OCR Maths FP2

Mark Scheme Pack

2006-2014

4726 FP2	MARK SCHEME	January 20	06	Final Draft
1(i) Use stand	lard $\ln(1+3x) = 3x - \frac{3x}{2}$	$\frac{(x)^2}{3} + \frac{(3x)^3}{3}$	М1 М1	Allow e.g. $3x^2$, 2! etc. Attempt to simplify $(3x)^2$ etc.
	$= 3x - 9x^2/2$	$2 + 9x^3$	Al	cao
(ii) Produce ($(1 + x + x^2/2)$		B1 M1	Mult. 2 reasonable attempts, each of 3 terms (non-zero)
Get 3 <i>x</i> – 3	$3x^2/2 + 6x^3$		AI√	From their series
		S	C MI I ∦ MI√ A1 (App	Reasonable attempt at diff. and replace $x = 0$ (2 correct) Put <u>their</u> values into correct Maclaurin expansion cao lies to either/both parts)
2 Write as f(So f Use $x_{n+1} =$ Get $x_1 = 0$ Get $x_3 = 0$.	$x) = \pm (x - e^{x})$ $y(x) = \pm (1 + e^{x})$ $x_n - f(x_n) / f'(x_n) \text{ with } x_n$.56631, $x_2 = 0.56714$ 567(1)	₀ = 0.5	B1 B1 M1 A1√ A1	Or equivalent Correct from their $f(x)$ Clear evidence of N-R on their f, f' At least one to 4d.p. cao to 3 d.p.
3 Use $A/x + Equate x + Use x = 0 cCorrectly fGet A=3, H$	$(Bx + C)/(x^2 + 2)$ 6 to $A(x^2 + 2) + (Bx+C)$ or equiv. for A (or equal and one of B,C B=-3,C=1)x (or equiv.) te coeff.etc.)	B1 M1√ A1 A1	Equate to their P.F. (e.g. if B = 0 or C = 0 used) Include cover-up
4(i)	5	3	B1 L	ine from x_1 to curve
			BI T	hen to line

B1 Clear explanation; allow use of step/staircase

B1, B1

B1

B1

M1 Giving $y \neq x+k$; allow k = 0 here

A1 Must be =

M1 SC Differentiate M1

- Solve dy/dx=0 M1 Ml
- Get 2 x, y values correct A1 MI
- Attempt at max/min M1 M1
- Justify, e.g. graph, A1 constraints on y A1

(ii)(a)Converges to $x=\alpha$ (b)Diverges (does not give either root)

- 5 (i) Give x = -2Attempt to divide out Get y = x + 1
 - (ii) Write as quad. $x^2 + x(3 y) + (3 2y) = 0$ Use for real x, $b^2 4ac \ge 0$ Produce quad. inequality in yAttempt to solve quad. inequality Get A.G. clearly e.g. graph

4

M1 Reasonable attempt e.g. +e^{-x} 6 (i) Use parts to $(-e^{-x} x^n - \int -e^{-x} nx^{n-1} dx)$ Al cao B1 Allow \pm Use limits to get e⁻¹ A1 Tidy correctly to A.G. B1 One such seen (ii) Use $I_3 = 3I_2 - e^{-1}$ $I_2 = 2I_1 - e^{-1}$ $I_1 = I_0 - e^{-1}$ Work out $I_0 = 1 - e^{-1}$ or $I_1 = 1 - 2e^{-1}$ Get $6 - 16e^{-1}$ M1,A1 A1 B1 Explain RHS (limits need not 7 (i) Area under graph = $\int \sqrt{x} \, dx$ be specified) > Sum of areas of rectangles from 1 to N+1 B1 Area of each rect. = Width x Height = $1 \times \sqrt{x}$ B1 (ii) Similarly, area under curve from 0 to N**B1** < sum of areas of rect. from 0 to N **B1 B**1 Clear explanation of A.G. (iii) Integrate $x^{0.5}$ and use 2 different sets of limits M1,M1 Get area between $^{2}/_{3}((N+1)^{1.5}-1)$ and $^{2}/_{3}N^{1.5}$ A1 B1,B1 Two θ needed (rads only); 8 (i) Max. r = 2 at $\theta = 0$ and π ignore θ out of range M1,A1 Two θ needed (rads only); (ii) Solve r = 0 for θ , giving $\theta = \frac{1}{2}\pi$ and $\frac{3}{2}\pi$ ignore θ out of range (iii) Use correct formula with correct rM1 M1 Expand r M1 $C \neq 0$ Get $\int \mathbf{A} + \mathbf{B} \cos 2\theta + \mathbf{C} \cos 4\theta \, \mathrm{d}\theta$ M1√ Integrate their expression correctly Al cao Get $3\pi/8$ (iv) Express $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ or similar **M**1 Use $\cos \theta = x/r$ and/or $\sin \theta = y/r$ **M**1 Simplify to $(x^2 + y^2)^{1.5} = 2x^2$ or similar M1,A1 9 (i) Correct defⁿ of $\cosh x$ and $\sinh x$ **B1.B1** Expand 2.¹/₂ $(e^{x} - e^{-x})$.¹/₂ $(e^{x} + e^{-x})$ M1 Reasonable attempt Clearly get $\frac{1}{2}(e^{2x}-e^{-2x})$ to A.G. A1 (ii) Attempt to diff. and solve dy/dx = 0M1 Reasonable attempt Use (ii) to get A $\cosh x$ (B $\sinh x + C$)=0 M1 Clearly see $\cosh x > 0$ or similar for one **R1** useable factor only M1 Ouote or via e^{-x} correctly Attempt to solve $\sinh x = -C/B$ A1 Get $x = \ln((3 + \sqrt{13})/2)$ Justify one answer only for sinh x = -C/B**B**1 B1 First or second diff test Accurate test for MINIMUM with numeric evidence

