-6\end{array}\right)\)
(iii) EITHER
\(\mathbf{B}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2\end{array}\right)\)

OR

M1 Find value of \(\operatorname{det} \mathbf{A B}\)
A1 Correct value 2 seen
2
M1 Show correct process for adjoint entries
A1 Obtain at least 4 correct entries in adjoint
B1 Divide by their determinant

A1 Obtain completely correct answer
\begin{tabular}{|l|l}
\hline 4 & \\
M1 & State or imply \((\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}\)
\end{tabular}
A1 Obtain \(\mathbf{B}^{-1}=(\mathbf{A B})^{-1} \times \mathbf{A}\)
M1 Correct multiplication process seen
A1 Obtain three correct elements

A1 All elements correct
\begin{tabular}{ll}
\hline \(\mathbf{5}\) & \\
M1 & Attempt to find elements of \(\mathbf{B}\) \\
A1 & All correct \\
M1 & Correct process for \(\mathbf{B}^{-1}\) \\
A1 & 3 elements correct \\
A1 & All elements correct
\end{tabular}

\section*{4725 Further Pure Mathematics 1}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \(\frac{7}{26}+\frac{17}{26} \mathrm{i}\). & \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A1 A1 } \\
\text { A1 }
\end{array}
\] & 4
4 & Multiply by conjugate of denominator Obtain correct numerator Obtain correct denominator \\
\hline 2 & \begin{tabular}{l}
(i) \(\frac{1}{10}\left(\begin{array}{cc}5 & 0 \\ -a & 2\end{array}\right)\) \\
(ii) \(\left(\begin{array}{cc}3 & -2 \\ 2 a & 6\end{array}\right)\)
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 } \\
& \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & 2 & \begin{tabular}{l}
Both diagonals correct Divide by correct determinant \\
Two elements correct Remaining elements correct
\end{tabular} \\
\hline 3 & \[
\begin{aligned}
& n^{2}(n+1)^{2}+n(n+1)(2 n+1)+n(n+1) \\
& n(n+1)^{2}(n+2)
\end{aligned}
\] & M1
A1
A1
M1
A1ft
A1 & 6 & Express as sum of 3 terms 2 correct unsimplified terms \(3^{\text {rd }}\) correct unsimplified term Attempt to factorise Two factors found, ft their quartic Correct final answer a.e.f. \\
\hline 4 & \[
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\] & \[
\begin{array}{|l|}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{array}
\] & 4 & State or use correct result Combine matrix and its inverse Obtain \(\mathbf{I}\) or \(\mathbf{I}^{2}\) but not 1 Obtain zero matrix but not 0 S.C. If \(0 / 4, \mathrm{~B} 1\) for \(\mathrm{AA}^{-1}=\mathrm{I}\) \\
\hline 5 & \begin{tabular}{l}
Either \\
\(4 k-4\)
\[
k=1
\] \\
Or
\end{tabular} & M1
M1
A1
M1
A1ft
M1
A1
M1
A1
A1 & 5

5 & \begin{tabular}{l}
Consider determinant of coefficients of LHS Sensible attempt at evaluating any \(3 \times 3\) det Obtain correct answer a.e.f. unsimplified Equate det to 0 Obtain \(k=1\), ft provided all M's awarded \\
Eliminate either \(x\) or \(y\) \\
Obtain correct equation \\
Eliminate \(2^{\text {nd }}\) variable \\
Obtain correct linear equation \\
Deduce that \(k=1\)
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
(i) Either Or \\
(ii) \\
(iii) \(\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\) \\
(iv)
\end{tabular} & \begin{tabular}{l}
B1 DB1 \\
B1 DB1 \\
B1 DB1 \\
B1 B1 \\
B1B1B1
\end{tabular} & 2
2
2
2
3
9 & \begin{tabular}{l}
Reflection, in \(x\)-axis \\
Stretch parallel to \(y\)-axis, s.f. -1 \\
Reflection, in \(y=-x\) \\
Each column correct \\
Rotation, \(90^{\circ}\), clockwise about \(O\) S.C. If (iii) incorrect, \(\mathbf{B} 1\) for identifying their transformation, B1 all details correct
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 7 & \begin{tabular}{l}
(i) \(13^{n}+6^{n-1}+13^{n+1}+6^{n}\) \\
(ii)
\end{tabular} & \[
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 }
\end{aligned}
\] & 4
7 & Correct expression seen Attempt to factorise both terms in (i) Obtain correct expression Check that result is true for \(n=1\) (or 2) Recognise that (i) is divisible by 7 Deduce that \(u_{n+1}\) is divisible by 7 Clear statement of Induction conclusion \\
\hline 8 & \begin{tabular}{l}
(i) \\
(ii)
\[
\begin{aligned}
\alpha+\beta & =6 k, \alpha \beta=k^{2} \\
\alpha-\beta & =(4 \sqrt{2}) k
\end{aligned}
\] \\
(iii)
\[
\begin{aligned}
& \sum \alpha^{\prime}=6 k \\
& \alpha^{\prime} \beta^{\prime}=\alpha \beta-(\alpha-\beta)-1 \\
& \alpha^{\prime} \beta^{\prime}=k^{2}-(4 \sqrt{2}) k-1 \\
& x^{2}-6 k x+k^{2}-(4 \sqrt{2}) k-1=0
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 B1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1ft \\
B1ft
\end{tabular} & 4

4
10 & \begin{tabular}{l}
Expand at least 1 of the brackets Derive given answer correctly \\
State or use correct values \\
Find value of \(\alpha-\beta\) using (i) \\
Obtain given value correctly (allow if \(-6 k\) used) \\
Sum of new roots stated or used \\
Express new product in terms of old roots \\
Obtain correct value for new product \\
Write down correct quadratic equation
\end{tabular} \\
\hline 9 & \begin{tabular}{l}
(i) \\
(ii)
\[
1+\frac{1}{3}-\frac{1}{2 n-1}-\frac{1}{2 n+1}
\] \\
(iii) \(\frac{4}{3}\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
B1ft
\end{tabular} & 2

6
1
9 & \begin{tabular}{l}
Use correct denominator \\
Obtain given answer correctly \\
Express terms as differences using (i) \\
Do this for at least \(1^{\text {st }} 3\) terms \\
First 3 terms all correct \\
Last 3 terms all correct (in terms or \(n\) or \(r\)) \\
Show pairs cancelling \\
Obtain correct answer, a.e.f.(in terms of \(n\)) \\
Given answer deduced correctly, ft their (ii)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 10 & \begin{tabular}{l}
\[
\text { (i) } \begin{array}{ll}
& x^{2}-y^{2}=2,2 x y=\sqrt{5} \\
& 4 x^{4}-8 x^{2}-5=0 \\
& x= \pm \frac{\sqrt{10}}{2}, y= \pm \frac{\sqrt{2}}{2} \\
& \pm\left(\frac{\sqrt{10}}{2}+\mathrm{i} \frac{\sqrt{2}}{2}\right) \\
\text { (ii) } & z^{2}=2 \pm \mathrm{i} \sqrt{5} \\
& z= \pm\left(\frac{\sqrt{10}}{2} \pm \mathrm{i} \frac{\sqrt{2}}{2}\right)
\end{array}
\] \\
(i) \\
(iii) \\
(iv)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1ft \\
B1 B1ft \\
B1ft
\end{tabular} & 6

4
4
1

3
14 & \begin{tabular}{l}
Attempt to equate real and imaginary parts Obtain both results a.e.f. \\
Eliminate to obtain quadratic in \(x^{2}\) or \(y^{2}\) \\
Solve to obtain \(x\) (or y) values \\
Correct values for both \(\mathrm{x} \& \mathrm{y}\) obtained a.e.f. \\
Correct answers as complex numbers \\
Solve quadratic in \(z^{2}\) \\
Obtain correct answers \\
Use results of (i) \\
Obtain correct answers, ft must include root from conjugate \\
Sketch showing roots correctly \\
Sketch of straight line, \(\perp\) to \(\alpha\) \\
Bisector
\end{tabular} \\
\hline
\end{tabular}

