OCR Maths FP1

Mark Scheme Pack

2005-2013

PhysicsAndMathsTutor.com

Mark Scheme 4725 June 2005

1.	$6\Sigma r^2 + 2\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
	$6\Sigma r^2 = n(n+1)(2n+1)$	A1		Correct formula stated
	$2\Sigma r = n(n+1)$	A1		Correct formula stated
	$\Sigma 1 = n$	A1		Correct term seen
	$n(2n^2+4n+3)$	M1	6	Correct algebraic processes including factorisation and simplification
		Al	6	Obtain given answer correctly
2.	(i) $A^2 = \begin{pmatrix} 3 & 8 \end{pmatrix}$	M1		Attempt to find A^2 , 2 elements correct
	(411)	A1		All elements correct
	$\mathbf{4A} = \begin{pmatrix} 4 & 8 \\ 4 & 12 \end{pmatrix}$	M1		Use correct matrix 4A
	$\mathbf{A}^2 = 4\mathbf{A} - \mathbf{I}$	A1	4	Obtain given answer correctly
	(ii) A ⁻¹ =4I - A	M1 A1	2 6	Multiply answer to (i) by A^{-1} or obtain A^{-1} or factorise $A^2 - 4A$ Obtain given answer correctly
3.	(i) $22 - 2i$	B1B1	2	Correct real and imaginary parts
	(ii) $z^* = 2 - 3i$ 5 - 14i	B1 B1B1	3	Correct conjugate seen or implied Correct real and imaginary parts
	(iii) $\frac{4}{17} + \frac{1}{17}i$	M1 A1	2	Attempt to use w^* Obtain correct answer in any form
			7	

4.		M1		Attempt to equate real and imaginary parts of
	$r^{2} - v^{2} = 21$ and $rv = -10$			$(x + iy)^2$ and 21 –20i
	x y 21 dive $xy = 10$	A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in x ⁻ or y ⁻
	<i>x</i>	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 2$
	$\pm (5-2i)$	A1	6	Obtain correct answers as complex numbers
5	2	N/1	6	Chow correct process for subtracting fractions
5.	(i) $\frac{(r+1)^2 - r(r+2)}{r(r+2)}$			Show correct process for subtracting fractions
	(r + 2)(r + 1)			
	1			
		A1	2	Obtain given answer correctly
	(r + 1)(r + 2)			
	(ii) EITHER			
	$\frac{2}{2} - \frac{1}{1} + \frac{3}{2} - \frac{2}{2} \dots \frac{n+1}{2} - \frac{n}{2}$	M1		Express terms as differences using (I)
	3 2 4 3 n+2 n+1	A1		At least first two and last term correct
	n + 1 = 1	M1		Show or imply that pairs of terms cancel
	$\frac{1}{n+2} = \frac{1}{2}$	A1	4	Obtain correct answer in any form
	$n + \Sigma - \Sigma$,	•	
	OR			
		M2		State that $\sum u_r = f(n+1) - f(1)$
		A 1 A 1		r = 1
		AIAI		Each term correct
	(iii) $\frac{1}{2}$	B1 ft	1	Obtain walve from their own to a terms
		-		Obtain value from their sum to <i>n</i> terms
	2		7	
6.	(i) Circle	B1		Sketch(s) showing correct features, each mark
	Centre (0, 2)	B1		independent
	Radius 2 Straight ling	B1 D1		
	Through origin with positive slope	B1	5	
	in ough origin with positive slope		U	
	(ii) 0 or 0 +0i and 2 + 2i	B1ftB1f	2	Obtain intersections as complex numbers
		t		
			7	
8.	(a) (i) $\alpha + \beta = 2$ $\alpha\beta = 4$	B1B1	2	Values stated
	(II) EITHER	M1		2^{2} 2^{2} -2^{2} -2^{2}
	$\alpha^2 + \beta^2 = -4$	A1	2	Use $\alpha^{-} + \beta^{-} = (\alpha + \beta)^{-} - 2\alpha\beta$
	-		_	Obtain given answer correctly
	OR	M1		Find numeric voluce of reads, square and add
	(!!)	A1		China numeric values of roots, square and add Obtain given answer correctly
	(11)			Cottain given answer correctly
	$\frac{2}{2}$ + 4 + 16 = 0	D1		State or use $\alpha^2 \beta^2 = 16$
	x + 4x + 16 = 0	וס	1	Side of use $\alpha p = 10$

	(b) (i) <i>p</i> = 2	M1 A1	3	Or use substitution $u = x^2$ Write down a quadratic equation of correct form or rearrange and square Obtain $x^2 + 4x + 16 = 0$
		M1		Use sum or product of roots to obtain $6p = 12$ Or $6p^3 = 48$
	(II) <i>a</i> = 44	A1	2	
		M1		Attempt to find $\sum \alpha \beta$ numerically or in terms
		A1ft	2	Obtain $11p^2$
			11	
9.	(i) $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	B1B1	2	Each column correct
	(ii) Shear, e.g. (0,1) transforms to (3,1)	B1B1	2	One example or sensible explanation
	(iii) $\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$	M1 A1	2	Attempt to find DC (not CD) Obtain given answer
	(iv)	B1		Explicit check for $n = 1$ or $n = 2$
	$\mathbf{M}^{k} = \begin{pmatrix} 2^{k} 3(2^{k} - 1) \\ 0 & 1 \end{pmatrix} .$	M1		Induction hypothesis that result is true for M ^k
	(k+1) $(k+1)$			
	$\begin{pmatrix} 2 & 3(2^{n+1}-1) \\ 0 & 1 \end{pmatrix}$.	A1 A1		Element 3(2 ^{**/} –1) derived correctly All other elements correct
		A1	6	Explicit statement of induction conclusion
			12	

Mark Scheme 4725 January 2006

1.	(i) $2 + 16i - i - 8i^{2}$ 10 + 15i (ii) $\frac{1}{5}(10 + 15i)$ or $2 + 3i$	M1 A1 M1 A1 A1ft	2	Attempt to multiply correctly Obtain correct answer Multiply numerator & denominator by conjugate Obtain denominator 5 Their part (i) or 10 + 15i derived again / 5
			5	
2.	$1^2 = \frac{1}{6} \times 1 \times 2 \times 3$	B1		Show result true for $n = 1$ or 2
	$\frac{1}{n(n+1)(2n+1)} + (n+1)^2$	M1		Add next term to given sum formula, any letter OK
	6	DM1		Attempt to factorise or expand and simplify
	$\frac{1}{6}(n+1)(n+2)\{2(n+1)+1\}$	A1	5	Correct expression obtained
	0	A1	5	Specific statement of induction conclusion, with no errors seen
3.	(i)			
	$2\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} - 1\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 3\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$	M1		Show correct expansion process, allow sign slips
	2 x 5 – 1 x 2 +3 x -1 5 (ii)	A1 A1 B1ft	3 1 4	Obtain correct (unsimplified) expression Obtain correct answer State that M is non-singular as det M non-zero, ft their determinant
4.	$u^2 + 4u + 4$	B1		u + 2 squared and cubed correctly
	$u^3 + 6u^2 + 12u + 8$			
		M1		Substitute these and attempt to simplify Obtain $u^3 - 5 = 0$ or equivalent
	3 /			Correct solution to their equation
	$u = \sqrt{5}$	A1ft		
	$x = 2 + \sqrt[3]{5}$	A1ft	5	Obtain 2 + their answer [Decimals score 0/2 of final A marks]
			5	
			_	

4725

Mark Scheme

5.	$8\Sigma r^3 - 6\Sigma r^2 + 2\Sigma r$	M1		Co	nsider the sum of three separate terms
	$8\Sigma r^3 = 2n^2(n+1)^2$	A1		Co	prrect formula stated or used a.e.f.
	$6\Sigma r^2 = n(n+1)(2n+1)$	A1		Co	prrect formula stated or used a.e.f.
	$2\Sigma r = n(n+1)$	A1		Co	prrect term seen
	$2n^{3}(n+1)$ AG	M1 A1	6 6	Att Ob	tempt to factorise or expand and simplify otain given answer correctly
6.	(i) $\frac{1}{2}$ (8 - 2)	B1			Transpose leading diagonal and negate other diagonal
	$\left(\begin{array}{c} -3 \\ \end{array} \right)$	B1		2	Divide by determinant
	(ii) Either $\frac{1}{2} \begin{pmatrix} 14 & 2 \\ 5 & 0 \end{pmatrix}$	B1 M1A1	I		State or imply $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ Use this result and obtain $\mathbf{B}^{-1} = \mathbf{C}^{-1}\mathbf{A}$, or equivalent matrix algebra
	(- 3 0) Or	M1 A1ft		5	Matrix multn., two elements correct, for any pair All elements correct ft their (i)
	$\frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$ $\mathbf{B} = \mathbf{A}^{-1} \mathbf{C}$	B1			Find A ⁻¹
	$\mathbf{B} = \frac{1}{5} \begin{pmatrix} 0 & -2 \\ 5 & 14 \end{pmatrix}$	M1			Premultiply by A ⁻¹ stated or implied
	$\frac{1}{2}$ (14 2)	A1ft			Matrix multn. Two elements correct All elements correct
	(- 5 0) Or	A1			Correct B ⁻¹
	$AB = \begin{pmatrix} 2a + c 2b + d \\ r + 2c b + 2d \end{pmatrix}$	B1			
	a = 0, c = 1, b = -0.4, d = 2.8	M1			Find AB
		A1A1			Solve one pair of simultaneous equations
	$\begin{bmatrix} \frac{1}{2} & 14 & 2 \\ 5 & 0 \end{bmatrix}$	A1			Each pair of answers
				7	Correct B ⁻¹

Mark Scheme

7.	(a) (i) $\sqrt{13}$ (ii)	B1	1	Obtain correct answer, decimals OK
	- 0.59	M1 A1 A1	3	Using tan ^{-1 b} / _a , or equivalent trig allow + or - Obtain 0.59 Obtain correct answer
	(b) 1 – 2i	M1 A1A1 A1	4	Express LHS in Cartesian form & equate real and imaginary parts Obtain $x = 1$ and $y = -2$ Correct answer written as a complex number
	(c)	B1 B1	2	Sketch of vertical straight line Through (- 0.5, 0)
			10	
8.	(i)	B1		For correct vertex (2, -2)
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$	B1 B1	3	For all vertices correct For correct diagram
	(ii) Either $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1,B1 B1		Reflection, in <i>x</i> -axis Correct matrix
	$\left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right)$	B1,B1 B1	6	Enlargement, centre O s.f.2 Correct matrix
	Or $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1,B1 B1		Reflection, in the <i>y</i> -axis Correct matrix
	$\left(\begin{array}{rrr} -2 & 0 \\ 0 & -2 \end{array}\right)$	B1,B1 B1		Enlargement, centre O s.f. –2 Correct matrix
	Or $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	B1,B1 B1		Stretch, in <i>x</i> -direction s.f. 2 Correct matrix
	$\left(\begin{array}{cc}1&0\\0&-2\end{array}\right)$	B1,B1 B1		Stretch, in <i>y</i> -direction s.f2 Correct matrix
			9	

4725

Mark Scheme

January 2006

9.	r + 2 - r	M1		Show correct process for subtracting fractions
	$(1) \frac{r}{r} \frac{r}{r} \frac{2}{r} \frac{r}{r}$			
	$r(r \pm 2)$	Δ1	2	Obtain given answer correctly
	$\frac{2}{r(r+2)}$		2	Obtain given answer correctly
	P(r+2) AG			
	(ii)	M1		Express terms as differences using (i)
		M1		Express 1 st 3 (or last 3) terms so that cancelling occurs
		A1		Obtain $1 + \frac{1}{2}$
		A1		Obtain $-\frac{1}{n+2}, -\frac{1}{n+1}$
	$\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}$	A1	5	Obtain correct answer in any form
	(iii) (a)		Ũ	
	$\frac{3}{2}$	B1ft	1	Obtain value from their sum to <i>n</i> terms
	(b)			
	$\frac{1}{1} + \frac{1}{1}$	M1		Using (iii) (a) – (ii) or method of differences again $[n \rightarrow \infty]$ is a method error 1
	$\frac{1}{n+1}$ $\frac{1}{n+2}$	Λ1 fi	2	$n \rightarrow \infty$ is a method enory Obtain answer in any form
			2	
40			10	
10.	$(1) \qquad \qquad$			
	$\alpha + \beta + \gamma - 9$	B1	1	
	(ii)	B1		State or use other root is $p - iq$
	р. <i>Q</i>	M1		Substitute into (i)
	$p = \frac{y - \alpha}{2}$	A1 A1	1	Obtain $2p + \alpha = 9$
	2		-	Obtain correct answer a.e.t.
	(iii) $\alpha\beta\gamma = 29$	B1	1	
	(iv) $\alpha(p^2 + q^2) = 29$	M1 A1ft		Substitute into (iii) Obtain unsimplified expression with no i's
		M1		Rearrange to obtain q or q^2
		M1		Substitute their expression for p a.e.f.
	$q = \sqrt{\frac{29}{29} - \frac{(9-\alpha)^2}{(9-\alpha)^2}}$	A1	5	Obtain correct answer a.e.f.
	$\sqrt[4]{\alpha}$ 4		11	
	(iv) Alternative method $2n\alpha + n^2 + a^2 = 27$	M1		Substitute into $\alpha\beta + \beta\gamma + \gamma\alpha = 27$ Obtain unsimplified expression with no i's
		M1		Rearrange to obtain q or q^2
		N/1		Substitute their expression for <i>p</i> a.e.f.
	$\alpha = \sqrt{27 - \frac{(9-\alpha)^2}{\alpha}} - \alpha(0-\alpha)$			Obtain correct answer a a f
	$\frac{q-\sqrt{2}}{4} = \frac{-\alpha(9-\alpha)}{4}$	A1		

Mark Scheme 4725 June 2006

Mark Scheme

June 2006

1.		B1		Two elements correct
	i) $\begin{pmatrix} 7 & 4 \\ 0 & -1 \end{pmatrix}$	B1	2	All four elements correct
	(ii) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1		A – B correctly found
	<i>k</i> = 3	B1	2	Find <i>k</i>
			4	
2	(i)	M1		For 2 other correct vertices
		A1	2	For completely correct diagram
	$\begin{pmatrix} 1 & 1 \end{pmatrix}$	D1 D1	2	Fach achung acmact
	$ \begin{array}{c} \text{(ii)} \\ 0 \\ 1 \end{array} \right) $	ыві		Each column correct
			H	
3.		B1	1	Conjugate seen
	(i) $2 + 3i$	M1		
	(11)	A1		Attempt to sum roots or consider x terms in expansion or substitute $2 - 3i$ into equation and equate imaginary parts
		M1 A1		Correct answer
	p = -4			Attempt at product of roots or consider last
			4	term in expansion or consider real parts
	<i>q</i> = 13		- _	
			12	