\section*{4725 Further Pure Mathematics 1}
\begin{tabular}{|c|c|c|c|c|}
\hline 1. & \(984390625-25502500=958888125\) & \[
\begin{array}{|l|}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] & 3
3 & \begin{tabular}{l}
State correct value of \(S_{250}\) or \(S_{100}\) \\
Subtract \(S_{250}-S_{100}\) (or \(S_{101}\) or \(S_{99}\)) \\
Obtain correct exact answer
\end{tabular} \\
\hline 2. & \[
\begin{aligned}
& 3 a+5 b=1, a+2 b=1 \\
& a=-3, b=2
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { M1 } \\
\text { A1 A1 }
\end{array}
\] & 4 & \begin{tabular}{l}
Obtain a pair of simultaneous equations \\
Attempt to solve Obtain correct answers.
\end{tabular} \\
\hline 3. & \begin{tabular}{l}
(i) \(11-29 \mathrm{i}\) \\
(ii) \(1+41 \mathrm{i}\)
\end{tabular} & \[
\begin{aligned}
& \text { B1 B1 } \\
& \text { B1 B1 }
\end{aligned}
\] & 2 & \begin{tabular}{l}
Correct real and imaginary parts \\
Correct real and imaginary parts
\end{tabular} \\
\hline 4. & \begin{tabular}{l}
Either
\[
\begin{aligned}
& p+q=-1, p q=-8 \\
& \frac{p+q}{p q} \\
& -\frac{7}{8}
\end{aligned}
\] \\
Or
\[
\begin{aligned}
& \frac{1}{p}+\frac{1}{q}=8 \\
& p+q=1 \\
& -\frac{7}{8}
\end{aligned}
\] \\
Or \(\frac{-1 \pm \sqrt{33}}{2}\)
\[
-\frac{7}{8}
\]
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \\
& \text { B1 } \\
& \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \\
& \text { A1 } \\
& \text { M1 } \\
& \hline
\end{aligned}
\] & 4 & \begin{tabular}{l}
Both values stated or used \\
Correct expression seen \\
Use their values in their expression Obtain correct answer \\
Substitute \(x=\frac{1}{u}\) and use new quadratic \\
Correct value stated \\
Use their values in given expression Obtain correct answer \\
Find roots of given quadratic equation \\
Correct values seen \\
Use their values in given expression \\
Obtain correct answer
\end{tabular} \\
\hline 5. & \begin{tabular}{l}
(i) \(u^{3}=\{(-)(5 u+7)\}^{2}\)
\[
u^{3}-25 u^{2}-70 u-49=0
\] \\
(ii)
-70
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 ft
\end{tabular} & 2
5 & \begin{tabular}{l}
Use given substitution and rearrange Obtain correct expression, or equivalent \\
Obtain correct final answer \\
Use coefficient of \(u\) of their cubic or identity connecting the symmetric functions and substitute values from given equation Obtain correct answer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 6. & \begin{tabular}{l}
(i) \(3 \sqrt{2},-\frac{\pi}{4}\) or \(-45^{\circ}\) AEF \\
(ii)(a) \\
(ii)(b) \\
(iii)
\end{tabular} & \[
\begin{aligned}
& \text { B1 B1 } \\
& \text { B1B1 } \\
& \text { B1 ft } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \\
& \text { B1ft } \\
& \text { B1ft } \\
& \text { B1ft }
\end{aligned}
\] & 2
3
3
3

3
11 & \begin{tabular}{l}
State correct answers \\
Circle, centre (\(3,-3\)), through \(O \mathrm{ft}\) for \((\pm 3, \pm 3)\) only Straight line with + ve slope, through \((3,-3)\) or their centre Half line only starting at centre \\
Area above horizontal through \(a\), below (ii) (b) \\
Outside circle
\end{tabular} \\
\hline 7. & \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\[
\begin{aligned}
& (n+1)^{4}-1-n(n+1)(2 n+1)-2 n(n+1)-n \\
& 4 \sum_{r=1}^{n} r^{3}=n^{2}(n+1)^{2}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1 B1 \\
M1* \\
*DM1 \\
A1 \\
A1
\end{tabular} & 6
10 & \begin{tabular}{l}
Show that terms cancel in pairs Obtain given answer correctly \\
Attempt to expand and simplify Obtain given answer correctly \\
Correct \(\sum r\) stated \(\quad \sum 1=n\) \\
Consider sum of 4 separate terms on RHS \\
Required sum is LHS - 3 terms \\
Correct unsimplified expression \\
Obtain given answer correctly
\end{tabular} \\
\hline 8. & \begin{tabular}{l}
(i) \\
(ii) \(\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\) \\
(iii) Either \(\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\) Or
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 B1 \\
B1 \\
M1 \\
A1ft \\
M1 \\
A2ft \\
B1 \\
B1 \\
B1
\end{tabular} & 3
2

6
11 & \begin{tabular}{l}
Find coordinates \((0,0)(3,1)(2,1)\) \((5,2)\) found \\
Accurate diagram sketched \\
Each column correct \\
Correct inverse for their (ii) stated Post multiply \(\mathbf{C}\) by inverse of (ii) \\
Correct answer found \\
Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each error \\
Shear, \\
\(x\) axis invariant or parallel to \(x\)-axis eg image of \((1,1)\) is \((3,1)\) \\
SR allow s.f. 2 or shearing angle of correct angle to appropriate axis
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 9. & \begin{tabular}{l}
(i) \(\quad a\left|\begin{array}{ll}a & 1 \\ 1 & 2\end{array}\right|-\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|+\left|\begin{array}{ll}1 & a \\ 1 & 1\end{array}\right|\) \\
(ii) \\
\(a=0\) or 1 \\
(iii) (a) \\
(b)
\end{tabular} & M1
A1
A1
M1
A1ft
A1ft
B1 B1
B1
B1 & 3

3

4
10 & \begin{tabular}{l}
Correct expansion process shown Obtain correct unsimplified expression \\
Obtain correct answer \\
Equate their det to 0 Obtain correct answers, ft solving a quadratic \\
Equations consistent, but non unique solutions \\
Correct equations seen \& inconsistent, no solutions
\end{tabular} \\
\hline 10. & \begin{tabular}{l}
i)
\[
u_{2}=7 \quad u_{3}=19
\] \\
(ii)
\[
u_{n}=2\left(3^{n-1}\right)+1
\] \\
(iii)
\[
\begin{aligned}
& u_{n+1}=3\left(2\left(3^{n-1}\right)+1\right)-2 \\
& u_{n+1}=2\left(3^{n}\right)+1
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1 \\
A1 \\
B1
\end{tabular} & 3
2

5
10 & \begin{tabular}{l}
Attempt to find next 2 terms Obtain correct answers Show given result correctly \\
Expression involving a power of 3 Obtain correct answer \\
Verify result true when \(n=1\) or \(n=2\) \\
Expression for \(u_{n+1}\) using recurrence relation \\
Correct unsimplified answer \\
Correct answer in correct form \\
Statement of induction conclusion
\end{tabular} \\
\hline
\end{tabular}

\section*{4725 Further Pure Mathematics 1}
\begin{tabular}{lll}
1 (i) \(\left(\begin{array}{cc}a-4 & 2 \\
3 & 0\end{array}\right)\) & B1 & \multicolumn{1}{l}{ Two elements correct } \\
& B1 & \(\mathbf{2}\) \\
Remaining elements correct
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2 (i) & \(u^{3}-3 u^{2}+3 u-1\)
\(2 u^{3}-6 u^{2}+9 u-8=0\) & B1
M1
A1 & 3 & \begin{tabular}{l}
Correct unsimplified expansion of
\[
(u-1)^{3}
\] \\
Substitute for \(x\) \\
Obtain correct equation
\end{tabular} \\
\hline \multirow[t]{3}{*}{(ii)} & \multirow{3}{*}{4} & M1 & & Use (\(\pm\)) \(\frac{\mathrm{d}}{\mathrm{a}}\) of new equation \\
\hline & & A1ft & 2 & Obtain correct answer from their equation \\
\hline & & 5 & & \\
\hline \multirow[t]{7}{*}{3} & \multirow[t]{2}{*}{\(x-\mathrm{i} y\)} & B1 & & Conjugate known \\
\hline & & M1 & & Equate real and imaginary parts \\
\hline & \multirow[t]{2}{*}{\(x+2 y=12 \quad 2 x+y=9\)} & A1 & & Obtain both equations, OK with factor \\
\hline & & M1 & & \begin{tabular}{l}
of i \\
Solve pair of equations
\end{tabular} \\
\hline & \multirow[t]{3}{*}{\(z=2+5 \mathrm{i}\)} & A1 & 5 & Obtain correct answer as a complex number \\
\hline & & & & S.C. Solving \(z+2 \mathrm{i} z=12+9 \mathrm{i}\) can get \(\max \quad 4 / 5\), not first B1 \\
\hline & & 5 & & \\
\hline \multirow[t]{7}{*}{4} & \multirow{5}{*}{\[
\frac{1}{4} n^{2}(n+1)^{2}-\frac{1}{6} n(n+1)(2 n+1)-n(n+1)
\]} & M1 & & Express as sum of three series \\
\hline & & M1 & & Use standard results \\
\hline & & A1 & & Obtain correct unsimplified answer \\
\hline & & M1 & & Attempt to factorise \\
\hline & & A1 & & Obtain at least factor of \(n(n+1)\) \\
\hline & \multirow[t]{2}{*}{\[
\frac{1}{12} n(n+1)(n+2)(3 n-7)
\]} & & 6 & Obtain fully factorised correct answer \\
\hline & & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & (i) & & 2 & Rotation \(90^{\circ}\) (about origin) Anticlockwise \\
\hline \multirow[t]{9}{*}{} & (ii) Either & M1 & & Show image of unit square after reflection in \(y=-x\) \\
\hline & \[
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\] & A1 & & Deduce reflection in \(x\)-axis \\
\hline & \multirow{7}{*}{Or} & B1ft & & Each column correct \\
\hline & & B1ft & 4 & ft for matrix of their transformation \\
\hline & & M1 & & Post multiply by correct reflection matrix \\
\hline & & A1 & & Obtain correct answer \\
\hline & & B1B1 & & State reflection, in \(x\)-axis \\
\hline & & & & . If pre-multiplication, M0 but B1 B1 Available for correct description of their matrix \\
\hline & & 6 & & \\
\hline \multirow[t]{3}{*}{6} & (i) & B1 & & State or use \(5+\mathrm{i}\) as a root \\
\hline & & M1 & & Use \(\sum \alpha \beta=6\) \\
\hline & \(x=-2\) & A1 & 3 & Obtain correct answer \\
\hline \multirow[t]{10}{*}{} & (ii) Either & M1 & & Use \(p=-\sum \alpha\) \\
\hline & \(p=-8\) & A1ft & & \\
\hline & & M1 & & Use \(q=-\alpha \beta \gamma\) \\
\hline & \(q=52\) & A1ft & 4 & Obtain correct answer, from their root \\
\hline & Or & M1 & & Attempt to find quadratic factor \\
\hline & & & & Attempt to expand quadratic and linear Obtain correct answers \\
\hline & \multirow[t]{4}{*}{Or} & & & Substitute (5-i)into equation \\
\hline & & M1 & & Equate real and imaginary parts \\
\hline & & A1 & & Obtain correct answer for \(p\) \\
\hline & & \[
\begin{aligned}
& \text { A1ft } \\
& 7
\end{aligned}
\] & & Obtain correct answer for \(q, \mathrm{ft}\) their \(p\) \\
\hline \multirow[t]{5}{*}{7} & (i) & B1 & 1 & Obtain given answer correctly \\
\hline & \multirow[t]{3}{*}{(ii)} & M1 & & Express at least \(1^{\text {st }}\) two and last term using (i) \\
\hline & & A1 & & All terms correct \\
\hline & & M1 & & Show that correct terms cancel \\
\hline & \(1-\frac{1}{(n+1)^{2}}\) & A1 & 4 & Obtain correct answer, in terms of \(n\) \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{(iii) \(\frac{1}{4}\)}} & & & Sum to infinity seen or implied \\
\hline & & & 2 & \begin{tabular}{l}
Obtain correct answer \\
S.C. \(-3 / 4\) scores B1
\end{tabular} \\
\hline & & 7 & & \\
\hline
\end{tabular}

(ii) \(\frac{1}{\Delta}\left(\begin{array}{c}5 a-7 \\ 4 a-5 \\ 3\end{array}\right)\)

M1 Attempt product of form \(\mathbf{A}^{-1} \mathbf{C}\) or eliminate to get 2 equations and solve

A1A1A1 Obtain correct answer ft all 3

4 S.C. if det now omitted, allow max A2 ft 11

10 (i)
\[
\mathbf{M}^{2}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right) \quad \mathbf{M}^{3}=\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right)
\]

B1 Correct \(\mathbf{M}^{2}\) seen
M1 Convincing attempt at matrix multiplication for \(\mathbf{M}^{3}\)
A1 3 Obtain correct answer
(ii) \(\mathbf{M}^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)\)

B1ft 1 State correct form, consistent with (i)
\begin{tabular}{|c|c|c|}
\hline 10 (iii) & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
4
\end{tabular} & \begin{tabular}{l}
Correct attempt to multiply \(\mathbf{M} \& \mathbf{M}^{k}\) or v.v. \\
Obtain element \(2(k+1)\) \\
Clear statement of induction step, from correct working \\
Clear statement of induction conclusion, following their working
\end{tabular} \\
\hline (iv) & \begin{tabular}{l}
B1 \\
DB1 \\
DB1 3 \\
11
\end{tabular} & \begin{tabular}{l}
Shear \\
\(x\)-axis invariant e.g. \((1,1) \rightarrow(21,1)\) or equivalent using scale factor or angles
\end{tabular} \\
\hline
\end{tabular}

B1 Establish result true for \(n=1\) or \(n=2\)
M1 Add next term to given sum formula
M1 Attempt to factorise or expand and simplify to correct expression
A1 Correct expression obtained
A1 5 Specific statement of induction conclusion

\section*{5}
\(2 \quad\) (i) (-7)
M1 Obtain a single value
A1 2 Obtain correct answer as a matrix
(ii) \(\quad \mathrm{BA}=\left(\begin{array}{ll}5 & -20 \\ 3 & -12\end{array}\right)\) \(\left(\begin{array}{cc}-7 & -20 \\ 11 & -20\end{array}\right)\)

M1 \(\quad\) Obtain a \(2 \times 2\) matrix

A1 All elements correct

B1 4C seen or implied by correct answer
B1ft 4 Obtain correct answer, ft for a slip in BA

3
\[
\begin{aligned}
& \text { Either } \\
& \frac{2}{3} n(n+1)(2 n+1)-2 n(n+1)+n \\
& \frac{1}{3} n(2 n-1)(2 n+1) \\
& \text { Or } \\
& \sum_{r=1}^{2 n} r^{2}-4 \sum_{r=1}^{n} r^{2} \\
& \frac{1}{6} \times 2 n(2 n+1)(4 n+1)-4 \times \frac{1}{6} n(n+1)(2 n+1) \\
& \frac{1}{3} n(2 n-1)(2 n+1)
\end{aligned}
\]

M1 Express as a sum of 3 terms
M1 Use standard sum results

A1 Correct unsimplified answer
M1 Attempt to factorise
A1 Obtain at least factor of \(n\) and a quadratic
A1 6 Obtain correct answer a.e.f.

M1 Express as difference of \(2 \sum r^{2}\) series
M1 Use standard result
A1 Correct unsimplified answer
M1 Attempt to factorise
A1 \(\quad\) Obtain at least factor of \(n\)

A1 Obtain correct answer
(i) \(5+12 \mathrm{i}\)
13
\(67.4^{\circ}\) or 1.18

B1B1 Correct real and imaginary parts
B1ft Correct modulus
B1ft 4 Correct argument
(ii)

M1 Multiply by conjugate
A1 Obtain correct numerator
\(-\frac{11}{85}-\frac{27}{85} \mathrm{i}\)
A1 3 Obtain correct denominator

7

5
(a) \(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\)

B1B12 Each column correct
SC B2 use correct matrix from MF1 Can be trig form
(b) (i)

B1B12 Stretch, in \(x\)-direction sf 5
(ii)

B1B12 Rotation, \(60^{\circ}\) clockwise
6
\(6 \quad\) (i) \(\quad \begin{aligned} & \text { (a) } \\ & \text { (b) }\end{aligned}\)
B1B12 Circle centre (\(3,-4\)), through origin
B1B12 Vertical line, clearly \(x=3\)
\(\qquad\)
(ii)

B1ft Inside their circle
B1ft 2 And to right of their line, if vertical
Either
\(\alpha+\beta=-2 k \quad \alpha \beta=k\)
\(y^{2}-4 k y+4 k=0\)

\section*{Or}
\(\alpha+\beta=-2 k\)
\(\frac{-2 k}{\alpha}\)
\(y=\frac{-2 k}{x}\)
\(y^{2}-4 k y+4 k=0\)

Or
\(-k \pm \sqrt{k^{2}-k}\)
\(\frac{\alpha+\beta}{\alpha}=\frac{2 k}{k+\sqrt{k^{2}-k}}, \frac{\alpha+\beta}{\beta}=\frac{2 k}{k-\sqrt{k^{2}-k}}\)
\[
y^{2}-4 k y+4 k=0
\]

B1B1 State or use correct results
M1 Attempt to find sum of new roots
A1 Obtain \(4 k\)
M1 Attempt to find product of new roots
A1 Obtain \(4 k\)
B1ft 7 Correct quadratic equation a.e.f.

B1 State or use correct result

B1 Find roots of original equation
B1 Express both new roots in terms of \(k\)

M1 Attempt to find sum of new roots
A1 Obtain \(4 k\)
M1
A1
B1ft Correct quadratic equation a.e.f.

8 (i)
(ii)
\[
\frac{1}{2}(\sqrt{n+2}+\sqrt{n+1}-\sqrt{2}-1)
\]

M1 Express terms as differences using (i)
M1 Attempt this for at least \(1^{\text {st }}\) three terms
A1 \(\quad 1^{\text {st }}\) three terms all correct
A1 Last two terms all correct
M1 Show pairs cancelling
A1 6 Obtain correct answer, in terms of \(n\)

M1 Attempt to rationalise denominator or cross multiply
A1 2 Obtain given answer correctly
(iii)

B1 \(\begin{array}{lll}\mathbf{1} & \text { Sensible statement for divergence }\end{array}\)

M1 Show correct expansion process for \(3 \times 3\)
M1 Correct evaluation of any \(2 \times 2\)
\(\operatorname{det} \mathbf{A}=a^{2}-a\)
(ii) (a)
(b)
(c)