4725

Mark Scheme

June 2006

4.	$\Sigma r^3 + \Sigma r^2$	M1		Consider the sum as two separate parts
	$\Sigma r^{2} = \frac{1}{6}n(n+1)(2n+1)$	A1		Correct formula stated
	$\Sigma r^3 = \frac{1}{4}n^2(n+1)^2$	A1		Correct formula stated
	$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1 A1	5	Attempt to factorise and simplify or expand both expressions Obtain given answer correctly or complete verification
			5	
5.	(i) -7i	B1 B1	2	Real part correct Imaginary part correct
	(ii) 2 + 3i -5 + 12i	B1 B1 B1	3	iz stated or implied or $i^2 = -1$ seen Real part correct Imaginary part correct
	(iii) $\frac{1}{5}(4 - 7i)$ or equivalent	M1 A1 A1	3 8	Multiply by conjugate Real part correct Imaginary part correct N.B. Working must be shown
6	(i) Circle, Centre O radius 2 One straight line Through O with +ve slope In 1 st quadrant only	B1 B1 B1 B1 B1 B1	5	Sketch showing correct features
	(ii) $1 + i\sqrt{3}$	M1 A1	2	Attempt to find intersections by trig, solving equations or from graph Correct answer stated as complex number
			7	

7.	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$	A1 A1	3	Correct A ² Correct A ³
	(ii) $\mathbf{A}^{n} = \begin{pmatrix} 2^{n} & 0 \\ 0 & 1 \end{pmatrix}$ (iii)	B1 B1 M1 A1 A1	1 4 8	Sensible conjecture made State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion
8.	(i) $a\begin{bmatrix} a & 0\\ 2 & 1 \end{bmatrix} - 4\begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix} + 2\begin{bmatrix} 1 & a\\ 1 & 2 \end{bmatrix}$	M1 A1		Correct expansion process shown Obtain correct unsimplified expression
	$a^{2} - 2a$ (ii) a = 0 or a = 2 (iii) (a)	A1 M1 A1A1ft B1 B1	3	Obtain correct answer Solve their det $\mathbf{M} = 0$ Obtain correct answers Solution, as inverse matrix exists or \mathbf{M} non- singular or det $\mathbf{M} \neq 0$
	(b)	B1 B1	4 10	Solutions, eqn. 1 is multiple of eqn 3

9.				
	(i)	M1 A1		Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1		Attempt to expand and simplify Obtain given answer correctly
	(iii) $(n+1)^{3} - 1 - \frac{3}{2}n(n+1) - n$ $\frac{1}{2}n(n+1)(2n+1)$	B1 B1 M1 A1 A1	2	Correct Σr stated $\Sigma \ 1 = n$ Consider sum of three separate terms on RHS Required sum is LHS – two terms Correct unsimplified expression Obtain given answer correctly
			2 6 10	

```
4725
```

Mark Scheme

10	(i) $\alpha + \beta + \gamma = 2$ $\alpha\beta\gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1	3	
	(ii)	M1		Sum new roots
	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft		Obtain numeric value using their (i)
	<i>p</i> = -5	A1ft	3	<i>p</i> is negative of their answer
	(iii)	M1*		Expand three brackets
		A1		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		A1ft		Obtain 2
	<i>q</i> = -2	A1ft	5	q is negative of their answer
		M2 A1 M1 A2 A1 A1	11	Alternative for (ii) & (iii) Substitute $x = u - 1$ in given equation Obtain correct unsimplified equation for u Expand Obtain $u^3 - 5u^2 + 10u - 2 = 0$ State correct values of p and q .

Mark Scheme 4725 January 2007

1.	(i) $a = -3$	B1	1	State correct value
	(ii) $2a - 3 = 7$ or $3a - 6 = 9$	M1		Sensible attempt at multiplication
	<i>a</i> = 5	A1	2	Obtain correct answer
			3	
2.		M1		Attempt to equate real and
				imaginary parts of $(x + iy)^2$ and 15
	$x^2 - y^2 = 15$ and $xy = 4$	A1 A1		+8i
		M1		Obtain each result
		DM1		Eliminate to obtain a quadratic in x^2
	$\pm (4 + i)$	A1	6	or y^2
			6	Solve to obtain $x = (\pm)4$, or $y =$
				(±)1
				Obtain only correct two answers as complex numbers
3.		M1		Expand to obtain $r^3 - r$
		M1		Consider difference of two standard
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{2}n(n+1)$	A1		Obtain correct unfactorised answer
		M1		Attempt to factorise
		A1		Obtain factor of $\frac{1}{4}n(n+1)$
	$\frac{1}{4}n(n-1)(n+1)(n+2)$	A1	6	Obtain correct answer
			6	
4.	(i)	B1		Circle
		B1		Centre (1, -1)
		B1	3	Passing through $(0, 0)$
	(ii)	B1		Sketch a concentric circle
		B1		Inside (i) and touching axes
		B1	3	Shade between the circles
5.	(i)	B1	1	Show given answer correctly

4725

	(ii) $-1\pm i\sqrt{3}$ (iii)	M1 A1 A1 B1 B1 B1	3 3 7	Attempt to solve quadratic equation or substitute $x + iy$ and equate real and imaginary parts Obtain answers as complex numbers Obtain correct answers, simplified Correct root on x axis, co-ords. shown Other roots in 2 nd and 3 rd quadrants Correct lengths and angles or co- ordinates or complex numbers shown
6.	(i)	B1		Correct expression for u_{n+1}
		M1		Attempt to expand and simplify
	$u_{n+1}-u_n=2n+4$	A1	3	Obtain given answer correctly
	(ii)	B1		State $u_1 = 4$ (or $u_2 = 10$) and is
		M1		State induction hypothesis true for
		M1		u_n
		A1		Attempt to use result in (ii)
		A1	5	Correct conclusion reached for u_{n+1}
			8	Clear, explicit statement of induction conclusion
7.	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$	B1 B1	2	State correct values
	(ii) $\alpha^2 + \beta^2 = 5$	M1		Use $(\alpha + \beta)^2 - 2\alpha\beta$
		A1	2	Obtain given answer correctly, using value of -5
	(iii)	B1		Product of roots = 1
		M1		Attempt to find sum of roots
		A1		Obtain $\frac{5}{10}$ or equivalent
	$x^2 - \frac{1}{2}x + 1 = 0$	B1ft	4	Write down required quadratic
			8	equation, or any multiple.

```
4725
```

8.	(i)	M1		Factor of $r!$ or $(r + 1)!$ seen
		A1		Factor of $(r+1)$ found
	$(r+1)^2 r!$	A1	3	Obtain given answer correctly
	(ii)	M1		Express terms as differences using
		A1		(i)
		M1		At least 1 st two and last term correct
	(n+2)! - 2!	A1	4	Show that pairs of terms cancel
	(iii)	B1ft	1	Obtain correct answer in any form
			8	Convincing statement for non- converging, ft their (ii)
9.		M1		For at least two correct images
	$(i) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	A1	2	For correct diagram, co-ords.clearly written down
	(ii) 90^0 clockwise, centre origin	B1 B1		Or equivalent correct description
	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	B1	3	Correct matrix, not in trig form
	(iii) Stretch parallel to <i>x</i> -axis, s.f. 3	B1 B1		Or equivalent correct description, but must be a stretch for 2 nd B1
	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	D1 D1	4	
		ומומ	0	Each correct column
			У	

10.	(i)	M1		Show correct expansion process for
		M1		3 x 3
	$\Delta = \det \mathbf{D} = 3a - 6$	A1		Correct evaluation of any 2 x 2 det
		M1		Obtain correct answer
		A1		Show correct process for adjoint
		B1		entries
	$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 & -2 & 4 \\ -3 & a & -2a \\ -3 & a & a & -6 \end{pmatrix}$	A1	7	Obtain at least 4 correct entries in
				adjoint
	(ii) $\frac{1}{\Lambda} \begin{pmatrix} 5\\ 2a-9 \end{pmatrix}$	M1		Divide by their determinant
	5a-15	A1A1A1 ft all 3	4	Obtain completely correct answer
			11	
				Attempt product of form $\mathbf{D}^{-1}\mathbf{C}$, or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse

Mark Scheme 4725 June 2007

1	EITHER	M1		Use trig to find an expression for <i>a</i> (or <i>b</i>)
	a = 2	A1		Obtain correct answer
		M1		Attempt to find other value
	—	A1		Obtain correct answer a.e.f.
	$b=2\sqrt{3},$	M1		(Allow 3.46)
	OR	M1		State 2 equations for a and b
		A1 A1	Δ	State 2 equations for a and o
		11111		Attempt to solve these equations
				Obtain correct answers a e f
	$a=2$ $b=2\sqrt{3}$		4	SP \pm scores A1 only
			4	SK ± Scores AT only
2		D1		Show regult true for $n = 1$
2	$(1^3 =) \frac{1}{2} \times 1^2 \times 2^2$	DI		Show result true for $n - 1$
	$(1 -) \land 1 \land 2$	1.(1		
	T	MI		Add next term to given sum formula
	$\frac{1}{2}n^2(n+1)^2 + (n+1)^3$	M1(indep)		Attempt to factorise and simplify
	$\frac{n}{4}$ $\binom{n+1}{2}$ $\binom{n+1}{2}$	A1		Correct expression obtained convincingly
		A1	5	
	$\frac{1}{2}(n+1)^2(n+2)^2$			Specific statement of induction conclusion
	$4^{(n+1)(n+2)}$			speenie suitement of madelien conclusion
	•			
			5	
3	$3\Sigma r^2 - 3\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
				*
				Correct formula stated
	$3\Sigma r^2 = \frac{1}{2}n(n+1)(2n+1)$	A1		
	$\frac{52n}{2}$ $n(n+1)(2n+1)$			
	3			
	$3\Sigma r = \frac{3}{2}n(n+1)$	A1		Correct formula stated
	2			
		A 1		Correct term seen
	$\Sigma 1$	M1		Attempt to simplify
	$\sum_{n=1}^{\infty} 1 = n$		6	Obtain given answer correctly
	n	AI	0	Obtain given answer confectly
			6	
1		P1	U	Transpose leading diagonal and pagete other
4		DI		diagonal or askes sime same to set 1 st - 1
	(i) $\frac{1}{2}$ (5 - 1)	D1	•	diagonal or solve sim. eqns. to get 1 column
	(-3, 1)	BI	2	Divide by the determinant or solve 2 nd pair to
				get 2 nd column
	(ii)			
	(**)	M1		Attempt to use $B^{-1}A^{-1}$ or find B
				Attempt at matrix multiplication
	$\frac{1}{2}$ $\begin{bmatrix} 2 & 0 \end{bmatrix}$	M1(indep)	4	One element correct, a.e.f,
	(23 - 5)		6	All elements correct, a.e.f.
		A1ft		NB ft consistent with their (i)
				× ′
		A1ft		
		1	1	

5	(i) $\frac{1}{r(r+1)}$	B1	1	Show correct process to obtain given result
	(ii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$	M1 M1 A1 B1ft M1	3	Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter
	$\frac{1}{n+1}$	A1 c.a.o.	3	State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii)
			7	Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$	B1 B1	2	State correct values
	(b)			
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)^{2}$ $= 9 - 4 = 5$	r) M1		State on imply the negative of the in
	$\frac{3}{u^3} - \frac{9}{u^2} + \frac{6}{u} + 2 = 0$	A1 ft	2	values
	(ii) (a) $u^{2} u^{3} + 6u^{2} - 9u + 3 = 0$	M1	2	Obtain correct answer
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	A1	2	Use given substitution to obtain an equation
	(b) or b b	M1		
				Obtain correct answer
		Alft	2	
			8	Required expression is related to new
				cubic stated or implied
				-(their "b" / their "a")

7	(i)	M1		Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a-12) + 32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	det $\mathbf{M} = 12$	M1	2	
	non-singular	Alft		Substitute $a = 2$ in their determinant
	(iii) EITHER	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
		A1	3	
		M1		det $M = 0$ so non-unique solutions
		A1		
		Al		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
8	(i) Circle centre (3, 0)	R1R1	0	Sketch showing correct features
0	(1) Cherce, centre $(5, 0)$, waves a tangent at origin	B1 B1		N B treat 2 diagrams as a MB
	y-axis a tangent at origin Straight line	DI D1		N.D. iteat 2 diagrams as a wire
	through (1, 0) with two slope	DI D1		
	1 In Ough (1, 0) with + ve slope	DI D1		
	In 1 quadrant only	Ы	6	Slastal al comina a compating in
	(11) Inside circle, below line,	B2II	6	Sketch snowing correct region
	above <i>x</i> -axis		2	SR: B1ft for any 2 correct features
			8	

9	(i) $\begin{pmatrix} \sqrt{2} & 0 \\ & - \end{pmatrix}$	B1	1	Correct matrix
	$\left(\begin{array}{cc} 0 & \sqrt{2} \end{array}\right)$			
	(ii) Rotation (centre O), 45° , clockwise	B1B1B1	3	Sensible alternatives OK, must be a single transformation
	(iii)			single transformation
		B1	1	Matrix multiplication or combination of transformations
	(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$	M1 A1	2	For at least two correct images For correct diagram
	(v) det $\mathbf{C} = 2$	B1		State correct value
	area of square has been doubled	B1	2	State correct relation a.e.f.
			9	
10	(i) $x^2 - x^2 = 16$ and $x = 15$	M1		Attempt to equate real and imaginary parts of $(x + iv)^2$ and 16+30i
	x - y = 16 and $xy = 15$			
		AlAl		Obtain each result
		M1		Eliminate to obtain a quadratic in x^2 or y^2
	+(5+3i)	M1		Solve to obtain
				$x = (\pm) 5$ or $y = (\pm) 3$
	(ii)	A1	6	Obtain correct answers as complex
	$z = 1 \pm \sqrt{16 + 30i}$			numbers
		M1*		Use quadratic formula or complete the
	6 + 3i, -4 - 3i	A1		square
		*M1dep	5	Simplify to this stage
		Al Alft		Ose answers from (1) Obtain correct answers
			11	