\section*{GCE}

\section*{Mathematics}

Advanced GCE
Unit 4725: Further Pure Mathematics 1

\section*{Mark Scheme for January 2011}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk
\begin{tabular}{|c|c|c|}
\hline (i) \(\quad\left(\begin{array}{ll}7 & 9\end{array}\right)\) & B1B1 2 & \begin{tabular}{l}
Each element correct \\
SC \((7,9)\) scores B1
\end{tabular} \\
\hline (ii) (18) & \begin{tabular}{l}
B1* \\
depB1 2
\end{tabular} & \begin{tabular}{l}
Obtain correct value \\
Clearly given as a matrix
\end{tabular} \\
\hline (iii) \(\left(\begin{array}{cc}12 & -4 \\ 6 & -2\end{array}\right)\) & M1 & Obtain \(2 \times 2\) matrix \\
\hline & \[
\begin{array}{ll}
\text { A1 } & \\
\text { A1 } & \mathbf{3} \\
7 &
\end{array}
\] & Obtain 2 correct elements Obtain other 2 correct elements \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2. (i) & \(-12+13 i\) & \multicolumn{2}{|l|}{B1B1 2} & Real and imaginary parts correct \\
\hline \multirow[t]{6}{*}{(ii)} & \multirow{6}{*}{\[
\frac{27}{37}-\frac{14}{37} \mathrm{i}
\]} & B1 & & \(z^{*}\) seen \\
\hline & & M1 & & Multiply by \(w^{*}\) \\
\hline & & A1 & & Obtain correct real part or numerator \\
\hline & & & & \\
\hline & & A1 & 4 & Obtain correct imaginary part or denom Sufficient working must be shown \\
\hline & & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3 & & \begin{tabular}{l}
B1* \\
M1* \\
A1* \\
depA1 4 \\
4
\end{tabular} & \begin{tabular}{l}
Establish result true for \(n=1\) or 2 \\
Use given result in recurrence relation in a relevant way \\
Obtain \(2^{n}+1\) correctly \\
Specific statement of induction conclusion
\end{tabular} \\
\hline 4 & Either & B1 & Correct value for \(\sum r\) stated or used \\
\hline & & M1 & Express as sum of two series \\
\hline & \[
\frac{a}{4} n^{2}(n+1)^{2}+\frac{b n}{2}(n+1)
\] & A1 & Obtain correct unsimplified answer \\
\hline & & M1 & Compare coefficients or substitute values for \(n\) \\
\hline & \[
\begin{aligned}
& a=4 \quad b=-4 \\
& \boldsymbol{O r}
\end{aligned}
\] & A1 A16 & Obtain correct answers \\
\hline & & M1 & Use 2 values for \(n\) \\
\hline & \(a+b=04 a+b=12\) & A1 A1 & Obtain correct equations \\
\hline & \(a=4 \quad b=-4\) & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 A1 }
\end{aligned}
\] & Solve simultaneous equations Obtain correct answers \\
\hline & & 6 & \\
\hline 5 & & B1 & \(\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}\) seen or implied \\
\hline & & M1 & Use product inverse correctly \\
\hline & \(\mathbf{A}^{2}\) & \[
\begin{aligned}
& \text { A1 cao } 3 \\
& 3^{2}
\end{aligned}
\] & Obtain correct answer \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
6 (i) (a) \\
(b)
\end{tabular} & \[
\begin{array}{ll}
\begin{array}{l}
\text { B1* }
\end{array} \\
\text { depB1 } 2 \\
\text { B1 } & \\
\text { B1 } & \\
\text { B1ft } & 3
\end{array}
\] & \begin{tabular}{l}
Vertical line \\
Clearly through (4,0) \\
Sloping line with +ve slope \\
Through (0, -2) \\
Half line starting on \(y\)-axis \(45^{\circ}\) shown convincingly
\end{tabular} \\
\hline \multirow[t]{5}{*}{(ii)} & B1ft & Shaded to left of their (i) (a) \\
\hline & B1ft & Shaded below their (i) (b) must be +ve slope \\
\hline & B1ft 3 & Shaded above horizontal through their (0, -2) \\
\hline & & NB These 3 marks are independent, but \(3 / 3\) only for fully correct answer. \\
\hline & 8 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 7 (i) \(\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)\) & B1 B1 2 & Each column correct \\
\hline (ii) & \[
\begin{aligned}
& \text { B1* } \\
& \text { depB1 } 2
\end{aligned}
\] & Enlargement or stretch in \(x\) and \(y\) axes Scale factor \(\sqrt{3}\) \\
\hline \multirow[t]{3}{*}{(iii) (a)} & B1 & \((2,0),(6,2)\) indicated \\
\hline & B1 & \((8,2)\) seen \\
\hline & B1 3 & Accurate diagram, including unit square \\
\hline \multirow[t]{3}{*}{(b) \(\operatorname{det} \mathrm{C}=4\)} & B1 & Correct value found \\
\hline & B1 2 & Scale factor for area \\
\hline & 9 & \\
\hline
\end{tabular}

8 (i) Either
\begin{tabular}{|c|c|c|c|}
\hline \[
\alpha+\beta=\frac{1}{2}, \alpha \beta=\frac{3}{2}
\] & B1 & \multicolumn{2}{|r|}{State or use both correct results in (i) or (ii)} \\
\hline \[
\alpha+\beta+\frac{\alpha+\beta}{\alpha \beta} \text { or } \alpha+\beta+\frac{2}{3}(\alpha+\beta)
\] & M1 & & Express sum of new roots in terms of \\
\hline & & & \(\alpha+\beta\) and \(\alpha \beta\) \\
\hline & M1 & & Substitute their values into their expression \\
\hline \[
p=\frac{5}{6}
\] & A1 & 4 & Obtain given answer correctly \\
\hline \multicolumn{4}{|l|}{Or} \\
\hline \(3 u^{2}-u+2(=0)\) & B1 & & Substitute \(x=\frac{1}{u}\) and obtain correct quadratic (equation) \\
\hline & M1 & & Use sum of roots of new equation \\
\hline & M1 & & Substitute their values into their expression \\
\hline \[
p=\frac{5}{6}
\] & A1 & & Obtain given answer correctly \\
\hline
\end{tabular}
(ii) \(\alpha^{\prime} \beta^{\prime}=\alpha \beta+\frac{1}{\alpha \beta}+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}\)
\(\frac{\beta}{\alpha}+\frac{\alpha}{\beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}\)
\(q=\frac{1}{3}\)

B1 Correct expansion

M1 \(\quad\) Show how to deal with \(\alpha^{2}+\beta^{2}\)
A1 Obtain correct expression
M1 \(\quad\) Substitute their values into \(\alpha^{\prime} \beta^{\prime}\)
A1 5 Obtain correct answer a.e.f.
9
M1
M1
Show correct expansion process for \(3 \times 3\) Correct evaluation of any \(2 \times 2\)
A1 3 correct answer
M1 \(\quad\) Solve \(\operatorname{det} \mathbf{M}=0\)
A1A1 3 Obtain correct answer, ft their (i)
M1 Attempt to eliminate one variable
A1 Obtain 2 correct equations in 2 unknowns
A1 3 Justify infinite number of solutions
SC \(3 / 3\) if unique solution conclusion consistent with their (i) or (ii)
\begin{tabular}{|c|c|c|c|}
\hline 10 (i) & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & 2 & Use correct denominator Obtain given answer correctly \\
\hline \multirow[t]{4}{*}{(ii)} & M1 & & Express terms as differences using (i) \\
\hline & M1 & & Do this for at least 3 terms \\
\hline & A1 & & First 3 terms all correct \\
\hline & A1 & & Last 2 terms all correct \\
\hline \multirow[t]{3}{*}{\[
\frac{1}{2}-\frac{1}{n+1}+\frac{1}{n+2}
\]} & & & \\
\hline & M1 & & Show relevant cancelling \\
\hline & A1 & 6 & Obtain correct answer a.e.f. \\
\hline \multirow[t]{3}{*}{\[
\text { (iii) } \begin{aligned}
& \frac{1}{2} \\
& \frac{1}{n+1}-\frac{1}{n+2}
\end{aligned}
\]} & \multicolumn{2}{|l|}{B1ft} & \(S_{\infty}\) stated or start at \(n+1\) as in (ii) \\
\hline & \multirow[b]{2}{*}{M1} & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{\(S_{\infty}\) - their (ii) or show correct cancelling} \\
\hline & & & \\
\hline \multirow[t]{3}{*}{\[
\frac{1}{(n+1)(n+2)}
\]} & A1 & 3 & \\
\hline & & 3 & Obtain given answer correctly \\
\hline & 11 & & \\
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

\section*{Mathematics}

Advanced GCE
Unit 4725: Further Pure Mathematics 1

\section*{Mark Scheme for June 2011}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk
\begin{tabular}{|c|c|c|}
\hline 1 (i) \(\left(\begin{array}{cc}4 & 4 a \\ 12 & 0\end{array}\right)\) & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
3
\end{tabular} & \begin{tabular}{l}
3B seen or implied \\
2 elements correct \\
Other 2 elements correct, a.e.f., including brackets
\end{tabular} \\
\hline (ii) \(\left(\begin{array}{cc}4+4 a & 3 a \\ 4 & 1\end{array}\right)\) & \[
\begin{array}{ll}
\text { M1 } & \\
\text { A1 } & 2 \\
5 &
\end{array}
\] & \begin{tabular}{l}
Sensible attempt at matrix multiplication \\
for \(\mathbf{A B}\) or \(\mathbf{B A}\) \\
Obtain correct answer
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
B1 \\
M1* \\
DM1 \\
A1 \\
A1 5 \\
5
\end{tabular} & \begin{tabular}{l}
Establish result true for \(n=1\) or 2 \\
Add next term to given sum formula Combine with correct denominator Obtain correct expression convincingly Specific statement of induction conclusion, provided \({ }^{\text {st }} 4\) marks earned
\end{tabular} \\
\hline \[
\begin{array}{cc}
3 & k^{2}-16 \\
& k= \pm 4
\end{array}
\] & \[
\begin{array}{ll}
\text { B1 } & \\
\text { M1 } & \\
\text { A1 } & \mathbf{3} \\
\mathbf{3} &
\end{array}
\] & Obtain correct det Equate their det to 0 Obtain correct answers \\
\hline 4
\[
\begin{aligned}
& 3 \times \frac{1}{6} \times 2 n(2 n+1)(4 n+1)-\frac{1}{2} \times 2 n \\
& 2 n^{2}(4 n+3)
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 A1 \\
M1 \\
A2 6 \\
6
\end{tabular} & \begin{tabular}{l}
Express as sum of two series \\
Each term correct a.e.f. \\
Attempt to factorise \\
Completely correct answer, \\
(A1 if one factor not found)
\end{tabular} \\
\hline 5 (i) \(|a|=2\) \(\arg a=60^{\circ}, \frac{\pi}{3}, 1.05\) & \[
\begin{array}{ll}
\text { B1 } & \\
\text { B1 } & \mathbf{2}
\end{array}
\] & \begin{tabular}{l}
Correct modulus \\
Correct argument
\end{tabular} \\
\hline (ii) & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1* \\
DB1 \\
6 \\
8
\end{tabular} & \begin{tabular}{l}
Circle \\
Centre (\(1, \sqrt{3}\)) \\
Through origin, centre \((\pm 1, \pm \sqrt{3})\) and another y intercept \\
Vertical line \\
Through \(a\) or their centre, with +ve gradient Correct half line
\end{tabular} \\
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

\section*{Mathematics}

Advanced GCE
Unit 4725: Further Pure Mathematics 1

\section*{Mark Scheme for January 2012}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\section*{Annotations}
\begin{tabular}{|l|l|}
\hline Annotation in scoris & Meaning \\
\hline\(\checkmark\) and \(\mathbf{x}\) & \\
\hline BOD & Benefit of doubt \\
\hline FT & Follow through \\
\hline ISW & Ignore subsequent working \\
\hline M0, M1 & Method mark awarded 0, 1 \\
\hline A0, A1 & Accuracy mark awarded 0, 1 \\
\hline B0, B1 & Independent mark awarded 0,1 \\
\hline SC & Special case \\
\hline\(\wedge\) & Omission sign \\
\hline MR & Misread \\
\hline Highlighting & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Other abbreviations \\
in mark scheme
\end{tabular} & Meaning \\
\hline E1 & Mark for explaining \\
\hline U1 & Mark for correct units \\
\hline G1 & Mark for a correct feature on a graph \\
\hline M1 dep* & Method mark dependent on a previous mark, indicated by * \\
\hline cao & Correct answer only \\
\hline oe & Or equivalent \\
\hline rot & Rounded or truncated \\
\hline soi & Seen or implied \\
\hline www & Without wrong working \\
\hline
\end{tabular}

\section*{Subject-specific Marking Instructions}
a Annotations should be used whenever appropriate during your marking.
The \(A, M\) and \(B\) annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
g Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last
(complete) attempt and ignore the others.
NB Follow these maths-specific instructions rather than those in the assessor handbook.
h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 4 & & & \[
\frac{1}{4} n^{2}(n+1)^{2}-\frac{3}{2} n(n+1)
\]
\[
\frac{1}{4} n(n+1)(n+3)(n-2)
\] & \begin{tabular}{l}
M1 \\
DM1 \\
A1 \\
M1 \\
A1 \\
A1 \\
[6]
\end{tabular} & \begin{tabular}{l}
Express as difference of two series Use standard series results Obtain correct unsimplified answer \\
Attempt to factorise At least factor of \(n(n+1)\) Obtain correct answer
\end{tabular} & From their unsimplified answer \\
\hline 5 & (a) & & \(\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)\) & \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} & Each column correct & \\
\hline 5 & (b) & (i) & & \[
\begin{gathered}
\text { B1 } \\
\text { DB1 } \\
{[2]}
\end{gathered}
\] & \begin{tabular}{l}
Stretch \\
Scale factor 4 in the \(y\) direction
\end{tabular} & Not "in the \(y\)-axis" \\
\hline 5 & (b) & (ii) & 4 & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]}
\end{aligned}
\] & Correct value of determinant Scale factor for area & Allow scale factor of stretch or eqiv. \\
\hline 6 & & & & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
[6]
\end{tabular} & \begin{tabular}{l}
Circle \\
Centre \((\sqrt{3}, 1)\) \\
Passing through \(O\) and crosses y-axis again Line, with correct slope shown \(\frac{1}{2}\) line starting at \(O\) Completely correct diagram for both loci
\end{tabular} & Ignore shading \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & \multirow[t]{2}{*}{Answer} & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 7 & (i) & & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& {[3]}
\end{aligned}
\] & Attempt at matrix multiplication Obtain \(\mathbf{M}^{2}\) correctly Obtain given answer correctly & \\
\hline 7 & (ii) & \(\left(\begin{array}{cc}3^{n} & 0 \\ 3^{n}-1 & 1\end{array}\right)\) & \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} & \begin{tabular}{l}
3 elements correct \\
\(4^{\text {th }}\) element correct
\end{tabular} & \\
\hline 7 & (iii) & \[
\left(\begin{array}{cc}
3^{k+1} & 0 \\
3^{k+1}-1 & 1
\end{array}\right)
\] & \[
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \\
& \text { B1 } \\
& \text { [4] }
\end{aligned}
\] & \begin{tabular}{l}
Show that their result is true for \(n=1\) or 2 Attempt to find \(\mathbf{M}^{k} \mathbf{M}\) or vice versa Obtain correct answer \\
Complete statement of induction conclusion
\end{tabular} & Must have \({ }^{\text {st }} 3\) marks \\
\hline 8 & (i) & & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
{[2]} \\
\hline
\end{gathered}
\] & Combine with a common denominator Obtain given answer correctly & \\
\hline 8 & (ii) & \[
\frac{n}{n+1}
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
[4]
\end{tabular} & \begin{tabular}{l}
Express terms using (i) \\
At least \(1^{\text {st }}\) two and last two correct \\
Show terms cancelling \\
Obtain correct answer, in terms of \(n\)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 8 & (iii) & \(1-\frac{n}{n+1}\) & \[
\begin{gathered}
\text { B1 } \\
\text { B1FT } \\
{[2]}
\end{gathered}
\] & \begin{tabular}{l}
\[
\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
\] \\
This value - (ii)
\end{tabular} & \\
\hline 9 & (i) & \(\operatorname{det} \mathbf{X}=\Delta=10-9 a-a^{2}\) & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
[3]
\end{tabular} & Show correct expansion process for \(3 \times 3\) Correct evaluation of any \(2 \times 2\) Obtain correct answer aef & \\
\hline 9 & (ii) & \(a=1\) or -10 & \[
\begin{gathered}
\text { M1 } \\
\text { A1FT } \\
\text { A1FT } \\
{[3]}
\end{gathered}
\] & \begin{tabular}{l}
Their \(\operatorname{det} \mathbf{X}=0\) \\
Obtain correct answers from their (i)
\end{tabular} & \\
\hline 9 & (iii) & \[
\frac{1}{\Delta}\left(\begin{array}{ccc}
-a & 2 & 6-9 a \\
5 & -a-9 & 18-3 a \\
-a & 2 & a^{2}-4
\end{array}\right)
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1ft \\
[4]
\end{tabular} & \begin{tabular}{l}
Show correct process for adjoint entries Obtain at least four correct entries in adjoint Obtain completely correct adjoint \\
Divide by their determinant
\end{tabular} & \\
\hline 10 & (i) & \[
\begin{aligned}
& \alpha+\beta+\gamma=3 \\
& \alpha \beta+\beta \gamma+\gamma \alpha=2 \\
& \alpha \beta \gamma=-\frac{2}{3}
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
[3]
\end{tabular} & State correct value State correct value State correct value & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & \begin{tabular}{l}
Answer \\
EITHER
\end{tabular} & Marks & \multicolumn{2}{|c|}{Guidance} \\
\hline 10 & (ii) & \[
\begin{aligned}
& \text { EITHER } \\
& c=-\frac{4}{9} \\
& \sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta \\
& 5 \\
& a=-5 \\
& \sum \alpha^{2} \beta^{2}=\left(\sum \alpha \beta\right)^{2}-2 \alpha \beta \gamma \sum \alpha \\
& b=8 \\
& \text { OR } \\
& 9 y^{3}-45 y^{2}+72 y-4=0 \\
& c=-\frac{4}{9} \\
& a=-5 \\
& b=8
\end{aligned}
\] & \[
\begin{gathered}
\text { M1 } \\
\text { A1FT } \\
\text { M1 } \\
\text { A1FT } \\
\text { A1FT } \\
\text { M1* } \\
\text { A1 } \\
\text { DM1 } \\
\text { A1 } \\
\text { [9] } \\
\text { B1 } \\
\text { M1 } \\
\text { DM1 } \\
\text { DM1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1FT } \\
\text { A1FT } \\
{[9]}
\end{gathered}
\] & \begin{tabular}{l}
\[
c=(\pm) \alpha^{2} \beta^{2} \gamma^{2}
\] \\
Obtain given correct answer \\
Use correct expression \\
Obtain correct value \\
Obtain answer correctly \\
Attempt to find an identity \\
Obtain correct identity \\
Use appropriate values \\
Obtain correct answer cao \\
State or use correct substitution \\
Rearrange, fractional indices isolated \\
Square both sides \\
Expand and simplify \\
Obtain correct equation \\
Use coefficients of their cubic \\
Obtain given answer correctly \\
Obtain correct answer \\
Obtain correct answer \\
SC mixture of methods only A1FT for \(a\) and \(b\)
\end{tabular} & \begin{tabular}{l}
FT for sign error in (i) \\
FT for sign error in (i) Sign change done correctly
\end{tabular} \\
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
PANCFTLE
CAMBRDKE ASSESSMENI
EMOUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

\section*{GCE}

\section*{Mathematics}

Advanced GCE
Unit 4725: Further Pure Mathematics 1

\section*{Mark Scheme for June 2012}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\section*{Annotations and abbreviations}
\begin{tabular}{|l|l|}
\hline Annotation in scoris & Meaning \\
\hline\(\checkmark\) and \(\mathbf{x}\) & \\
\hline BOD & Benefit of doubt \\
\hline FT & Follow through \\
\hline ISW & Ignore subsequent working \\
\hline M0, M1 & Method mark awarded 0, 1 \\
\hline A0, A1 & Accuracy mark awarded 0, 1 \\
\hline B0, B1 & Independent mark awarded 0,1 \\
\hline SC & Special case \\
\hline 1 & Omission sign \\
\hline MR & Misread \\
\hline Highlighting & \\
\hline Other abbreviations in mark scheme & Meaning \\
\hline E1 & Mark for explaining \\
\hline U1 & Mark for correct units \\
\hline G1 & Mark for a correct feature on a graph \\
\hline Dep/D & mark dependent on a previous mark, indicated by * \\
\hline cao & Correct answer only \\
\hline oe & Or equivalent \\
\hline rot & Rounded or truncated \\
\hline soi & Seen or implied \\
\hline www & Without wrong working \\
\hline A2 & Accuracy mark awarded 2 \\
\hline & \\
\hline
\end{tabular}

\section*{Subject-specific Marking Instructions for GCE Mathematics Pure strand}
a. Annotations should be used whenever appropriate during your marking.