4725 Further Pure Mathematics 1

1	(i) 1 N 1	M1		For 2 other correct vertices seen, correct
		A 1	2	direction of shear seen
	(1, -1)	AI	2	scales
	$\begin{pmatrix} 1 & 0 \end{pmatrix}$			Search
		B1 B1	2	
			4	
2		M1		Each column correct
2	a n(n+1)(2n+1) + bn	A1		Correct answer a e f
	$\frac{1}{6}n(n+1)(2n+1)+0n$			
	a = 6, b = -3	M1		Compare co-efficients
		A1 A1	5	Obtain correct answers
2		M1	5	Use given substitution
5	(1) $7u^3 + 24u^2 - 3u + 2 = 0$	A1	2	Obtain correct equation a e f
			_	
	(ii) <i>EITHER</i>	M1		Required expression related to new cubic
	correct value is $-\frac{3}{7}$	Alft	2	Their c / their a
	,			$\alpha + \beta + \alpha$
	OR	M1		Use $\frac{\alpha + p + \gamma}{2}$ or equivalent
				$\alpha\beta\gamma$
	correct value is $-\frac{3}{7}$	A1		Obtain correct answer
4	(i) $* - 2 + 4$:	D1	4	
4	(1) $z^{*} = 3 + 41$ 21 + 12i	BI B1	2	Obtain correct answer
	21 121	DI	2	
	(ii) 3-5i	B1		Correct $z - i$ or expansion of $(z - I)^2$ seen
	16 20	B1ft	2	Real part correct
	-16 - 301	BItt	3	Imaginary part correct
	(iii)	M1		Multiply by conjugate
	$\frac{9}{25} + \frac{12}{25}i$	A1		Numerator correct
	25 25	A1	3	Denominator correct
5			8	
3	(12)	B1		4 B seen or implied or 2 elements correct
		B1	2	Obtain correct answer
	(-10)			
	$(8 \ 16 \ -4)$	M1		Obtain a 3 x 3 matrix
	(ii) 0 0 0	AlAlAl	4	Each row (or column) correct
	$\begin{bmatrix} 6 & 12 & -3 \end{bmatrix}$			
	(iii) (8)	M1		Obtain a single value
	(11) (0)	Al	2	Obtain correct answer, must have matrix
			8	

6	(i)	B1		Horizontal straight line in 2 quadrants
		B1		Through $(0, 2)$
	2 /	B1		Straight line
		B1		Through Ω with positive slope
		DI D1	5	In 1 st quadrant only
		DI	3	
	(11)	DI		
	_	BI		State or obtain algebraically that $y = 2$
	$2\sqrt{3} + 2i$	MI		Use suitable trigonometry
		Al	3	Obtain correct answer a.e.f. decimals OK must
			8	be a complex number
7	(i)	M1		Use det $\mathbf{A} = 0$
	a = -6	A1	2	Obtain correct answer
	(1 - 3)			
	(ii) $A^{-1} = \frac{1}{a+6} \Big _{2}$	B1		Both diagonals correct
	(2 a)	B1ft		Divide by det A
		M1		Premultiply column by \mathbf{A}^{-1} no other method
	$r = -\frac{4}{12}$ $v = \frac{2-a}{12}$	1411		Obtain correct answers from their Λ^{-1}
	$x = \frac{1}{a+6}, y = \frac{1}{a+6}$	A 1 ft		Obtain concet answers nom then A
		AIR	5	
		AIIt	3	
0		N (1	/	
8		MI	•	Obtain next terms
	$u_2 = 4, \ u_3 = 9, \ u_4 = 16$	AI	2	All terms correct
		DI		
	(11) $u_n = n^2$	BI	I	Sensible conjecture made
	(iii)	B1		State that conjecture is true for $n = 1$ or 2
		M1		Find $u_{\rm eff}$ in terms of n
				Obtain $(n + 1)^2$
			1	Statement of Induction conclusion
		211	7	Statement of induction conclusion
9			,	
/	(i) $x^3 + 2x^2 + 2x^2 + 2x^2 + 2x^3$	M1		Correct hinomial expansion seen
	(1) $\alpha + 3\alpha \beta + 3\alpha\beta + \beta$		2	Obtain given answer with no errors seen
			2	obtain given answer with no errors seen
		D1 D1		State or use correct values
	(ii) Either $\alpha + \beta = 5, \alpha\beta = 7$	ומום		State of use confect values
	$\alpha^{3} + \beta^{3} - 20$	M1		
	$\alpha + \rho = 20$			Find numeric value for $\alpha^3 + \beta^3$
		AI		Obtain correct answer
		M1	-	Use new sum and product correctly in
			6	quadratic expression
		A1ft		Obtain correct equation
	$x^2 - 20x + 343 = 0$	1111	8	
		M1 A1		Substitute $x = u^3$
	Or			Obtain correct answer
	$u^{\frac{2}{3}}$ $5u^{\frac{1}{3}}$ $7-0$	M2		Complete method for removing fractional
	$u^{2} - 3u^{2} + 7 = 0$			powers
	2	A2		Obtain correct answer
	$u^{3} - 20u + 343 = 0$			

4	7	2	5
	-	_	•

10	(i)	M1		Attempt to combine 3 fractions
		A1	2	Obtain given answer correctly
	(ii)	M1		Express at least first 3 terms using (i)
		A1		All terms correct
		M1		Express at least last 2 terms using (i)
		A1		All terms correct in terms of <i>n</i>
		M1		Show that correct terms cancel
	$2 + 1 - \frac{1}{2} - \frac{2}{n+1} - \frac{1}{n+2}$	A1	6	Obtain unsimplified correct answer
	(iii) $\frac{5}{5}$	DIA		
		BIft	I	Obtain correct answer from their (11)
	(iv) $\frac{2}{N+1} + \frac{1}{N+2} = \frac{7}{10}$	B1ft		Their (iii) – their (ii)
	$7N^2 - 9N - 36 = 0$	M1		Attempt to clear fractions & solve equation,
		Δ1		Obtain collect simplified equation Obtain only the correct answer
	N=3	A1	4	obtain only the correct answer
			13	

4725 Further Pure Mathematics 1

1 (i) $\begin{pmatrix} 1 & 1 \\ 5 & -1 \end{pmatrix}$	B1 Two elements correct
(ii) FITHER	B1 All four elements correct
	B1 Both diagonals correct
$\frac{1}{3}\begin{pmatrix} 2 & -1 \\ -5 & 4 \end{pmatrix}$	B1 Divide by determinant
	2
<i>OK</i>	 B1 Solve sim. eqns. 1st column correct B1 2nd column correct
2 (i) 5 0.927 or 53.1°	 B1 Correct modulus B1 Correct argument, any equivalent form
(ii)(a)	B1 Circle centre $A(3, 4)$ B1 Through O , allow if centre is $(4, 3)$
(b) A(3, 4)	 Half line with +ve slope Starting at (3, 0) Parallel to <i>OA</i>, (implied by correct arg shown)
$\frac{O}{3 (\mathbf{i}) \frac{r}{(r+1)!}}$	M1 Common denominator of $(r + 1)!$ or $r!(r + 1)!$
	A1 Obtain given answer correctly 2
(ii) $1 - \frac{1}{(n+1)!}$	M1 Express terms as differences using (i)
	 A1 At least 1st two and last term correct M1 Show pairs cancelling A1 Correct answer a.e.f.
4	B1 Establish result is true, for $n = 1$ (or 2 or 3)

5			M1 M1	Express as difference of two series Use standard results
		$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
			M1 A1	Attempt to factorise At least factor of $n(n + 1)$
		$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
		12	6	
6	(i)	3 – i	B1	Conjugate stated
	(ii)	EITHER	M1	Use sum of roots
			A1	Obtain correct answer
			M1	Use sum of pairs of roots
			A1	Obtain correct answer
			M1	Use product of roots
		a = -8, b = 22, c = -20	A1	Obtain correct answers
		OR .	M1	Attempt to find a quadratic factor
			A1	Obtain correct factor
			M1	Expand linear and quadratic factors
		a = -8, b = 22, c = -20	A1A1	IA1 Obtain correct answers
			M1	Substitute 1 imaginary & the real root into eqn
			M1	Equate real and imaginary parts
			M1	Attempt to solve 3 eqns.
		a = -8, b = 22, c = -20	A1A1	A1 Obtain correct answers
7	(i)		B1	Enlargement (centre <i>O</i>) scale factor 6
	(ii)		_1 R1	Reflection
	(11)		B1 R1	Mirror line is $v = r$
			2	
	(iii)		B1	Stretch in <i>y</i> direction
	. /		B1	Scale factor 6, must be a stretch
			2	
	(iv)		B1	Rotation
	()		B1	36.9° clockwise or equivalent
			2	

Mark Scheme

8	$\alpha + \beta = -k$	B1	State or use correct value
	$\alpha\beta = 2k$	B1	State or use correct value
		M1	Attempt to express sum of new roots in terms of $\alpha + \beta$, $\alpha\beta$
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1	Obtain correct expression
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
	$\alpha'\beta' = 1$	B1	Correct product of new roots seen
	$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft	Obtain correct answer, must be an eqn.
	2	7	
			Alternative for last 5 marks
		M1	Obtain expression for $u = \frac{\alpha}{\beta}$ in terms of k and
			α or k and β
		A1	Obtain a correct expression
		A1	rearrange to get α in terms of u
		M1	Substitute into given equation
		A1	Obtain correct answer
9 (i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $5 + 12i$
	$x^2 - y^2 = 5$ and $xy = 6$	A1	Obtain both results
		M1	Eliminate to obtain a quadratic in x^2 or y^2
	$\pm (3 + 2i)$	M1	Solve a 3 term quadratic & obtain x or y
		A1 5	Obtain correct answers as complex nos.
(ii)	5 – 12i	B1B1	Correct real and imaginary parts
(iii)	M1	Attempt to solve a quadratic equation
	$x^2 = 5 \pm 12i$	A1	Obtain correct answers
	$x = \pm (3 \pm 2i)$	A1A1	Each pair of correct answers a.e.f.
	. /	4	-

10 (i)

(ii)

$$(\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6-3a & a-6 \end{pmatrix}$$

(iii) EITHER

$$\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$$

OR

- M1 Find value of det AB
- Correct value 2 seen A1
- 2
- **M1** Show correct process for adjoint entries
- Obtain at least 4 correct entries in adjoint A1
- Divide by their determinant **B1**
- A1 Obtain completely correct answer

4

State or imply $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ Obtain $\mathbf{B}^{-1} = (\mathbf{AB})^{-1} \times \mathbf{A}$ M1

A1

- Correct multiplication process seen **M1**
- A1 Obtain three correct elements

A1 All elements correct

5

M1 Attempt to find elements of **B**

A1 All correct

- Correct process for **B**⁻¹ M1
- 3 elements correct A1
- All elements correct A1

4725 Further Pure Mathematics 1

1		M1		Multiply by conjugate of denominator
		A1 A1		Obtain correct numerator
	$\frac{7}{26} + \frac{17}{26}$ i.	A1	4	Obtain correct denominator
	26 26		4	
2	$\begin{pmatrix} 5 & 0 \end{pmatrix}$	B1		Both diagonals correct
	$(i) \frac{1}{10}$ 2	B1	2	Divide by correct determinant
	(-a 2)			
	(3 - 2)	B1		Two elements correct
	(ii) 2π 6	B1	2	Remaining elements correct
	$\begin{pmatrix} 2a & 0 \end{pmatrix}$		4	
3		M1		Express as sum of 3 terms
	$n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$	A1		2 correct unsimplified terms
		A1		3 rd correct unsimplified term
	$(1)^2$	M1		Attempt to factorise
	$n(n+1)^{2}(n+2)$	Alft		Two factors found, ft their quartic
		A1	6	Correct final answer a.e.f.
			6	
4		B1		State or use correct result
		M1		Combine matrix and its inverse
	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	A1		Obtain I or I^2 but not 1
		A1	4	Obtain zero matrix but not 0
	$\begin{pmatrix} 0 & 0 \end{pmatrix}$		4	S.C. If $0/4$, B1 for $AA^{-1} = I$
5	Either	M1		Consider determinant of coefficients of LHS
		M1		Sensible attempt at evaluating any 3×3 det
	4k - 4	A1		Obtain correct answer a.e.f. unsimplified
		M1		Equate det to 0
	k = 1	Alft	5	Obtain $k = 1$, ft provided all M's awarded
	Or	M1		Eliminate either x or y
		A1		Obtain correct equation
		M1		Eliminate 2 nd variable
		A1		Obtain correct linear equation
		A1		Deduce that $k = 1$
			5	
6	(i) Either	B1 DB1	2	Reflection, in x-axis
	Or	B1 DB1		Stretch parallel to <i>y</i> -axis, s.f. –1
	(ii)	B1 DB1	2	Reflection, in $y = -x$
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	DIEI		
	$\begin{pmatrix} (m) \\ -1 & 0 \end{pmatrix}$	B1 B1	2	Each column correct
	(iv)	B1D1D1	2	Rotation 90° clockwise about 0
		ומומומ	0	S C If (iii) incorrect D1 for identifying
			, ,	their transformation B1 all datails convect
				then it ansior mation, D1 an uctails correct