The \(A, M\) and \(B\) annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c. The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.
If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.
NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 1 & (i) & \(21+11 \mathrm{i}\) & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]}
\end{aligned}
\] & Real part correct Imaginary part correct & \\
\hline 1 & (ii) & \[
\left\{\begin{array}{l}
26-29 \mathrm{i} \\
\frac{26}{41}-\frac{29}{41} \mathrm{i}
\end{array}\right.
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
[3]
\end{tabular} & Multiply by conjugate of denominator or find a pair of simultaneous equations Obtain correct numerator or real part Obtain correct denominator or imaginary part & \\
\hline 2 & (i) & \[
\left(\begin{array}{cc}
5 & 2 \\
13 & 6
\end{array}\right)
\] & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& {[2]}
\end{aligned}
\] & Multiplication attempt, 2 elements correct All elements correct & \\
\hline 2 & (ii) & \begin{tabular}{l}
EITHER
\[
\begin{aligned}
& \mathbf{B}^{-1} \mathbf{A}^{-1}=(\mathbf{A B})^{-1} \\
& \frac{1}{4}\left(\begin{array}{cc}
6 & -2 \\
-13 & 5
\end{array}\right)
\end{aligned}
\] \\
OR
\end{tabular} & \begin{tabular}{l}
B1 \\
B1ft \\
B1ft \\
[3] \\
B1 \\
B1 \\
B1
\end{tabular} & \begin{tabular}{l}
Stated or used \\
Divide by correct determinant \\
Both diagonals correct \\
Either inverse correct \\
Two elements correct in final answer, both inverses must be correct \\
All elements correct
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance & \\
\hline 3 & & \begin{tabular}{l}
EITHER
\[
\begin{aligned}
& a=-8 \\
& b=25
\end{aligned}
\] \\
OR
\[
\begin{aligned}
& a=-8 \\
& b=25
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { [4] } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
Use sum of root and conjugate \\
Obtain correct answer \\
Use product of root and conjugate \\
Obtain correct answer \\
Substitute \(4+3\) i or conjugate into equation \\
Equate real and imaginary parts \\
Obtain correct answer \\
Obtain correct answer
\end{tabular} & \\
\hline 4 & & \[
\frac{1}{2} n(n+1)(2 n+1)-\frac{3}{2} n(n+1)+2 n
\]
\[
n\left(n^{2}+1\right)
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A2 \\
[7]
\end{tabular} & \begin{tabular}{l}
Express as sum of 3 series \\
Use standard series results, at least 1 correct \\
Two terms correct \\
Third term correct \\
Obtain factor of \(n\) \\
Obtain correct answer c.a.o. \\
Allow A1 for \(\frac{1}{2\left(2 n^{2}+2\right)}\)
\end{tabular} & \\
\hline 5 & & & B1
M1*
DepM1
A1
B1
\([\mathbf{5}]\) & \begin{tabular}{l}
Verify result true when \(n=1\) \\
Add next term in series \\
Attempt to obtain \(\mathbf{3}^{k+1}\) correctly \\
Show sufficient working to justify correct expression \\
Clear statements of Induction processes, but \(1^{\text {st }}\) 4 marks must all be earned.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 6 & (i) & \(5 u^{2}+11 u+8=0\) & \[
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& {[3]}
\end{aligned}
\] & \begin{tabular}{l}
Attempt to clear fractions \\
Attempt to expand and simplify to a quadratic Obtain correct answer, must be an equation
\end{tabular} & \\
\hline 6 & (ii) & \[
\begin{aligned}
& \text { EITHER } \\
& u=\frac{1}{x}-1 \\
& \frac{8}{5} \\
& \text { OR } \\
& \frac{1}{\alpha \beta}-\frac{\alpha+\beta}{\alpha \beta}+1 \\
& \frac{8}{5}
\end{aligned}
\] & \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 FT } \\
{[3]} \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] & \begin{tabular}{l}
State or imply by using roots of new quadratic \\
Use their \(c / a\) \\
Obtain correct answer \\
Express in terms of \(\alpha+\beta\) and \(\alpha \beta\) \\
Use values \(-\frac{1}{2}\) and \(\frac{5}{2}\) correctly \\
Obtain correct answer
\end{tabular} & Must be values from original equation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 7 & (i) & & \begin{tabular}{l}
B1B1 \\
B1ft \\
B1ft \\
B1B1 \\
[6]
\end{tabular} & \begin{tabular}{l}
Circle, centre (3,4) \\
Touching \(x\)-axis, ft for \(\left(3_{2}-4\right)\) ete as centre Crossing \(y\)-axis twice Horizontal line, \(y\) intercept 4
\end{tabular} & \\
\hline 7 & (ii) & \(-1+4 \mathrm{i} \quad 7+4 \mathrm{i}\) & \[
\begin{gathered}
\text { B1B1 } \\
{[2]} \\
\hline
\end{gathered}
\] & State correct answers & \\
\hline 7 & (iii) & & \[
\begin{gathered}
\text { B1ft } \\
\text { B1 } \\
{[2]} \\
\hline
\end{gathered}
\] & Inside circle or above line Completely correct diagram & \\
\hline 8 & (i) & & \[
\begin{aligned}
& \text { B1 } \\
& {[1]}
\end{aligned}
\] & Show given answer correctly & \\
\hline 8 & (ii) & \[
1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1
\[
[6]
\]
\end{tabular} & \begin{tabular}{l}
Express terms as differences using (i) \\
Attempt this for at least first 3 terms \\
First 3 terms all correct \\
Last 2 terms correct \\
Show terms cancelling \\
Obtain correct answer, must be in terms of \(n\)
\end{tabular} & \\
\hline 8 & (iii) & \[
\frac{3}{2}
\]
\[
N=4
\] & \begin{tabular}{l}
B1ft \\
B1 \\
M1 \\
A1 \\
[4]
\end{tabular} & \begin{tabular}{l}
State or use correct sum to infinity \\
Their sum to infinity - their (ii) \(=\frac{11}{30}\) Attempt to solve correct equation Obtain only \(N=4\)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & \multirow[t]{2}{*}{Answer} & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 9 & (i) & & \[
\begin{gathered}
\begin{array}{c}
\mathrm{B} 1^{*} \\
\text { depB1 }
\end{array} \\
{[2]} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Shear \\
eg image of \((0,1)\) is \((2,1)\) or parallel to the \(x\) axis
\end{tabular} & \\
\hline 9 & (ii) & \[
\begin{aligned}
& \text { Either } \\
& \left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right) \\
& \text { Or } \\
& \mathbf{Z}=\left(\begin{array}{ll}
\kappa & b \\
e & d
\end{array}\right)\left(\begin{array}{ll}
\mathbf{1} & \mathbf{2} \\
\mathbf{0} & \mathbf{1}
\end{array}\right) \\
& \left(\begin{array}{ll}
\boldsymbol{\alpha} & \mathbf{2 a + b} \\
\frac{2 \varepsilon}{\varepsilon}+d
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
[5] \\
B1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
State \(\mathbf{Z}=\mathbf{Y X}\) \\
Obtain \(\mathbf{Y}=\mathbf{Z} \mathbf{X}^{-1}\) \\
State or use correct inverse \\
Matrix multiplication, 2 elements correct Obtain completely correct simplified exact matrix \\
Correct order for matrix multiplication \\
Obtain 2correct elements Obtain other 2 correct elements \\
Equate elements, 2 correct Obtain completely correct simplified exact matrix
\end{tabular} & \\
\hline 9 & (iii) & & \[
\begin{gathered}
\hline \mathrm{B}^{*} \\
\text { depB1 } \\
{[2]} \\
\hline
\end{gathered}
\] & Rotation \(60^{\circ}\) clockwise & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Answer & Marks & \multicolumn{2}{|l|}{Guidance} \\
\hline 10 & (i) & & \(a^{3}-4 a\) & \[
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& {[3]}
\end{aligned}
\] & Show correct expansion process for \(3 \times 3\) Correct evaluation of any \(2 \times 2\) Obtain correct answer & \\
\hline 10 & (ii) & (a) & & B1
[1] & \(\operatorname{det} \mathbf{D}=\mathbf{1 5}\) so unique sol'n or solve to find correct solution (\(-2 / 5,1,4 / 5\)) & SC B1 once if unique solution following their incorrect \(\operatorname{det} \mathbf{D}\) non zero \\
\hline 10 & (ii) & (b) & & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
Their \(\operatorname{det} \mathbf{D}=0\), so non-unique solutions \\
Attempt to solve equations with \(a=2\) \\
Explain inconsistency with correct working
\end{tabular} & \\
\hline 10 & (ii) & (c) & & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
[3]
\end{tabular} & \begin{tabular}{l}
Their \(\operatorname{det} \mathbf{D}=0\), so non-unique solutions \\
Attempt to solve equations with \(a=0\) \\
Explain consistency with correct working
\end{tabular} & \\
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