7	(i) $13^n + 6^{n-1} + 13^{n+1} + 6^n$ (ii)	B1 M1 A1 B1 B1 B1 B1 B1	3 4 7	Correct expression seen Attempt to factorise both terms in (i) Obtain correct expression Check that result is true for $n = 1$ (or 2) Recognise that (i) is divisible by 7 Deduce that u_{n+1} is divisible by 7 Clear statement of Induction conclusion
8	(i)	M1		Expand at least 1 of the brackets
		Al	2	Derive given answer correctly
	(ii) $\alpha + \beta = 6k, \alpha\beta = k^2$	B1 B1		State or use correct values
	$\alpha = \beta = (\sqrt{2})^{1}$	M1		Find value of $\alpha - \beta$ using (i)
	$\alpha - p = (4\sqrt{2})\kappa$	A1		Obtain given value correctly (allow if $-6k$
			4	used)
	(iii) $\sum \alpha' = 6k$	B1ft		Sum of new roots stated or used
	$\alpha' \beta' = \alpha \beta - (\alpha - \beta) - 1$	M1		Express new product in terms of old roots
	$a' B' - k^2 = (4/2)k + 1$	A1ft		Obtain correct value for new product
	$\frac{\alpha}{x^2} = k^2 - (4\sqrt{2})k - 1$ $x^2 - 6kx + k^2 - (4\sqrt{2})k - 1 = 0$	B1ft	4	Write down correct quadratic equation
•		2.61	10	
9	(1)		2	Obtain aircon anguran agregative
		AI	2	Obtain given answer correctly
	(ii)	M1		Express terms as differences using (i)
		M1		Do this for at least 1 st 3 terms
		A1		First 3 terms all correct
		Al		Last 3 terms all correct (in terms or n or r)
	$1 + \frac{1}{3} - \frac{1}{2n-1} - \frac{1}{2n+1}$	Ml	6	Show pairs cancelling
		AI	6	Obtain correct answer, a.e.f.(in terms of <i>n</i>)
	(iii) $\frac{4}{3}$	B1ft	1	Given answer deduced correctly, ft their (ii)
			9	
10	(i) $x^{2} - y^{2} = 2, 2xy = \sqrt{5}$ $4x^{4} - 8x^{2} - 5 = 0$ $x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$	M1 A1 M1 A1		Attempt to equate real and imaginary parts Obtain both results a.e.f. Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x (or y) values Correct values for both x & y obtained a.e.f.
----	---	------------------------------	--------------	---
	$\pm (\frac{\sqrt{10}}{2} + i\frac{\sqrt{2}}{2})$ (ii) $z^2 = 2 \pm i\sqrt{5}$ $z = \pm (\frac{\sqrt{10}}{2} \pm i\frac{\sqrt{2}}{2})$	A1 M1 A1 M1 A1ft	6	Correct answers as complex numbers Solve quadratic in z^2 Obtain correct answers Use results of (i) Obtain correct answers, ft must include root from conjugate
	(iii) (iv)	B1ft B1 B1ft B1ft	1 3 14	Sketch showing roots correctly Sketch of straight line, \perp to α Bisector

4725

4725 Further Pure Mathematics 1

1.		B1		State correct value of S_{250} or S_{100}
		M1		Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})
	984390625 - 25502500 = 958888125	A1	3	Obtain correct exact answer
			3	
2.	3a + 5b = 1, a + 2b = 1	M1		Obtain a pair of simultaneous
		M1		equations
	a = -3, b = 2	A1 A1	4	Attempt to solve
			4	Obtain correct answers.
3.	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
	(ii) 1+41i	B1 B1	2	Correct real and imaginary parts
			4	
4.	Either $p + q = -1, pq = -8$	B1		Both values stated or used
	$\frac{p+q}{pq}$	B1		Correct expression seen
	pq			
	7	M1		Use their values in their expression
	$-\frac{1}{8}$	A1	4	Obtain correct answer
	0		4	
	$Or = \frac{1}{1} + \frac{1}{2} - 8$	B1		Substitute $x = \frac{1}{u}$ and use new
	Of $\frac{1}{p} + \frac{1}{q} = 0$			quadratic
	n + a = 1	B1		Correct value stated
	p + q = 1			
	7	M1		Use their values in given expression
	$-\frac{1}{8}$	A1		Obtain correct answer
	$-1\pm\sqrt{33}$	M1		Find roots of given quadratic
	$\frac{1}{2}$			equation
		A1		Correct values seen
	_ 7	M1		Use their values in given expression
	8	A1		Obtain correct answer
5.	(i) $u^3 = \{(-)(5u+7)\}^2$	M1		Use given substitution and rearrange
		A1		Obtain correct expression, or
				equivalent
	3 25 2 70 10 0	A 1	2	Obtain a sum at fin al
	$u^2 - 25u^2 - 70u - 49 = 0$	AI	3	Obtain correct final answer
		M1		Use coefficient of their othic or
	(11)	1011		identity connecting the symmetric
				functions and substitute volues from
				given equation
	70	A 1 ft	n	Obtain correct answer
	-/0	AIII		Obtain correct answer
			3	

6.(i) $3\sqrt{2}, -\frac{\pi}{4}$ or -45° AEFBI B12State correct answers(ii)(a)BI B13Circle, centre $(3, -3),$ through O ft for $(23, 23)$ only Straight line with +ve slope, through $(3, -3)$ or their centre Half line only starting at centre(iii)BI B1 B1 B13Circle, centre $(3, -3),$ through O ft for $(23, 23)$ only Straight line with +ve slope, through $(3, -3)$ or their centre Half line only starting at centre(iii)B1 B1 B1 B13Area above horizontal through $a,$ below (i) (b) Obtain given answer correctly(iii)M1 A1 (iii)2Show that terms cancel in pairs Obtain given answer correctly(iii)M1 A1 2 2Correct $\sum r$ stated $\sum 1 = n$ Correct $\sum r$ stated $\sum 1 = n$ $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ A1 A16Obtain given answer correctly8.(i)B1 B1 B1 B1 Correct $\sum r$ stated $\sum 1 = n$ Correct unsimplified expression $4\sum_{r=1}^{n} r^3 = n^2(n+1)^2$ A1 B1 B168.(i)B1 B1 B1 Correct unsimplified expression(ii) $\left(\frac{1}{1}, 0\\ 1, 1\right)$ (iii)B1 B1 Correct inverse for their (ii) stated Post multiply C by inverse of (ii) Correct answer found0rM1 B1<					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.	(i) $3\sqrt{2}, -\frac{\pi}{4} \text{ or } -45^{\circ} \text{ AEF}$	B1 B1	2	State correct answers
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(ii)(a)	B1B1	3	Circle centre $(3, -3)$
(ii)(b)B1 B1 B1Straight line with +ve slope, through (3, -3) or their centre Half line only starting at centre(iii)B1ft Consider size Consider sum of 4 separate terms on RHS Required sum is LHS - 3 terms Correct $\sum r$ stated $\sum 1 = n$ Consider sum of 4 separate terms on RHS Required sum is LHS - 3 terms Correct unsimplified expression $4\sum_{r=1}^{n} r^3 = n^2 (n+1)^2$ A1 B			B1 ft	5	through O ft for $(\pm 3, \pm 3)$ only
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(ii)(b)	B1		Straight line with +ve slope,
B1B1Half line only starting at centre(iii)B1ft B1 A1 Correct $\sum r$ stated $\sum 1 = n$ 7.(i)M1 A1 A1 Correct $\sum r$ stated $\sum 1 = n$ (ii)M1 A1 Correct $\sum r$ stated $\sum 1 = n$ (iii)M1* B1 B1 Correct $\sum r$ stated $\sum 1 = n$ (iii)M1* A1 Correct $\sum r$ stated $\sum 1 = n$ (iii)M1* A1 Correct $\sum r$ stated $\sum 1 = n$ (iii)M1* Correct $\sum r$ stated $\sum 1 = n$ (iii) $n + 1)^2 - 2n(n + 1) - n$ A1 A16Correct unsimplified expression4 $\sum_{r=1}^{n} r^3 = n^2(n+1)^2$ A1 B1 B1 B18.(i)B1 B1 B1 B1 B1Starting at centre(iii) $\left(\frac{1 - 0}{1 - 1}\right)$ B1 B1 B1 B1 B1Correct inverse (or 0, 0) (3, 1) (2, 1) (5, 2) found Accurate diagram sketched8.(i)B1 B1 Correct inverse for their (ii) stated Post multiply C by inverse of (ii) A1ftOrM1 B1 			B1	3	through $(3, -3)$ or their centre
Image: constraint of the second se			BI		Half line only starting at centre
Bift Bift Biftbelow (ii) (b) Outside circle7.(i)M1 A127.(ii)M1 A12(iii)M1 A12(iii)M1 A12(iii)B1 B1 M1* *DM1Correct $\sum r$ stated $\sum 1 = n$ (n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - nA1 $4\sum_{r=1}^{n} r^3 = n^2(n+1)^2$ A1 A18.(i)B1 B1 Correct unsimplified expression4 $\sum_{r=1}^{n} r^3 = n^2(n+1)^2$ A1 B1 B1 B18.(i)B1 B1 B1 B1 B1Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found A (5, 2) found A (5, 2) found B1 B1 B1 B1 Correct answer for their (ii) stated Post multiply C by inverse of (ii) A1ftOrM1 B		(iii)	B1ft		Area above horizontal through a,
Bin3 1Outside circle7.(i)M1 A12Show that terms cancel in pairs Obtain given answer correctly(ii)M1 A12Attempt to expand and simplify Obtain given answer correctly(iii)M1 A12Attempt to expand and simplify Obtain given answer correctly(iii)M1 A12Correct $\sum r$ stated $\sum l = n$ (iii)B1 B1 (n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - nCorrect unsimplified expression $4\sum_{r=1}^n r^3 = n^2(n+1)^2$ A1 B1 B1 B16 B1 Correct answer found Set up 4 equations for elements from correct matrix multiplication A1l elements correct, -1 each error B1			B1ft		below (ii) (b)
7.(i)M1 A1Show that terms cancel in pairs Obtain given answer correctly(ii)M1 A12Show that terms cancel in pairs Obtain given answer correctly(iii)M1 A12Attempt to expand and simplify Obtain given answer correctly(iii)B1 B1 M1* *DM1Correct $\sum r$ stated $\sum 1 = n$ $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ M1* *DM1Consider sum of 4 separate terms on RHS Required sum is LHS - 3 terms Correct unsimplified expression $4 \sum_{r=1}^n r^3 = n^2 (n+1)^2$ A1 B1 B1 B1 B1 B1 B1Obtain given answer correctly8.(i)B1 B1 B1 B1 B1 B1 B1 B1Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found Accurate diagram sketched8.(ii) $\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}$ (iii)B1 B1 B1 B1 B1Each column correct Correct inverse for their (ii) stated Post multiply C by inverse of (ii) Correct answer found0rM1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1Set up 4 equations for elements from correct answer found A1I elements correct, -1 each error Shear, ax axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)81 B1 B1 B1 B1Shear, ax axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)91 B1 B1 B1 B1Shear, ax axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)92 B1 B1 B192 B1 B1 B1Shear, ax axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)			BIff	3 11	Outside circle
A12Obtain given answer correctly(ii)M1 A12Obtain given answer correctly(iii)M1 A12Attempt to expand and simplify Obtain given answer correctly(iii)B1 B1Correct $\sum r$ stated $\sum 1 = n$ (iii)M1* 	7.	(i)	M1	11	Show that terms cancel in pairs
(ii)M1 A12Attempt to expand and simplify Obtain given answer correctly(iii)B1 B12Correct $\sum r$ stated $\sum 1 = n$ (iii)M1* *DM1M1* *DM1Correct $\sum r$ stated $\sum 1 = n$ $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ A1Consider sum of 4 separate terms on RHS Required sum is LHS - 3 terms Correct unsimplified expression $4\sum_{r=1}^n r^3 = n^2(n+1)^2$ A168.(i)B1 B138.(ii)B1 B13(iii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ (iii) Either $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ B1 B12Each column correct(iii) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ OrA1ftOrM1 A1ftCorrect answer foundOrM1 A1ftSet up 4 equations for elements from correct matrix multiplication A1l elements correct, 1 each errorB1 B1 B1 B16 B1 B1 B1Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1) SR allow s.f. 2 or shearing angle of correct angle to appropriate axis			A1	2	Obtain given answer correctly
(ii)(iii)(iii)(iii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iiii)(iii)(iii) <th< td=""><td></td><td>(ii)</td><td>M1</td><td></td><td>Attempt to expand and simplify</td></th<>		(ii)	M1		Attempt to expand and simplify
(iii)B1 B1Correct $\sum r$ stated $\sum 1 = n$ $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ M1* *DM1Consider sum of 4 separate terms on RHS Required sum is LHS - 3 terms Correct unsimplified expression $4\sum_{r=1}^n r^3 = n^2(n+1)^2$ A168.(i)B1 B1 B1B1 B1 B1(ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ B1 B1 B1(iii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ B1 B1 B1 B1(iii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ B1 B1 B1 B1(iii) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ B1 B1 B1(iii) $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 \end{pmatrix}$ B1 B1 B1 B1(iii) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ Correct inverse for their (ii) stated Post multiply C by inverse of (ii) Correct answer foundOrM1 B1 B1 B1Set up 4 equations for elements from correct matrix multiplication A1l elements correct, -1 each errorB1 B1 B1 B1 B1Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1) Snearing angle of correct angle to appropriate axis			Al	2	Obtain given answer correctly
Image: 1 (iii)B1 B1Correct $\sum r$ stated $\sum 1 = n$ $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ $M1^*$ *DM1 $M1^*$ Required sum is LHS - 3 terms Correct unsimplified expression $4\sum_{r=1}^n r^3 = n^2(n+1)^2$ A16 10Obtain given answer correctly8.(i)B1 B1 B13Find coordinates $(0, 0) (3, 1) (2, 1)$ $(5, 2) found8.(i)B1B1B13Accurate diagram sketched8.(i)B1B1B13Correct inverse for their (ii) statedPost multiply C by inverse of (ii)(iii)\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}B1A1ft2Each column correct(iii)OrM1A1ftSet up 4 equations for elements fromcorrect matrix multiplicationA1l elements correct, -1 each errorB1B1B1B16B1B1B1B1Shear,x axis invariant or parallel to x-axiseg image of (1, 1) is (3, 1)Stear, and the propriate axis$					
M1* $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ M1* $A1$ Consider sum of 4 separate terms on RHS Required sum is LHS - 3 terms Correct unsimplified expression $4\sum_{r=1}^{n}r^3 = n^2(n+1)^2$ A16 10Obtain given answer correctly8.(i)B1 B1 B1 (ii)B1 B1 B1Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found Accurate diagram sketched8.(i)B1 B1 B1 B13Accurate diagram sketched9.(iii) $\left(\frac{1}{1} \ 2\\ 0 \ 1\right)$ B1 B12Each column correct(iii)Either $\left(\frac{1}{2} \ 2\\ 0 \ 1\right)$ B1 A1ftCorrect inverse for their (ii) stated Post multiply C by inverse of (ii) Correct answer foundOrM1 B1 B1 B1 B1 B1Set up 4 equations for elements from correct matrix multiplication A1l elements correct, -1 each errorB1 B1 B1 B1 B16 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1Shear, x axis invariant or parallel to x-axis e gimage of (1, 1) is (3, 1)		(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Consider sum of 4 separate terms on
*DM1 $(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ *DM1 A1Required sum is LHS - 3 terms Correct unsimplified expression $4\sum_{r=1}^n r^3 = n^2(n+1)^2$ A16 10Obtain given answer correctly8.(i)B1 B1 B1B1 B1Find coordinates $(0, 0) (3, 1) (2, 1)$ $(5, 2) foundAccurate diagram sketched(ii)\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}B1 B1Correct inverse for their (ii) statedPost multiply C by inverse of (ii)Correct answer found0rM1A1ftSet up 4 equations for elements fromcorrect matrix multiplicationA1 elements correct, -1 each errorB1B1B1Correct angle to appropriate axisShear,x axis invariant or parallel to x-axiseg image ofcorrect angle to appropriate axis$			M1*		RHS
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			*DM1		Required sum is LHS – 3 terms
$4\sum_{r=1}^{n}r^3 = n^2(n+1)^2$ A16 10Obtain given answer correctly8.(i)B1 B1 B1 B1Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found B1Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found Accurate diagram sketched(ii) $\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}$ (iii)B1 B1 Either $\begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}$ B1 B1 M1 AlftEach column correct(iii) $Correct$ $(1 & 2)0 & 1B1M1AlftCorrect inverse for their (ii) statedPost multiply C by inverse of (ii)OrM1AlftSet up 4 equations for elements fromcorrect matrix multiplicationAll elements correct, -1 each errorB1B1B1B1B1B1B1Shear,x axis invariant or parallel to x-axiseg image of (1, 1) is (3, 1)SR allow s.f. 2 or shearing angle ofcorrect angle to appropriate axis$		$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	A1		Correct unsimplified expression
$4\sum_{r=1}^{r} r^3 = n^2 (n+1)^2$ A16 10Obtain given answer correctly8.(i)B1 B1 B1Find coordinates $(0, 0) (3, 1) (2, 1)$ $(5, 2) foundAccurate diagram sketched(ii)\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}B1 B1B12Each column correct(iii)\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}B1M12Each column correct(iii)\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}A1ftCorrect inverse for their (ii) statedPost multiply C by inverse of (ii)OrM1A1ftSet up 4 equations for elements fromcorrect matrix multiplicationA1l elements correct, -1 each errorB1B1B1B1B1B16B1B1B1B1B1Shear,x axis invariant or parallel to x-axise gi mage of (1, 1) is (3, 1)B1B1B16Correct angle to appropriate axisSheari and the appropriate axis$		<u>n</u>			
$r=1$ 0 8.(i)B1 B1 B1Find coordinates $(0, 0) (3, 1) (2, 1)$ $(5, 2) foundB1(ii)\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}(iii)B1 B1Either\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}B1 B1B12Each column correct(iii)Either\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}B1M1A1ftCorrect inverse for their (ii) statedPost multiply C by inverse of (ii)OrM1A1ftSet up 4 equations for elements fromcorrect matrix multiplicationA1l elements correct, -1 each errorB1B1B1B1B1B1B1Shear,x axis invariant or parallel to x-axiseg image of (1, 1) is (3, 1)B1B1B16B1B1B1SR allow s.f. 2 or shearing angle ofcorrect angle to appropriate axis$		$4\sum_{n} r^{3} = n^{2} (n+1)^{2}$	A1	6	Obtain given answer correctly
8.(i)B1 B1 B1 B1Find coordinates $(0, 0)$ $(3, 1)$ $(2, 1)$ $(5, 2) foundAccurate diagram sketched(ii)\begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}B1 B12Each column correct(iii)Either\begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}B1B12Each column correct(iii)OrM1A1ftCorrect inverse for their (ii) statedPost multiply C by inverse of (ii)OrM1B1B1B1Set up 4 equations for elements fromcorrect matrix multiplicationA1l elements correct, -1 each errorB1B1B1B166Shear,x axis invariant or parallel to x-axiseg image of (1, 1) is (3, 1)B1B1B16(1)SR allow s.f. 2 or shearing angle ofcorrect angle to appropriate axis$		<i>r</i> =1		10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.	(i)	B1		Find coordinates (0, 0) (3, 1) (2, 1)
(ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ B1B1B1B1Each column correct(iii) EitherB1B1B1Correct inverse for their (ii) stated Post multiply C by inverse of (ii)OrM1A1ftCorrect answer foundOrM1Set up 4 equations for elements from correct matrix multiplication A1ftB1B1Set up 4 equations for elements from correct matrix multiplication A1 elements correct, -1 each errorB1B16eg image of (1, 1) is (3, 1)B1SR allow s.f. 2 or shearing angle of correct angle to appropriate axis			B1 D1	2	(5, 2) found
(ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ B1 B12Each column correct(iii) EitherB1M1Correct inverse for their (ii) stated $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ A1ftCorrect answer foundOrM1Set up 4 equations for elements from correct matrix multiplicationA2ftB1Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)B16B1SR allow s.f. 2 or shearing angle of 		(1 0)	DI	3	Accurate diagram sketched
(iii)Either $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ B1 M1 A1ftCorrect inverse for their (ii) stated Post multiply C by inverse of (ii)OrM1 A1ftCorrect answer foundOrM1 A2ftSet up 4 equations for elements from correct matrix multiplication A1l elements correct, -1 each errorB1 B1 B1B1 B1Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)SR allow s.f. 2 or shearing angle of correct angle to appropriate axis		$(ii) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	B1 B1	2	Each column correct
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(iii) <i>Either</i>	B1		Correct inverse for their (ii) stated
$\begin{pmatrix} 0 & 1 \end{pmatrix}$ A1ftCorrect answer foundOrM1Set up 4 equations for elements from correct matrix multiplication A1l elements correct, -1 each errorB1B1Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)B16eg image of (1, 1) is (3, 1)SR allow s.f. 2 or shearing angle of correct angle to appropriate axis		$\begin{pmatrix} 1 & 2 \end{pmatrix}$	M1		Post multiply C by inverse of (ii)
OrM1Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each errorB1B1Shear, x axis invariant or parallel to x-axis B1B16eg image of (1, 1) is (3, 1)B1SR allow s.f. 2 or shearing angle of correct angle to appropriate axis		$\begin{pmatrix} 0 & 1 \end{pmatrix}$	A1ft		Correct answer found
M1Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each errorB1B1B1Shear, x axis invariant or parallel to x-axis B1B16B1SR allow s.f. 2 or shearing angle of correct angle to appropriate axis		Or			
A2ftAll elements correct, -1 each errorB1Shear, x axis invariant or parallel to x-axisB16B16B15R allow s.f. 2 or shearing angle of correct angle to appropriate axis			M1		Set up 4 equations for elements from correct matrix multiplication
B1 B1 B1Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)B16 11eg image of (1, 1) is (3, 1)B111SR allow s.f. 2 or shearing angle of correct angle to appropriate axis			A2ft		All elements correct, -1 each error
B1 B1B1 B1axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1)B16 B1g image of (1, 1) is (3, 1)B1SR allow s.f. 2 or shearing angle of correct angle to appropriate axis			B1		Shear,
B16eg image of (1, 1) is (3, 1)11SR allow s.f. 2 or shearing angle of correct angle to appropriate axis			B1		x axis invariant or parallel to x-axis
II SK allow s.1. 2 or shearing angle of correct angle to appropriate axis			B1	6	eg image of $(1, 1)$ is $(3, 1)$
				11	correct angle to appropriate axis

9.	a 1 1 1 a	M1		Correct expansion process shown
	$ (i) = a \begin{vmatrix} a & i \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} i & i \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} i & a \\ 1 & 1 \end{vmatrix}$	A1		Obtain correct unsimplified
				expression
	$2a^2 - 2a$	A1	3	
				Obtain correct answer
	(ii)	MI		
	a = 0 or 1	Alft	2	Equate their det to 0
		Alft	3	Obtain correct answers, ft solving a
				quadratic
		B1 B1		Equations consistent but non unique
	(III) (a)	DIDI		solutions
	(h)	B1		Correct equations seen &
		B1	4	inconsistent, no solutions
			10	
10.	i)	M1		Attempt to find next 2 terms
	$u_2 = 7 \ u_3 = 19$	A1		Obtain correct answers
		A1	3	Show given result correctly
		1.11		
	(11) $(12)^{n-1} + 1$	MI	2	Expression involving a power of 3
	$u_n = 2(3) + 1$	AI	2	Obtain correct answer
	(iii)	B1ft		Verify result true when $n = 1$ or $n = 2$
		M1		Expression for u_{n+1} using recurrence
	$u_{n+1} = 3(2(3^{n-1})+1) - 2$			relation
		A1		Correct unsimplified answer
	$u_{n+1} = 2(3^n) + 1$	A1		Correct answer in correct form
		B1		Statement of induction conclusion
			5	
			10	

4725 Further Pure Mathematics 1

1	(i)	$\begin{pmatrix} a-4 & 2 \\ 3 & 0 \end{pmatrix}$	B 1		Two elements correct
			B1	2	Remaining elements correct
	(ii)	$4a - 6$ $a = \frac{3}{2}$	B1 M1 A1	3	Correct determinant Equate det A to 0 and solve Obtain correct answer a. e. f.
			5		
2	(i)	$u^3 - 3u^2 + 3u - 1$	B1		Correct unsimplified expansion of $(u-1)^3$
		$2u^3 - 6u^2 + 9u - 8 = 0$	M1 A1	3	Substitute for <i>x</i> Obtain correct equation
	(ii)		M1		Use $(\pm)\frac{d}{a}$ of new equation
		4	A1ft	2	Obtain correct answer from their equation
			5		
3		$x - iy$ $x + 2y = 12 \qquad 2x + y = 9$	B1 M1 A1		Conjugate known Equate real and imaginary parts Obtain both equations OK with factor
		z = 2 + 5i	M1 A1	5	of i Solve pair of equations Obtain correct answer as a complex number S.C. Solving $z + 2iz = 12 + 9i$ can get
			5		max 4/5, not first B1
4			M1 M1		Express as sum of three series Use standard results
		$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) - n(n+1)$	A1		Obtain correct unsimplified answer
			M1 A1		Attempt to factorise Obtain at least factor of $n(n+1)$
		$\frac{1}{12}n(n+1)(n+2)(3n-7)$	A1 6	6	Obtain fully factorised correct answer

4725		Mark Scheme	January 2010
5 (i)		B1 B1 2	Rotation 90° (about origin) Anticlockwise
(ii)) Either	M1	Show image of unit square after reflection in $y = -x$
	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	A1	Deduce reflection in <i>x</i> -axis
	(° -1) Or	B1ft B1ft 4 M1 A1 B1B1 S.C	Each column correct ft for matrix of their transformation Post multiply by correct reflection matrix Obtain correct answer State reflection, in <i>x</i> -axis C. If pre-multiplication, M0 but B1 B1 Available for correct description of their matrix
6 (i)		B1	State or use 5 + i as a root
		MI	Use $\sum \alpha \beta = 6$
	<i>x</i> = -2	A1 3	Obtain correct answer
(ii)) Either	M1	Use $p = -\sum \alpha$
	p = -8	A1ft	Obtain correct answer, from their root
		M1	Use $q = -\alpha\beta\gamma$
	q = 52	Alft 4	Obtain correct answer, from their root
	Or	M1 M1 A1A1	Attempt to find quadratic factor Attempt to expand quadratic and linear Obtain correct answers
	Or	M1 M1 A1 A1ft 7	Substitute $(5 - i)$ into equation Equate real and imaginary parts Obtain correct answer for p Obtain correct answer for q , ft their p
7 (i)		B1 1	Obtain given answer correctly
(ii))	M1	Express at least 1 st two and last term using (i)
		A1	All terms correct
	1	M1	Show that correct terms cancel
	$1 - \frac{1}{(n+1)^2}$	A1 4	Obtain correct answer, in terms of n
(iii	$\frac{1}{4}$	B1	Sum to infinity seen or implied
	4	B1 2	Obtain correct answer
		-	S.C. - ³ / ₄ scores B1
		7	

4725	
------	--

8 (i)		M1		Attempt to equate real and imaginary parts of $(x + iy)^2 \& 5 - 12i$
	$x^2 - y^2 = 5$ and $xy = -6$	A1		Obtain both results, a.e.f
	<i>y</i>	M1		Obtain quadratic in x^2 or y^2
		M1		Solve to obtain $x = (+)^3$ or $y = (+)^2$
	+(3-2i)	A 1	5	Obtain correct answers as complex nos
	± (3 – 21)			
	(ii)			B1ft Circle with centre at their
square	TOOL	D1		Circle pessing through origin
		DI D1ft		2^{nd} circle passing unough origin 2^{nd} circle control correct relative to 1^{st}
		DIII D1	4	Circle centre confect relative to 1
		9	4	Chele passing unough origin
9 (i)		M1		Show correct expansion process for
				3×3 or multiply adjoint by A
		M1		Correct evaluation of any 2×2 at any
				stage
	$\det \mathbf{A} = \Delta = 6a - 6$	A1		Obtain correct answer
	(2a, 1, a+1, A)			
	$\mathbf{A}^{-1} = \frac{1}{\Delta} \begin{vmatrix} 5a-1 & a+1 & -4 \\ 1 & 2a-1 & -2 \\ -3 & -3 & 6 \end{vmatrix}$	M1		Show correct process for adjoint entries
		A1		Obtain at least 4 correct entries in
		111		adioint
		B1		Divide by their determinant
		A1	7	Obtain completely correct answer
(ii)	(5a-7)	M1		Attempt product of form A ⁻¹ C or
	$\frac{1}{\Delta}$ 4 <i>a</i> -5			eliminate to get 2 equations and solve
		A1A1	A1	Obtain correct answer
		ft all	3	
		11	4	S.C. if det now omitted, allow max A2 ft
10 (i)				
		B1		Correct \mathbf{M}^2 seen
	$\mathbf{M}^2 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{M}^3 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$	M1		Convincing attempt at matrix
				multiplication for \mathbf{M}^3
		A1	3	Obtain correct answer
	(1. 2)			
(ii)	$\mathbf{M}^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$	B1ft	1	State correct form, consistent with (i)

4725	Mark Scheme	January 2010
10 (iii)	M1	Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^k$ or v.v.
	A1	Obtain element 2($k + 1$)
	A1	Clear statement of induction step, from correct working
	B1 4	Clear statement of induction conclusion, following their working
(iv)	B1	Shear
	DB1	<i>x</i> -axis invariant
	DB1 3	e.g. $(1,1) \rightarrow (21,1)$ or equivalent
		using scale factor or angles
	11	66