RECOGNISING ACHIEVEMENT
GCE

\section*{Mathematics}

Advanced Subsidiary GCE

\section*{Mark Scheme for January 2013}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

\section*{Annotations and abbreviations}
\begin{tabular}{|c|l|}
\hline Annotation in scoris & Meaning \\
\hline\(\checkmark\) and \(\mathbf{x}\) & \\
\hline BOD & Benefit of doubt \\
\hline FT & Follow through \\
\hline ISW & Ignore subsequent working \\
\hline M0, M1 & Method mark awarded 0,1 \\
\hline A0, A1 & Accuracy mark awarded 0,1 \\
\hline B0, B1 & Independent mark awarded 0,1 \\
\hline SC & Special case \\
\hline\(\wedge\) & Omission sign \\
\hline MR & Misread \\
\hline Highlighting & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
Other abbreviations in \\
mark scheme
\end{tabular} & Meaning \\
\hline E1 & Mark for explaining \\
\hline U1 & Mark for correct units \\
\hline G1 & Mark for a correct feature on a graph \\
\hline DM1 or M1 dep* & Method mark dependent on a previous mark, indicated by * \\
\hline cao & Correct answer only \\
\hline oe & Or equivalent \\
\hline rot & Rounded or truncated \\
\hline soi & Seen or implied \\
\hline www & Without wrong working \\
\hline
\end{tabular}

\section*{Subject-specific Marking Instructions for GCE Mathematics Pure strand}
a. Annotations should be used whenever appropriate during your marking.

The \(A, M\) and \(B\) annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c. The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 1 & (i) & \(\left(\begin{array}{cc}2 a-3 & 2 \\ 2 & 5\end{array}\right)\) & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& {[3]}
\end{aligned}
\] & \begin{tabular}{l}
I or 3I seen or used \\
2 elements correct Other 2 elements correct
\end{tabular} \\
\hline 1 & (ii) & \(\frac{1}{4 a-1}\left(\begin{array}{cc}4 & -1 \\ -1 & a\end{array}\right)\) or equivalent & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]}
\end{aligned}
\] & \begin{tabular}{l}
Divide by correct determinant \\
Both diagonals correct
\end{tabular} \\
\hline 2 & & \[
\frac{1}{6} n(n+1)(2 n+1)-n
\]
\[
\frac{1}{6} n(2 n+5)(n-1)
\] & \begin{tabular}{l}
M1* \\
DM1 \\
A1 \\
DM1 \\
A2 \\
[6]
\end{tabular} & \begin{tabular}{l}
Attempt to expand \((r-1)(r+1)\) \\
Use standard result for \(\sum r\) \\
Obtain correct unsimplified answer \\
Attempt to factorise \\
Obtain completely correct answer \\
Allow A1 if one bracket still contains a common factor
\end{tabular} \\
\hline 3 & (i) & \[
\begin{aligned}
& |z|=\sqrt{5} \\
& \operatorname{argz}=-26.6^{\circ} \text { or }-0.464
\end{aligned}
\] & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Allow 2.2 \\
Allow \(-27^{\circ}\) or \(-0.46(3)\)
\end{tabular} \\
\hline 3 & (ii) & \[
a+b=2, b-a=-8
\]
\[
a=5, b=-3
\] & \[
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& {[5]}
\end{aligned}
\] & \begin{tabular}{l}
\(z^{*}=2+\mathrm{i}\) stated or used \\
Obtain two equations from real and imaginary parts Obtain correct equations \\
Attempt to solve 2 linear equations \\
Obtain correct answers
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 4 & (i) & \(4 u^{2}+6 u+k+2=0\) & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& {[2]}
\end{aligned}
\] & Substitute and attempt to simplify Obtain correct answer, must be an equation \\
\hline 4 & (ii) & \begin{tabular}{l}
Either
\[
\frac{k+2}{4}
\] \\
Or
\[
\frac{k+2}{4}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1ft \\
[2] \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
Use products of roots of new quadratic i.e. use (\(\pm\)) \(c / a\) Obtain correct answer, from their quadratic \\
Use sum and product of roots of original equation Obtain correct answer
\end{tabular} \\
\hline 5 & & \[
\begin{aligned}
& 3 \lambda^{2}-7 \lambda+2 \\
& \frac{1}{3} \text { or } 2
\end{aligned}
\] & M1
M1
A1
B1*
DM1
A1
\([6]\) & \begin{tabular}{l}
Show correct expansion process for correct \(3 \times 3\) Correct evaluation of any \(2 \times 2\) \\
Obtain correct 3 term quadratic \\
Equate their det to 0 \\
Attempt to solve a quadratic equation \\
Obtain correct answers
\end{tabular} \\
\hline 6 & (i) & \(\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)\) & \begin{tabular}{l}
B1 B1 \\
[2]
\end{tabular} & Each column correct \\
\hline 6 & (ii) & \[
\begin{array}{cc}
\text { Either } & O r \\
\mathrm{P}:\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) & \left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
\mathrm{Q}:\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
\end{array}
\] & \[
\begin{gathered}
\text { B1 DB1 } \\
\text { B1 } \\
\text { B1 DB1 } \\
\text { B1 } \\
{[6]} \\
\hline
\end{gathered}
\] & \begin{tabular}{lc}
Either & Or \\
\begin{tabular}{l}
Stretch, s.f. 2 in \(y\) direction \\
Correct matrix
\end{tabular} & Shear, \(x\)-axis invariant e.g. \((0,1) \rightarrow(2,1)\) \\
Shear, \(x\) axis invariant e.g. \((0,1) \rightarrow(1,1) \quad\) Stretch, s.f. 2 in \(y\) direction, \\
Correct matrix \\
N.B. "in the \(\boldsymbol{x} / \boldsymbol{y}\) axis" is incorrect & \\
\hline A
\end{tabular} \\
\hline 6 & (iii) & PQ: \(\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right) \quad\left(\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right)\) & \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} & Attempt at matrix multiplication of two \(2 \times 2\) matrices from (ii) Obtain correct result cao \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} & Answer & Marks & Guidance \\
\hline 7 & (i) & (a) & & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]}
\end{aligned}
\] & Circle Centre \(O\) and radius 2 \\
\hline 7 & (i) & (b) & & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& {[3]}
\end{aligned}
\] & Horizontal line \((3,1)\) on their line \(1 / 2\) line to left i.e. horizontal \\
\hline 7 & (ii) & & & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]}
\end{aligned}
\] & Shade only inside their circle or above their horizontal line Completely correct diagram \\
\hline 8 & (i) & & & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& {[2]}
\end{aligned}
\] & Obtain correct numerator from addition or partial fractions Obtain given answer correctly \\
\hline 8 & (ii) & & \[
\frac{n}{(n+1)(n+2)}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
[5]
\end{tabular} & \begin{tabular}{l}
Express at least three relevent terms using (i) \(1^{\text {st }}\) three terms correct \\
Last two terms correct \\
Show correct cancelling Obtain given answer correctly
\end{tabular} \\
\hline 8 & (iii) & & \[
-\frac{1}{6}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& {[2]} \\
& \hline
\end{aligned}
\] & Sum 1 to \(\infty-1^{\text {st }}\) term or start process at \(r=2\) Obtain correct answer \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 9 & (i) & & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& {[3]}
\end{aligned}
\] & Attempt at complete expansion Obtain correct unsimplified answer Obtain given answer correctly \\
\hline 9 & (ii) & Either
\[
\begin{aligned}
& \sum \alpha=-p, \sum \alpha \beta=-4, \alpha \beta \gamma=-3 \\
& \frac{16-6 p}{9} \\
& \text { Or } \\
& \frac{9 u^{3}+(6 p-16) u^{2}+\left(8+p^{2}\right) u-1=0}{\frac{16-6 p}{9}}
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
[5] \\
B1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
State (anywhere) correct values for \(\sum \alpha, \sum \alpha \beta, \sum \alpha \beta \gamma\) \\
Express given expression as a single fraction \\
Obtain correct expression using (i) \\
Use their values for sum of roots etc. in their expression \\
Obtain correct answer \\
Use substitution \(1 / \sqrt{u}\) \\
Rearrange appropriately and square out Obtain correct co-efficients of \(u^{3}\) and \(u^{2}\) \\
Use (+/-)b/a from their cubic \\
Obtain correct answer
\end{tabular} \\
\hline 10 & (i) & \(\frac{2}{3}, \quad \frac{2}{5}, \quad \frac{2}{7}\) & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& {[3]}
\end{aligned}
\] & B1 x 3, Obtain 3 correct values Justify given answer \\
\hline 10 & (ii) & \[
\frac{2}{2 n-1}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& {[2]}
\end{aligned}
\] & Fraction, in terms of \(n\), with correct numerator or denominator Obtain correct answer a.e.f. \\
\hline 10 & (iii) & \[
\frac{2}{2(n+1)-1}
\] & B1ft
M1
A1
A1
B1
[5] & \begin{tabular}{l}
Verify result true when \(n=1\), for their (ii), or \(\mathrm{n}=2,3\) or 4 \\
Expression for \(u_{n+1}\) using recurrence relation in terms of \(n\) using their (ii) \\
Correct unsimplified answer \\
Correct answer in correct form \\
Specific statement of induction conclusion, previous 4 marks must be earned, \(n=1\) \\
must be verified
\end{tabular} \\
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