1 **B**1 Establish result true for n = 1 or n = 2M1 Add next term to given sum formula M1 Attempt to factorise or expand and simplify to correct expression Correct expression obtained A1 Specific statement of induction A1 5 conclusion 5 2 (i) (-7)**M**1 Obtain a single value A1 2 Obtain correct answer as a matrix (ii) $BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$ M1 Obtain a 2×2 matrix A1 All elements correct $\begin{pmatrix} -7 & -20 \\ 11 & -20 \end{pmatrix}$ B1 4C seen or implied by correct answer B1ft 4 Obtain correct answer, ft for a slip in **BA** 6 3 Either M1 Express as a sum of 3 terms Use standard sum results M1 $\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$ A1 Correct unsimplified answer M1 Attempt to factorise A1 Obtain at least factor of *n* and a $\frac{1}{3}n(2n-1)(2n+1)$ Or $\sum_{r=1}^{2n}r^2 - 4\sum_{r=1}^n r^2$ quadratic Obtain correct answer a.e.f. A1 6 Express as difference of 2 $\sum r^2$ series M1 Use standard result M1 $\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$ Correct unsimplified answer A1 Attempt to factorise M1 Obtain at least factor of nA1 $\frac{1}{3}n(2n-1)(2n+1)$ Obtain correct answer A1

6

4	(i)	5 + 12i 13 67.4° or 1.18	B1B1 B1ft B1ft 4	Correct real and imaginary parts Correct modulus Correct argument
	(ii)		M1 A1	Multiply by conjugate Obtain correct numerator
		$-\frac{11}{85}-\frac{27}{85}$ i	A1 3	Obtain correct denominator
5	(a)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	B1B1 2	Each column correct SC B2 use correct matrix from MF1 Can be trig form
	(b)	(i) (ii)	B1B1 2 B1B1 2 6	Stretch, in x-direction sf 5 Rotation, 60° clockwise
6	(i)	(a) (b)	B1B1 2 B1B1 2	Circle centre $(3, -4)$, through origin Vertical line, clearly $x = 3$
	(ii)		B1ft B1ft 2	Inside their circle And to right of their line, if vertical

Either

$$\alpha + \beta = -2k \quad \alpha\beta = k$$

 $y^2 - 4ky + 4k = 0$

$$\alpha + \beta = -2k$$
$$\frac{-2k}{\alpha}$$
$$y = \frac{-2k}{x}$$

 $y^2 - 4ky + 4k = 0$

0r

$$-k \pm \sqrt{k^2 - k}$$
$$\frac{\alpha + \beta}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$

$$y^2 - 4ky + 4k = 0$$

- B1B1State or use correct resultsM1Attempt to find sum of new rootsA1Obtain 4kM1Attempt to find product of new rootsA1Obtain 4kB1ft7Correct quadratic equation a.e.f.
- B1 State or use correct result
 B1 State or imply form of new roots
 B1 State correct substitution
 M1 Rearrange and substitute for x
 A1 Correct unsimplified equation
 M1 Attempt to clear fractions
 A1 Correct quadratic equation a.e.f.
- B1 Find roots of original equation
 B1 Express both new roots in terms of k
 M1 Attempt to find sum of new roots
 A1 Obtain 4k
 M1 Attempt to find product of new roots
 A1 Obtain 4k
 B1ft Correct quadratic equation a.e.f.

7

	4725		Mark Scheme		June 2010
8	(i)		M1		Attempt to rationalise denominator or cross multiply
			A1	2	Obtain given answer correctly
	(::)				Express terms as differences using (i)
	(11)		M1 M1		Attempt this for at least 1 st three terms
			A1		1 st three terms all correct
			A1		Last two terms all correct
		1	M1		Show pairs cancelling
		$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	A1	6	Obtain correct answer, in terms of n
	(iii)				Sensible statement for divergence
	(111)		DI	9	Sensible statement for divergence
9	(i)		M1		Show correct expansion process for 3 x 3
			M1		Correct evaluation of any 2 x 2
		$\det \mathbf{A} = a^2 - a$	A1	3	Obtain correct answer
	(ii)	(a)	M1		Find a pair of inconsistent
			Α 1		equations State inconsistent or no solutions
		(b)	AI M1		Find a repeated equation
			A1		State non unique solutions
		(c)	B1		State that det A is non-zero or find correct solution
			B1	6	State unique solution SC if detA incorrect, can score 2 marks
				9	for correct deduction of a unique solution, but only once
				Ы	· · ·
10	(i)		M1		Attempt to equate real and imaginary parts
		$r^2 = v^2 - 3$ $rv - 2$	A1		Obtain both results
		x y = 5 xy = 2	M1		Eliminate to obtain quadratic in x^2 or y^2
			M1		Solve to obtain <i>x</i> or <i>y</i> value
		z = 2 + i	A1	5	Obtain correct answer as a complex no.
	(ii)		B1	1	Obtain given answer correctly
	(iii)		M1		Attempt to solve quadratic equation
		$w^3 = 2 \pm 11 \mathrm{i}$	A1		Obtain correct answers
			M1		Choose negative sign
			M1	F	Relate required value to conjugate of (i)
		w = 2 - 1		5 11	Obtain Confect allSwel
			2		

Mathematics

Advanced GCE Unit **4725:** Further Pure Mathematics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4725

Mark	Scheme
ivia i k	Scheme

1	(i)	(7 9)	B1B1	2	Each element correct SC (7,9) scores B1
	(ii)	(18)	B1* depB1	2	Obtain correct value Clearly given as a matrix
	(iii)	$\begin{pmatrix} 12 & -4 \\ 6 & -2 \end{pmatrix}$	M1		Obtain 2×2 matrix
			A1 A1 7	3	Obtain 2 correct elements Obtain other 2 correct elements
2.	(i)	- 12 +13i	B1B1	2	Real and imaginary parts correct
	(ii)		B1 M1		<i>z</i> * seen Multiply by <i>w</i> *
		$\frac{27}{37} - \frac{14}{37}i$	A1		Obtain correct real part or numerator
			A1	4	Obtain correct imaginary part or denom.
			6		Sufficient working must be shown
3			B1* M1*		Establish result true for $n = 1$ or 2 Use given result in recurrence relation in a relevant way
			A1* depA1	14	Obtain $2^n + 1$ correctly Specific statement of induction conclusion
			4		
4		Either	B1 M1		Correct value for $\sum r$ stated or used Express as sum of two series
		$\frac{a}{4}n^2(n+1)^2 + \frac{bn}{2}(n+1)$	A1		Obtain correct unsimplified answer
		4 2	M1		Compare coefficients or substitute values
		a = 4 $b = -4$	A1 A1	16	for <i>n</i> Obtain correct answers
		a + b = 0 $4a + b = 12$	M1 A1 A1	1	Use 2 values for <i>n</i> Obtain correct equations
		a = 4 $b = -4$	M1 A1 A1	1	Solve simultaneous equations Obtain correct answers
			6		
5		\mathbf{A}^2	B1 M1 A1cac 3	3	$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ seen or implied Use product inverse correctly Obtain correct answer

4725			lark Scheme	January 2011	
6	(i)	(a) (b)	B1* depB12 B1 B1 B1ft 3	 Vertical line Clearly through (4,0) Sloping line with +ve slope Through (0,-2) Half line starting on <i>y</i>-axis 45° shown convincingly 	
	(ii)		B1ft B1ft B1ft 3	 Shaded to left of their (i) (a) Shaded below their (i) (b) must be +ve slope Shaded above horizontal through their (0, -2) NB These 3 marks are independent, but 3/3 only for fully correct answer. 	
7	(i)	$\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$	B1 B1 2	2 Each column correct	
	(ii)		B1* depB1 2	Enlargement or stretch in x and y axes Scale factor $\sqrt{3}$	
	(iii)	(a)	B1 B1 B1 3	 (2,0),(6,2) indicated (8,2) seen Accurate diagram, including unit square 	
		(b) $detC = 4$	B1 B1 2 9	Correct value found 2 Scale factor for area	
	8	(i) Either $\alpha + \beta = \frac{1}{2}, \alpha\beta = \frac{3}{2}$	B1	State or use both correct results in (i) or (ii)	
		$\alpha + \beta + \frac{\alpha + \beta}{\alpha \beta}$ or $\alpha + \beta + \frac{2}{3}(\alpha + \beta)$	<i>G</i>) M1	Express sum of new roots in terms of $\alpha + \beta$ and $\alpha \beta$	
		$p = \frac{5}{6}$	M1 A1 4	Substitute their values into their expression Obtain given answer correctly	
		Or $3u^2 - u + 2(=0)$	B1	Substitute $x = \frac{1}{u}$ and obtain correct	
		5	M1 M1	quadratic (equation) Use sum of roots of new equation Substitute their values into their expression	
		$p = \frac{3}{6}$	A1	Obtain given answer correctly	

4725	Mark Scl	heme	January 2011
(ii)	$\alpha' \beta' = \alpha \beta + \frac{1}{\alpha \beta} + \frac{\beta}{\alpha} + \frac{\alpha}{\beta}$	B1	Correct expansion
	$\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	M1	Show how to deal with $\alpha^2 + \beta^2$
		A1	Obtain correct expression
	$q = \frac{1}{3}$	M1	Substitute their values into $lpha'eta'$
	5	A1 5 9	Obtain correct answer a.e.f.
9 (i)		M1 M1	Show correct expansion process for 3 x 3 Correct evaluation of any 2 x 2
	$\det \mathbf{M} = a^2 - 7a + 6$	A1 3	correct answer
(ii)		M1	Solve det $\mathbf{M} = 0$
	<i>a</i> = 1 or 6	A1A1 3	Obtain correct answer, ft their (i)
(iii)		M1 A1 A1 3	Attempt to eliminate one variable Obtain 2 correct equations in 2 unknowns Justify infinite number of solutions SC 3/3 if unique solution conclusion consistent with their (i) or (ii)
		9	
10 (i)		M1 A1 2	Use correct denominator Obtain given answer correctly
(ii)		M1 M1 A1 A1	Express terms as differences using (i) Do this for at least 3 terms First 3 terms all correct Last 2 terms all correct
	$\frac{1}{2} - \frac{1}{1} + \frac{1}{1}$	M1	Show relevant cancelling
	2 n+1 n+2	A1 6	Obtain correct answer a.e.f.
(iii)	$\frac{1}{2}$	B1ft	S_{∞} stated or start at $n + 1$ as in (ii)
	$\frac{1}{n+1} - \frac{1}{n+2}$	M1	S_∞ - their (ii) or show correct cancelling
	$\frac{1}{(n+1)(n+2)}$	A1 3	Obtain given answer correctly
	· · · · · ·	11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE

Unit 4725: Further Pure Mathematics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1	(i) $\begin{pmatrix} 4 & 4a \\ 12 & 0 \end{pmatrix}$	B1 B1 B1	3	3 B seen or implied 2 elements correct Other 2 elements correct, a.e.f., including brackets
	(ii) $\begin{pmatrix} 4+4a & 3a \\ 4 & 1 \end{pmatrix}$	M1 A1 5	2	Sensible attempt at matrix multiplication for AB or BA Obtain correct answer
2		B1 M1* DM1 A1 A1 5	5	Establish result true for $n = 1$ or 2 Add next term to given sum formula Combine with correct denominator Obtain correct expression convincingly Specific statement of induction conclusion, provided 1 st 4 marks earned
3	$k^2 - 16$ $k = \pm 4$	B1 M1 A1 3	3	Obtain correct det Equate their det to 0 Obtain correct answers
4	$3 \times \frac{1}{6} \times 2n(2n+1)(4n+1) - \frac{1}{2} \times 2n$ $2n^2(4n+3)$	M1 A1 A1 M1 A2 6	6	Express as sum of two series Each term correct a.e.f. Attempt to factorise Completely correct answer, (A1 if one factor not found)
5	(i) $ a = 2$ arg $a = 60^{\circ}, \frac{\pi}{3}, 1.05$	B1 B1	2	Correct modulus Correct argument
	(ii)	B1 B1 B1 B1 B1* DB1 8	6	Circle Centre $(1,\sqrt{3})$ Through origin, centre $(\pm 1, \pm \sqrt{3})$ and another y intercept Vertical line Through <i>a</i> or their centre, with +ve gradient Correct half line

6		M1		Show correct expansion process for 3×3 or multiplication of C and adj C
		M1		Correct evaluation of any 2×2
	$\det \mathbf{C} = \Delta = 5a - 5$	A1		Obtain correct answer
	(5 - 4 1)	M1		Show correct process for adjoint entries
	$\frac{1}{\Delta} \begin{vmatrix} -5 & 4a & -a \\ 5 & -3a - 1 & 2a - 1 \end{vmatrix}$	A1		Obtain at least 4 correct entries in adjoint
	$\left(\begin{array}{ccc} 5 & -5u-1 & 2u-1 \end{array}\right)$	A 1		Obtain as mulataly as most a disint
		AI B1		Divide their adjoint by their determinant
			7	Divide then adjoint by then determinant
		7		
7	(i)	B1	1	Obtain given answer correctly
	(ii)	M1		Express at least 1 st two and last two
		A1		1 st two terms correct
		Al		Last two terms correct
		M1		Show that correct terms cancel
	3 1 1	Δ 1	5	Obtain correct answer $a \in f$ in terms of n
	$\frac{1}{2}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$	AI	3	Obtain correct answer, a.e.i. in terms of <i>n</i>
	(iii)	B1ft		Sum to infinity stated or implied or start at 1000 as in (ii)
		M1		S_{∞} – their (ii) with $n = 999$ or 1000
				or show correct cancelling
	<u>1999</u>	A1	3	Obtain correct answer, a.e.f.
	<i>777</i> 000			(condone 0.002)
		9		
8	(i)	B1		(0,3) seen
		B1		(3,0) seen
		B1	3	Square with A ' B' and C' positioned correctly
	(ii) $\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$ or $\begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}$	B1*		Reflection in $v = x$ or $v = -x$
	$(1 \ 0)$ $(-1 \ 0)$	DR1		Correct matrix den on stating reflection
	$\begin{pmatrix} 3 & 0 \end{pmatrix}$ $\begin{pmatrix} -3 & 0 \end{pmatrix}$			Enlangement coale factor 2 and 6 2
	$\begin{pmatrix} 0 & 3 \end{pmatrix}$ or $\begin{pmatrix} 0 & -3 \end{pmatrix}$	B1↓		Enlargement scale factor 3 or s.f3
		DB1	4	Correct matrix, dep on stating enlargement S.C. B2 for a pair of transformations consistent with their diagram.
		Б		
		Ľ		

9 (i)	16 + 30i	B1	1	State correct value
(ii)		M1		Use $a = -($ sum of roots $)$
	a = -32	A1		Obtain correct answer
		M1		Use $b =$ product of roots
	<i>b</i> = 1156	A1	4	Obtain correct answer
		M1		Substitute, expand and equate imag. parts
		A1		Obtain $\mathbf{a} = -32$
		M1		Equate real parts
		Al		Obtain b = 1156
(iii))	M1		Attempt to equate real and imaginary parts of $(p+iq)^2 \& 16 - 30i$ or root from (ii)
	$n^2 - a^2 = 16$ and $na = -15$	Δ1		Obtain both results cao
	p q = 10 and $pq = 10$	M1		Obtain guadratia in r^2 or a^2
				Solve to obtain $p = (\pm)^5$ or $q = (\pm)^2$
		INI I		Solve to obtain $p = (\pm)$ or $q = (\pm)$
		A1		Obtain 2 correct answers as complex nos
		M1		Attempt at all 4 roots
	$\pm (5 \pm 3i)$	A1	7	State other two roots as complex nos
		12		
10 (i)				
	1 3			
	$\frac{1}{3} + \frac{3}{4} + 2 = 0$	B1		Use substitution correctly
	$u^2 u$	2.61		P.
	ETTHER	MI		Rearrange
	0 10 1	MI		Square
	$\frac{9}{-} + \frac{12}{-} + 4 = \frac{1}{-}$	A1		Obtain correct equation
	$u^2 u u^3$			
	$4u^3 + 12u^2 + 9u - 1 = 0$	A1	5	Obtain given answer
	OP			
	$a_{1} = (2u_{1}^{3/2} + 3u_{1}^{1/2} + 1)(2u_{1}^{3/2} + 3u_{1}^{1/2} - 1) = 0$	N/2		Multiply their equation in <i>w</i> by appropriate
	c. g. $(2u^{2} + 3u^{2} + 1)(2u^{2} + 3u^{2} - 1) = 0$	IVIZ		related supression
		٨٥		Obtain given answer
		A2		
		R1		Stated or imply that $\mu = \frac{1}{2}$
(11)		DI		Stated of miphy that $u = \frac{1}{x^2}$
		N / 1		b b
		IMI I		\cup se $$ a
	- 3	A1		Obtain correct answer
		M1		$U_{Se} \stackrel{\mathcal{C}}{-}$
		11/1 1		a a
	9	λ 1	5	Obtain correct answer
	4	AI	3	
		10		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced GCE

Unit 4725: Further Pure Mathematics 1

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

4725

Annotations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working

4725

Subject-specific Marking Instructions

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

4725

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last

4725

(complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

4725

Question		n	Answer	Marks	Guidance		
1			$a^{2} + 5^{2} = 13^{2}$ a = 12 $\tan^{-1} \frac{5}{a}$ 0.395 or 22.6° or 0.126 π	M1 A1 M1 A1FT [4]	Use formula for modulus Obtain correct answer Use formula for argument Obtain correct answer allow 0.39		
2			3p + 4q = 1, $-3p - 5q = 1$, $2p + 3q = 0p = 3$ and $q = -2$	B1 M1 A1 M1 A1 [5]	State identity matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Find a pair of simultaneous equations Correct pair of distinct equations Attempt to solve Obtain correct answers		
3			$x^{2} - y^{2} = 3 \text{ and } xy = 3\sqrt{2}$ $x^{4} - 3x^{2} - 18 = 0 \text{ or } y^{4} + 3y^{2} - 18 = 0$ $x = \pm\sqrt{6} \text{ or } y = \pm\sqrt{3}$ $\pm(\sqrt{6} + i\sqrt{3})$	M1 A1 M1 A1 A1 [6]	Attempt to equate real and imaginary parts Obtain both results Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x or y value Both values correct Correct answers as complex numbers		

4725

(Question		Answer	Marks	Guidance				
4			$\frac{1}{4}n^{2}(n+1)^{2} - \frac{3}{2}n(n+1)$ $\frac{1}{4}n(n+1)(n+3)(n-2)$	M1 DM1 A1 M1 A1 A1 A1 [6]	Express as difference of two series Use standard series results Obtain correct unsimplified answer Attempt to factorise At least factor of $n(n + 1)$ Obtain correct answer	From their unsimplified answer			
5	(a)		$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	B1 B1 [2]	Each column correct				
5	(b)	(i)		B1 DB1 [2]	Stretch Scale factor 4 in the <i>y</i> direction	Not "in the <i>y</i> -axis"			
5	(b)	(ii)	4	B1 B1 [2]	Correct value of determinant Scale factor for area	Allow scale factor of stretch or eqiv.			
6				B1 B1 B1 B1 B1 B1 [6]	Circle Centre $(\sqrt{3},1)$ Passing through <i>O</i> and crosses y-axis again Line, with correct slope shown $\frac{1}{2}$ line starting at <i>O</i> Completely correct diagram for both loci	Ignore shading			

4725

Question		on	Answer	Marks	Guidance			
7	(i)			M1 A1 A1 [3]	Attempt at matrix multiplication Obtain \mathbf{M}^2 correctly Obtain given answer correctly			
7	(ii)		$\begin{pmatrix} 3^n & 0\\ 3^n - 1 & 1 \end{pmatrix}$	B1 B1 [2]	3 elements correct 4 th element correct			
7	(iii)		$\begin{pmatrix} 3^{k+1} & 0 \\ 3^{k+1} - 1 & 1 \end{pmatrix}$	B1 M1 A1 B1 [4]	Show that their result is true for $n = 1$ or 2 Attempt to find $\mathbf{M}^k \cdot \mathbf{M}$ or vice versa Obtain correct answer Complete statement of induction conclusion	Must have 1 st 3 marks		
8	(i)			M1 A1 [2]	Combine with a common denominator Obtain given answer correctly			
8	(ii)		$\frac{n}{n+1}$	M1 A1 M1 A1 [4]	Express terms using (i) At least 1^{st} two and last two correct Show terms cancelling Obtain correct answer, in terms of <i>n</i>			

Question		on	Answer	Marks	Guidance	
8	(iii)		$1 - \frac{n}{n+1}$	B1 B1FT [2]	$\lim_{n \to \infty} \frac{n}{n+1} = 1$ This value – (ii)	
9	(i)		$\det \mathbf{X} = \Delta = 10 - 9a - a^2$	M1 M1 A1 [3]	Show correct expansion process for 3×3 Correct evaluation of any 2×2 Obtain correct answer aef	
9	(ii)		a = 1 or -10	M1 A1FT A1FT [3]	Their det $\mathbf{X} = 0$ Obtain correct answers from their (i)	
9	(iii)		$\frac{1}{\Delta} \begin{pmatrix} -a & 2 & 6-9a \\ 5 & -a-9 & 18-3a \\ -a & 2 & a^2-4 \end{pmatrix}$	M1 A1 A1 B1ft [4]	Show correct process for adjoint entries Obtain at least four correct entries in adjoint Obtain completely correct adjoint Divide by their determinant	
10	(i)		$\alpha + \beta + \gamma = 3$ $\alpha\beta + \beta\gamma + \gamma\alpha = 2$ $\alpha\beta\gamma = -\frac{2}{3}$	B1 B1 B1 [3]	State correct value State correct value State correct value	

4725

Question		on	Answer	Marks	Guidance	
10	(ii)		EITHER $c = -\frac{4}{9}$ $\sum_{5} \alpha^{2} = (\sum \alpha)^{2} - 2\sum \alpha \beta$	M1 A1FT M1 A1FT	$c = (\pm)\alpha^2 \beta^2 \gamma^2$ Obtain given correct answer Use correct expression Obtain correct value	FT for sign error in (i) FT for sign error in (i)
			$a = -5$ $\sum \alpha^{2} \beta^{2} = (\sum \alpha \beta)^{2} - 2\alpha \beta \gamma \sum \alpha$ $b = 8$ OR	AIFT M1* A1 DM1 A1 [9]	Obtain answer correctly Attempt to find an identity Obtain correct identity Use appropriate values Obtain correct answer cao	Sign change done correctly
			$9y^3 - 45y^2 + 72y - 4 = 0$	B1 M1 DM1 DM1 A1	State or use correct substitution Rearrange, fractional indices isolated Square both sides Expand and simplify Obtain correct equation	
			$c = -\frac{4}{9}$ a = -5 b = 8	M1 A1 A1FT A1FT [9]	Use coefficients of their cubic Obtain given answer correctly Obtain correct answer Obtain correct answer SC mixture of methods only A1FT for <i>a</i> and <i>b</i>	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMERIDGE ASSESSMENT GROUP

© OCR 2012

Mathematics

Advanced GCE Unit **4725:** Further Pure Mathematics 1

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark asheres	Maguing
Other appreviations in mark scheme	meaning
	Mark for explaining
01	Mark for correct units
G1	Mark for a correct feature on a graph
Dep/D	mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
A2	Accuracy mark awarded 2

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

Mark Scheme

h. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Q	Juesti o	on	Answer	Marks	Guidance
1	(i)		21 +11i	B1	Real part correct
				B1	Imaginary part correct
				[2]	
1	(ii)			M1	Multiply by conjugate of denominator or find a
					pair of simultaneous equations
			26 – 29i	A1	Obtain correct numerator or real part
			26 29	A1	Obtain correct denominator or imaginary part
			$\frac{1}{41} - \frac{1}{41}$		
				[3]	
2	(i)		$\begin{pmatrix} 5 & 2 \end{pmatrix}$	M1	Multiplication attempt, 2 elements correct
			13 6	A1	All elements correct
				[2]	
2	(;;)		EITHED	[4]	
2	(11)			D1	
			$\mathbf{B}^{-1}\mathbf{A}^{-1} = (\mathbf{A}\mathbf{B})^{-1}$	BI	Stated or used
				B1ft	Divide by correct determinant
			1(6 -2)	B1ft	Both diagonals correct
			$\left[\frac{1}{4}\left(-13 5\right)\right]$		
				[3]	
			OR	B1	Either inverse correct
				B1	Two elements correct in final answer, both
					inverses must be correct
				B1	All elements correct

Que	estion	Answer	Marks	Guidance	
		EITHER			
3			M1	Use sum of root and conjugate	
		a = -8	A1	Obtain correct answer	
			M1	Use product of root and conjugate	
		<i>b</i> = 25	A1	Obtain correct answer	
			[4]		
		OR			
			M1	Substitute 4+3i or conjugate into equation	
			M1	Equate real and imaginary parts	
		a = -8	A1	Obtain correct answer	
		<i>b</i> = 25	A1	Obtain correct answer	
4			M1	Express as sum of 3 series	
			M1	Use standard series results, at least 1 correct	
			A1	Two terms correct	
		$\frac{1}{2}n(n+1)(2n+1) - \frac{3}{2}n(n+1) + 2n$	A1	Third term correct	
			M1	Obtain factor of <i>n</i>	
		$n(n^2+1)$	A2	Obtain correct answer c.a.o.	
			[7]	Allow A1 for $\frac{1}{2(2n^2+2)}$	
5			R1	Verify result true when $n = 1$	
5			M1*	Add next term in series	
			DepM1	Attempt to obtain 3^{k+1} correctly	
			Δ1	Show sufficient working to justify correct	
				expression	
			B1	Clear statements of Induction processes, but 1 st 4 marks must all be earned.	
			[5]		

Q	Questic	on	Answer	Marks	Guidance	
6	(i)			M1	Attempt to clear fractions	
				M1	Attempt to expand and simplify to a quadratic	
			$5u^2 + 11u + 8 = 0$	A1	Obtain correct answer, must be an equation	
				[3]		
6	(ii)		EITHER			
			$u = \frac{1}{x} - 1$	B1	State or imply by using roots of new quadratic	
				M1	Use their c/a	
			8	A1 FT	Obtain correct answer	
			$\overline{5}$			
				[3]		
			OR			
			$\frac{1}{\alpha} - \frac{\alpha + \beta}{\alpha} + 1$	B1	Express in terms of $\alpha + \beta$ and $\alpha\beta$	
			$\alpha\beta$ $\alpha\beta$			
				M1	Use values $-\frac{1}{2}$ and $\frac{5}{2}$ correctly	Must be values from original equation
			8	A1	Obtain correct answer	
			5			

Q	Questic	on	Answer	Marks	Guidance
7	(i)			B1B1	Circle, centre (3,4)
				B1ft	Touching x-axis, ft for $(3, -4)$ etc as centre
				B1ft	Crossing <i>y</i> -axis twice
				B1B1	Horizontal line, y intercept 4
				[6]	
7	(ii)		-1 + 4i 7 + 4i	B1B1	State correct answers
				[2]	
7	(iii)			B1ft	Inside circle or above line
				B1	Completely correct diagram
				[2]	
8	(i)			B1	Show given answer correctly
				[1]	
8	(ii)			M1	Express terms as differences using (i)
				M1	Attempt this for at least first 3 terms
				A1	First 3 terms all correct
				A1	Last 2 terms correct
				M1	Show terms cancelling
			$1 + \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	A1	Obtain correct answer, must be in terms of <i>n</i>
			1 + 2 - n + 1 - n + 2		
				[6]	
8	(iii)		3	B1ft	State or use correct sum to infinity
			$\overline{2}$		
				B1	11
					Their sum to infinity – their (ii) = 30
				M1	Attempt to solve correct equation
			N = 4	A1	Obtain only $N = 4$
				[4]	

(Questio	n	Answer	Marks	Guidance	
9	(i)			B1*	Shear	
				depB1	eg image of $(0, 1)$ is $(2, 1)$ or parallel to the x-	
					axis	
				[2]		
9	(ii)		Either	B1	State $\mathbf{Z} = \mathbf{Y}\mathbf{X}$	
				B1	$Obtain \mathbf{Y} = \mathbf{Z}\mathbf{X}^{-1}$	
			$\begin{pmatrix} 1 & -2 \end{pmatrix}$	B1	State or use correct inverse	
			$\begin{pmatrix} 0 & 1 \end{pmatrix}$			
				M1	Matrix multiplication, 2 elements correct	
			$\begin{pmatrix} 1 & \sqrt{3} \end{pmatrix}$	A1	Obtain completely correct simplified exact	
			$\left \frac{1}{2} \frac{\sqrt{3}}{2} \right $		matrix	
			$\left \begin{array}{c} 2 & 2 \\ \sqrt{3} & 1 \end{array} \right $			
			$\left[\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2} \right) \right]$			
				[2]		
			Or	[5]		
			- (a b) (1 2)	B1	Correct order for matrix multiplication	
			$\mathbf{Z} = \begin{pmatrix} c & c \\ c & d \end{pmatrix} \begin{pmatrix} c & c \\ 0 & 1 \end{pmatrix}$	DI		
			(a 2a + b)	B1	Obtain 2correct elements	
			VC 2C+0/	B1	Obtain other 2 correct elements	
			$\left \left \frac{1}{2} - \frac{\sqrt{3}}{2} \right \right $	M1	Equate elements, 2 correct	
				A1	Obtain completely correct simplified exact	
			$\left -\frac{\sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right $		matrix	
9	(iii)			B1*	Rotation	
				depB1	60° clockwise	
				[2]		