GCE

\section*{Mathematics}

Advanced Subsidiary GCE
Unit 4725: Further Pure Mathematics 1

\section*{Mark Scheme for June 2013}

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

\section*{Annotations}
\begin{tabular}{|l|l|}
\hline Annotation in scoris & Meaning \\
\hline\(\checkmark\) and \(\mathbf{x}\) & \\
\hline BOD & Benefit of doubt \\
\hline FT & Follow through \\
\hline ISW & Ignore subsequent working \\
\hline M0, M1 & Method mark awarded 0, 1 \\
\hline A0, A1 & Accuracy mark awarded 0, 1 \\
\hline B0, B1 & Independent mark awarded 0, 1 \\
\hline SC & Special case \\
\hline A & Omission sign \\
\hline MR & Misread \\
\hline Highlighting & \\
\hline \begin{tabular}{l}
Other abbreviations in \\
mark scheme
\end{tabular} & Meaning \\
\hline E1 & Mark for explaining \\
\hline U1 & Mark for correct units \\
\hline G1 & Mark for a correct feature on a graph \\
\hline M1 dep* & Method mark dependent on a previous mark, indicated by * \\
\hline cao & Correct answer only \\
\hline oe & Or equivalent \\
\hline rot & Rounded or truncated \\
\hline soi & Seen or implied \\
\hline www & Without wrong working \\
\hline aef & Any equivalent form \\
\hline
\end{tabular}

\section*{Subject-specific Marking Instructions for GCE Mathematics Pure strand}
a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c. The following types of marks are available.

\section*{M}

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the \(M\) marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 1 & & \[
\begin{aligned}
& \sqrt{3} \\
& 2 \sqrt{3} \\
& 3-\sqrt{ } 3 i \\
& -\sqrt{3} i
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1FT \\
B1FT \\
B1FT \\
[6]
\end{tabular} & Use correct trig expression Obtain correct answer Correct expression for modulus Obtain correct answer aef Correct conjugate seen or implied Correct answer \\
\hline 2 & (i) & \(\left(\begin{array}{ll}7 & 23\end{array}\right)\) & \begin{tabular}{l}
B1B1 \\
[2]
\end{tabular} & Each element correct, missing brackets B1 only \\
\hline 2 & (ii) & \begin{tabular}{l}
\[
\left(\begin{array}{ll}
6 & -15 \\
4 & -10
\end{array}\right)
\] \\
\(\operatorname{det} \mathbf{C B}=0\) \\
singular
\end{tabular} & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1FT } \\
\text { A1FT } \\
\text { [5] } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Obtain \(2 \times 2\) matrix \\
Obtain 2 correct elements \\
Obtain other 2 correct elements \\
Obtain their det \(\mathbf{C B}\), must be a \(2 \times 2\) matrix \\
Correct conclusion from their \(\operatorname{det} \mathbf{C B}\)
\end{tabular} \\
\hline 3 & & \[
\begin{aligned}
& x^{2}-y^{2}=11 \text { and } x y=6 \sqrt{5} \\
& \pm(2 \sqrt{5}+3 \mathrm{i})
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1* \\
DM1 \\
A1 \\
A1 \\
[6]
\end{tabular} & \begin{tabular}{l}
Attempt to equate real and imaginary parts of \((x+i y)^{2}\) and \(11+12 \sqrt{ } 5\) \\
Obtain both results cao \\
Obtain a quadratic in \(x^{2}\) or \(y^{2}\) \\
Solve a 3 term quadratic to obtain a value for \(x\) or \(y\) \\
Obtain 1 correct answer as complex number \\
Obtain only the other correct answer
\end{tabular} \\
\hline 4 & & \(2\left(2^{k+1}-2\right)+2\) or \(2^{k+1}+2^{k+1}-2\) & \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1 } \\
\text { B1 } \\
{[6]} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Establish result true for \(n=1\) or \(n=2\) \\
Multiply \(\mathbf{M}\) and \(\mathbf{M}^{k}\), either order \\
Obtain correct element \\
Obtain other 3 correct elements \\
Obtain \(2^{k+2}-2\) convincingly \\
Specific statement of induction conclusion, provided \(5 / 5\) earned so far and verified for \(n=1\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 5 & & \[
\begin{aligned}
& 4 \times \frac{1}{4} n^{2}(n+1)^{2}-3 \times \frac{1}{6} n(n+1)(2 n+1)+\frac{1}{2} n(n+1) \\
& n^{3}(n+1)
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A2 \\
[6]
\end{tabular} & \begin{tabular}{l}
Express as sum of three series \\
Obtain 2 correct (unsimplified) terms \\
Obtain correct \(3^{\text {rd }}\) (unsimplified) term \\
Attempt to factorise, at least factor of \(n\) \\
Obtain correct answer, A1 if not fully factorised
\end{tabular} \\
\hline 6 & (i) & \[
\arg (z-3 i)=\frac{1}{4} \pi
\]
\[
|z-3 i|=3
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
[4]
\end{tabular} & Use \(\arg (z-a)=\theta\) in equation for \(l\) condone missing brackets Obtain correct answer Use \(|z-a|=k\) in equation for \(C, k\) must be real Obtain correct answer \\
\hline & (ii) & \[
\begin{aligned}
& |z-3 i| \leq 3 \text { or e.g. } x^{2}+(y-3)^{2} \leq 9 \\
& \frac{1}{4} \pi \leq \arg (z-3 i) \leq \frac{1}{2} \pi \text { or } y \geq x+3, x \geq 0
\end{aligned}
\] & \[
\begin{gathered}
\text { B1 } \\
\text { B1 B1 } \\
{[3]} \\
\hline
\end{gathered}
\] & Obtain correct inequality, or answer consistent with sensible (i) Each correct single inequality, or answer consistent with sensible (i) SC if < used consistently, but otherwise all correct, B2 \\
\hline 7 & (i) & \(\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\) & \begin{tabular}{l}
B1B1 \\
[2]
\end{tabular} & Each column correct \\
\hline & (ii) & \(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\) & \begin{tabular}{l}
B1B1 \\
[2]
\end{tabular} & Each column correct \\
\hline & (iii) & \(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\) & M1 A1FT & Attempt at matrix multiplication in correct order Obtain correct answer from their (i) and (ii) \\
\hline & (iv) & Reflection, in \(y=x\) & \[
\begin{gathered}
\text { B1B1 } \\
{[2]}
\end{gathered}
\] & Correct description of their (iii) only \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 8 & & Either
\[
\begin{aligned}
& \sum \alpha=-\frac{6}{k}, \sum \alpha \beta=\frac{1}{k} \\
& \sum \alpha \beta+2 \sum \alpha+3 \\
& 3-\frac{11}{k} \\
& \text { Or } \\
& k u^{3}+(6-3 k) u^{2}+(3 k-11) u+2-k=0 \\
& 3-\frac{11}{k}
\end{aligned}
\] & \begin{tabular}{l}
B1B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
[6] \\
B1 \\
M1 \\
A1 A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
Correct values stated or used \\
Expand brackets \\
Obtain correct expression aef \\
Use their values, in terms of \(k\), for \(\sum \alpha\) and \(\sum \alpha \beta\) \\
Obtain correct answer aef \\
State or use substitution \(x=u-1\) \\
Expand and attempt to simplify coefficients \\
Obtain at least correct \(1^{\text {st }}\) and \(3^{\text {rd }}\) terms \\
Use their " \(\frac{c}{a}\) " \\
Obtain correct answer a.e.f.
\end{tabular} \\
\hline 9 & (i) & & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& {[2]} \\
& \hline
\end{aligned}
\] & Use correct denominator or partial fractions Obtain given answer convincingly \\
\hline & (ii) & \[
\frac{1}{2}-\frac{1}{6 n+2}
\] & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
[6]
\end{tabular} & \begin{tabular}{l}
Express at least \(1^{\text {st }}\) two and last term using (i) \\
All terms correct \\
Show correct terms cancelling \\
Obtain correct unsimplified answer \\
Include \(\frac{1}{3}\) and combine their sum as a single fraction \\
Obtain given answer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} & Answer & Marks & Guidance \\
\hline 10 & (i) & \[
a+3
\]
\[
a=-3
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1FT \\
[5]
\end{tabular} & \begin{tabular}{l}
Show correct expansion process for \(3 \times 3\) \\
Correct evaluation of any \(2 \times 2\) \\
Obtain correct answer \\
Use \(\operatorname{det} \mathbf{A}=0\) \\
Obtain correct answer from their \(\operatorname{det} \mathbf{A}\)
\end{tabular} \\
\hline & (ii) & \[
\begin{aligned}
& \frac{1}{a+3}\left(\begin{array}{ccc}
1 & -1 & 1 \\
7 & a-4 & 1-2 a \\
-11 & 8-a & 3 a-2
\end{array}\right) \\
& \frac{1}{a+3}\left(\begin{array}{c}
2 \\
2-4 a \\
7 a-1
\end{array}\right)
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A2 \\
[7]
\end{tabular} & \begin{tabular}{l}
Show correct processes for adjoint entries Obtain at least 4 correct entries in adjoint Obtain completely correct adjoint Divide adjoint by their \(\operatorname{det} \mathbf{A}\) \\
Pre-multiply column matrix by their \(\mathbf{A}^{-1}\) \\
Obtain correct answer, A1 for 1 element correct
\end{tabular} \\
\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
```


[^0]:    $\qquad$