Q	Question		Answer	Marks	Guidance	
10	(i)			M1	Show correct expansion process for 3×3	
				M1	Correct evaluation of any 2×2	
			$a^{3} - 4a$	A1	Obtain correct answer	
				[3]		
10	(ii)	(a)		B1	det $D = 15$ so unique sol'n or solve to find correct solution (-2/5, 1, 4/5)	SC B1 once if unique solution following their incorrect det D non zero
				[1]		
10	(ii)	(b)		B1	Their det $\mathbf{D} = 0$, so non-unique solutions	
				M1	Attempt to solve equations with $a = 2$	
				A1	Explain inconsistency with correct working	
				[3]		
10	(ii)	(c)		B1	Their det $\mathbf{D} = 0$, so non-unique solutions	
				M1	Attempt to solve equations with $a = 0$	
				A1	Explain consistency with correct working	
				[3]		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4725: Further Pure Mathematics 1

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

4725

Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
DM1 or M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

4725

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

4725

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

4725

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Q	uestion	1	Answer	Marks	Guidance
1	(i)		$(2a-3 \ 2)$	B1	I or 3I seen or used
			$\begin{pmatrix} 2 & 5 \end{pmatrix}$		
				B1	2 elements correct
				B1	Other 2 elements correct
				[3]	
1	(ii)		$\frac{1}{4} \begin{pmatrix} 4 & -1 \end{pmatrix}$ or equivalent	B1	Divide by correct determinant
			4a-1(-1 a) or equivalent		
				B1	Both diagonals correct
				[2]	
2			1	M1*	Attempt to expand $(r = 1)(r + 1)$
2			$\frac{1}{6}n(n+1)(2n+1) - n$	DM1	Attempt to explain $(7 - 1)(7 + 1)$ Use standard result for Σ_r
			0		Obtain correct unsimplified answer
				AI	
				DM1	Attempt to factorise
			$\frac{-n(2n+5)(n-1)}{6}$	A2	Obtain completely correct answer
					Allow A1 if one bracket still contains a common factor
				[6]	
3	(i)		$ z = \sqrt{5}$	B1	Allow 2.2
			$argz = -26.6^{\circ} \text{ or } -0.464$	B1	Allow -27° or -0.46(3)
				[2]	
3	(ii)			B1	$z^* = 2 + i$ stated or used
	Ì,			M1	Obtain two equations from real and imaginary parts
			a+b=2, b-a=-8	A1	Obtain correct equations
				M1	Attempt to solve 2 linear equations
			a = 5, b = -3	A1	Obtain correct answers
				[5]	

4725

Q	uestion	ı	Answer	Marks	Guidance
4	(i)		_	M1	Substitute and attempt to simplify
			$4u^2 + 6u + k + 2 = 0$	Al	Obtain correct answer, must be an equation
4	(::)			[2]	
4	(11)		$\frac{k+2}{4}$	M1 A1ft	Use products of roots of new quadratic i.e. use $(\pm) c/a$ Obtain correct answer, from their quadratic
			- Or	[2]	
			$\frac{k+2}{4}$	M1 A1	Use sum and product of roots of original equation Obtain correct answer
5			$3\lambda^2 - 7\lambda + 2$	M1 M1 A1	Show correct expansion process for correct 3 x 3 Correct evaluation of any 2 x 2 Obtain correct 3 term quadratic
			$\frac{1}{3}$ or 2	B1* DM1 A1 [6]	Equate their det to 0 Attempt to solve a quadratic equation Obtain correct answers
6	(i)		$\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$	B1 B1	Each column correct
6	(ii)		EitherOr $P: \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	B1 DB1 B1	EitherOrStretch, s.f. 2 in y directionShear, x-axis invariant e.g. $(0,1) \rightarrow (2,1)$ Correct matrixShear, x-axis invariant e.g. $(0,1) \rightarrow (2,1)$
			$Q: \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	B1 [6]	Snear, x axis invariant e.g. $(0, 1)^{-x}$ $(1, 1)$ Stretch, s.i.2 in y direction, Correct matrix N.B. "in the x/y axis" is incorrect
6	(iii)		$\operatorname{PO}\left(\begin{array}{cc} 1 & 1 \end{array}\right) \qquad \begin{pmatrix} 1 & 4 \end{pmatrix}$	M1	Attempt at matrix multiplication of two 2 x 2 matrices from (ii)
			$\begin{bmatrix} \mathbf{Q} \cdot \\ 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 2 \end{bmatrix}$	A1	Obtain correct result cao
				2	

4725	
------	--

Question		n	Answer	Marks	Guidance	
7	(i)	(a)		B1	Circle	
				B1	Centre O and radius 2	
				[2]		
7	(i)	(b)		B1	Horizontal line	
				B1	(3, 1) on their line	
				B1	$\frac{1}{2}$ line to left i.e. horizontal	
				[3]		
7	(ii)			B1	Shade only inside their circle or above their horizontal line	
				B1	Completely correct diagram	
				[2]		
8	(i)			M1	Obtain correct numerator from addition or partial fractions	
				A1	Obtain given answer correctly	
				[2]		
8	(ii)			M1	Express at least three relevent terms using (i)	
				A1	1 st three terms correct	
			п	A1	Last two terms correct	
			$\overline{(n+1)(n+2)}$			
				M1	Show correct cancelling	
				A1	Obtain given answer correctly	
				[5]		
8	(iii)		1	M1	Sum 1 to ∞ - 1 st term or start process at $r = 2$	
			$-\frac{-}{6}$	A1	Obtain correct answer	
				[2]		

Question		n	Answer	Marks	Guidance	
9	(i)			M1	Attempt at complete expansion	
				A1	Obtain correct unsimplified answer	
				A1	Obtain given answer correctly	
				[3]		
9	(ii)		Either $\sum \alpha = -p, \sum \alpha \beta = -4, \alpha \beta \gamma = -3$ $\underline{16 - 6p}$	B1 M1 A1 M1 A1	State (anywhere) correct values for $\sum \alpha, \sum \alpha \beta, \sum \alpha \beta \gamma$ Express given expression as a single fraction Obtain correct expression using (i) Use their values for sum of roots etc. in their expression Obtain correct answer	
			9 Or $9u^{3} + (6p - 16)u^{2} + (8 + p^{2})u - 1 = 0$ $\frac{16 - 6p}{9}$	[5] B1 M1 A1 M1 A1	Use substitution $1/\sqrt{u}$ Rearrange appropriately and square out Obtain correct co-efficients of u^3 and u^2 Use (+/-)b/a from their cubic Obtain correct answer	
10	(i)		$\frac{2}{3}, \frac{2}{5}, \frac{2}{7}$	B1 B1 B1 [3]	B1 x 3, Obtain 3 correct values Justify given answer	
10	(ii)		$\frac{2}{2n-1}$	M1 A1 [2]	Fraction, in terms of <i>n</i> , with correct numerator or denominator Obtain correct answer a.e.f.	
10	(iii)		2	B1ft	Verify result true when $n = 1$, for their (ii), or $n = 2, 3$ or 4	
			$\overline{2(n+1)-1}$	M1	Expression for u_{n+1} using recurrence relation in terms of <i>n</i> using their (ii)	
				A1 A1 B1 [5]	Correct unsimplified answer Correct answer in correct form Specific statement of induction conclusion, previous 4 marks must be earned, <i>n</i> =1 must be verified	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMERIDGE ASSESSMENT GROUP

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4725: Further Pure Mathematics 1

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

4725

Annotations

Annotation in scoris	Meaning
✓ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
E1 U1	Mark for explaining Mark for correct units
E1 U1 G1	Mark for explaining Mark for correct units Mark for a correct feature on a graph
E1 U1 G1 M1 dep*	Mark for explaining Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by *
E1 U1 G1 M1 dep* cao	Mark for explaining Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only
E1 U1 G1 M1 dep* cao oe	Mark for explaining Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent
E1 U1 G1 M1 dep* cao oe rot	Mark for explaining Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated
E1 U1 G1 M1 dep* cao oe rot soi	Mark for explaining Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated Seen or implied
E1 U1 G1 M1 dep* cao oe rot soi www	Mark for explaining Mark for correct units Mark for a correct feature on a graph Method mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working

4725

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

4725

Mark Scheme

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

4725

Mark Scheme

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

(Juestion	Answer	Marks	Guidance
1			M1	Use correct trig expression
		$\sqrt{3}$	A1	Obtain correct answer
			M1	Correct expression for modulus
		$2\sqrt{3}$	A1FT	Obtain correct answer aef
		$3-\sqrt{3}i$	B1FT	Correct conjugate seen or implied
		_√3 i	B1FT	Correct answer
			[6]	
2	(i)	(7 23)	B1B1	Each element correct, missing brackets B1 only
			[2]	
2	(ii)	(6 -15)	M1	Obtain 2×2 matrix
		$\begin{bmatrix} 4 & -10 \end{bmatrix}$	A1	Obtain 2 correct elements
			A1	Obtain other 2 correct elements
		$\det \mathbf{CB} = 0$	A1FT	Obtain their det CB , must be a 2×2 matrix
		singular	A1FT	Correct conclusion from their det CB
			[5]	
3		$x^2 - y^2 = 11$ and $xy = 6\sqrt{5}$	M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $11 + 12\sqrt{5}$
			A1	Obtain both results cao
			M1*	Obtain a quadratic in x^2 or y^2
		$\pm (2\sqrt{5}+3i)$	DM1	Solve a 3 term quadratic to obtain a value for x or y
			A1	Obtain 1 correct answer as complex number
			A1	Obtain only the other correct answer
			[6]	
4			B1	Establish result true for $n = 1$ or $n = 2$
			M1	Multiply M and M^{n} , either order
		$2(2^{k+1}-2)+2$ or $2^{k+1}+2^{k+1}-2$	A1	Obtain correct element
			A1	Obtain other 3 correct elements
			A1	Obtain $2^{k+2} - 2$ convincingly
			D1	Specific statement of induction conclusion, provided 5/5 earned so far and
			DI	verified for $n = 1$
			[6]	

C	Question	Answer	Marks	Guidance
5		$4 \times \frac{1}{n^2} \frac{n^2(n+1)^2}{(n+1)^2} - \frac{3}{2} \times \frac{1}{n^2} \frac{n(n+1)(2n+1)}{(n+1)(2n+1)} + \frac{1}{n^2} \frac{n(n+1)}{(n+1)}$	M1	Express as sum of three series
		$4 \times \frac{1}{4}n(n+1) = 3 \times \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}n(n+1)$	A1	Obtain 2 correct (unsimplified) terms
			A1	Obtain correct 3 rd (unsimplified) term
		$n^{3}(n+1)$	M1	Attempt to factorise, at least factor of <i>n</i>
			A2	Obtain correct answer, A1 if not fully factorised
			[6]	
6	(i)		M1	Use arg $(z - a) = \theta$ in equation for <i>l</i> condone missing brackets
		$\arg(z-3i) = \frac{1}{4}\pi$	A1	Obtain correct answer
			M1	Use $ z-a = k$ in equation for <i>C</i> , <i>k</i> must be real
		z-3i =3	A1	Obtain correct answer
			[4]	
	(ii)	$ z-3i \le 3$ or e.g. $x^2 + (y-3)^2 \le 9$	B1	Obtain correct inequality, or answer consistent with sensible (i)
		$\frac{1}{4}\pi \le \arg(z-3i) \le \frac{1}{2}\pi$ or $y \ge x+3, x \ge 0$	B1 B1	Each correct single inequality, or answer consistent with sensible (i)
			[3]	SC if < used consistently, but otherwise all correct, B2
7	(i)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	B1B1	Each column correct
			[2]	
	(ii)	$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	B1B1	Each column correct
			[2]	
	(iii)	(0 1)	M1	Attempt at matrix multiplication in correct order
		$\left \begin{pmatrix} 1 & 0 \end{pmatrix} \right $	A1FT	Obtain correct answer from their (i) and (ii)
			[2]	
	(iv)	Reflection, in $y = x$	B1B1	Correct description of their (iii) only
			[2]	

4725

Question		on	Answer	Marks	Guidance
8			Either		
			$\sum \alpha = -\frac{6}{k}, \ \sum \alpha \beta = \frac{1}{k}$	B1B1	Correct values stated or used
			$\sum \alpha \beta + 2 \sum \alpha + 3$	M1	Expand brackets Obtain correct expression aef
			11	M	Use their values in terms of k for $\sum \alpha$ and $\sum \alpha \beta$
			$3 - \frac{11}{k}$		Obtained by the second
			Γ.		Obtain correct answer aer
			0r	lol	
				B1	State or use substitution $x = u - 1$
				M1	Expand and attempt to simplify coefficients
			$ku^{3} + (6-3k)u^{2} + (3k-11)u + 2 - k = 0$	A1 A1	Obtain at least correct 1 st and 3 rd terms
				M1	Use their " $\frac{c}{a}$ "
			$3-\frac{11}{k}$	A1	Obtain correct answer a.e.f.
9	(i)			M1	Use correct denominator or partial fractions
				A1	Obtain given answer convincingly
				[2]	
	(ii)			M1	Express at least 1 st two and last term using (i)
				A1	All terms correct
				M1	Show correct terms cancelling
			$\frac{1}{2} - \frac{1}{6n+2}$	A1	Obtain correct unsimplified answer
				M1	Include $\frac{1}{3}$ and combine their sum as a single fraction
				A1	Obtain given answer
				[6]	

Question		n	Answer	Marks	Guidance
10	(i)			M1	Show correct expansion process for 3×3
				M1	Correct evaluation of any 2×2
			<i>a</i> + 3	A1	Obtain correct answer
				M1	Use det $\mathbf{A} = 0$
			a = -3	A1FT	Obtain correct answer from their det A
				[5]	
	(ii)		(1 -1 1)	M1	Show correct processes for adjoint entries
			$\begin{vmatrix} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	A1	Obtain at least 4 correct entries in adjoint
			$\begin{vmatrix} a+3 \\ -11 \\ 8-a \\ 3a-2 \end{vmatrix}$	A1	Obtain completely correct adjoint
				B1	Divide adjoint by their det A
			$\left \begin{array}{c} 1 \\ - \end{array} \right 2 - 4a$	M1	Pre-multiply column matrix by their A^{-1}
			a+3(7a-1)	A2	Obtain correct answer, A1 for 1 element correct
				[7]	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 **A**____