B1 Correct value(s) for min.

- 1 Correct expansion of sin x Multiply their expansion by (1 + x)Obtain $x + x^2 - x^3/6$
- 2 (i) Get $\sec^2 y \frac{dy}{dx} = 1$ or equivalent dxClearly use $1 + \tan^2 y = \sec^2 y$ Clearly arrive at A.G.

(ii) Reasonable attempt to diff. to $\frac{-2x}{(1+x^2)^2}$ Substitute their expressions into D.E. Clearly arrive at A.G.

- 3 (i) State y = 0 (or seen if working given)
 - (ii) Write as quad. in x²
 Use for real x, b²-4ac≥0
 Produce quad. inequality in y
 Attempt to solve inequality
 Justify A.G.

- 4 (i) Correct definition of cosh *x* or cosh 2*x* Attempt to sub. in RHS and simplify Clearly produce A.G.
 - (ii) Write as quadratic in cosh x Solve their quadratic accurately Justify one answer only Give ln($4 + \sqrt{15}$)

5 (i) Get $(t + \frac{1}{2})^2 + \frac{3}{4}$

(ii) Derive or quote $dx = \frac{2}{1+t^2} dt$ Derive or quote sin $x = 2t/(1 + t^2)$ Attempt to replace all x and dx Get integral of form A/ (B t^2 +Ct+D) Use complete square form as tan⁻¹(f(t)) Get A.G.

- B1 Quote or derive $x \frac{1}{6}x^3$
- M1 Ignore extra terms
- A1 $\sqrt{}$ On their sin *x*; ignore extra terms; allow 3!
- SC Attempt product rule M1 Attempt f(0), f ' (0), f"(0) ... (at least 3) M1 Use Maclaurin accurately cao A1
- M1
- M1 May be implied
- A1
- M1 Use of chain/quotient rule
- M1 Or attempt to derive diff. equⁿ.
- A1
- SC Attempt diff. of $(1+x^2)dy = 1 \text{ M1,A1}$ dx Clearly arrive at A.G. B1
- B1 Must be = ; accept *x*-axis; ignore any others
- M1 $(x^2y x + (3y-1) = 0)$
- M1 Allow >; or < for no real x
- M1 $1 \ge 12y^2 4y$; $12y^2 4y 1 \le 0$
- M1 Factorise/ quadratic formula
- A1 e.g. diagram / table of values of y
- SCAttempt diff. by product/quotientM1Solve dy/dx = 0 for two real xM1Get both $(-3, -1/_6)$ and $(1, 1/_2)$ A1Clearly prove min./max.A1Justify fully the inequality e.g.B1
- B1
- M1 or LHS if used
- A1
- M1 ($2\cosh^2 x 7\cosh x 4 = 0$)
- A1√ Factorise/quadratic formula
- B1 State cosh $x \ge 1/\text{graph}$; allow ≥ 0 A1 cao; any one of $\pm \ln(4 \pm \sqrt{15})$ or
- decimal equivalent of In ()
- B1 cao
- B1
- B1
- M1
- A1 $\sqrt{}$ From their expressions, C \neq 0
- M1 From formulae book or substitution
- A1

6 (i) Attempt to sum areas of rectangles Use G.P. on $h(1+3^{h}+3^{2h}+...+3^{(n-1)h})$

Simplify to A.G.

(ii) Attempt to find sum areas of different rect. Use G.P. on $h(3^{h}+3^{2h}+...+3^{nh})$

Simplify to A.G.

- (iii) Get 1.8194(8), 1.8214(8) correct
- 7 (i) Attempt to solve *r*=0, tan θ = $\sqrt{3}$ Get θ = - $\frac{1}{3}\pi$ only
 - (ii) $r = \sqrt{3} + 1$ when $\theta = \frac{1}{4}\pi$
 - (iii)

- M1 $(h.3^{h} + h.3^{2h} + ... + h.3^{(n-1)h})$
- M1 All terms not required, but last term needed (or 3^{1-h}); or specify *a*, *r* and *n* for a G.P.
- A1 Clearly use nh = 1
- M1 Different from (i)
- M1 All terms not required, but last term needed; G.P. specified as in (i), or deduced from (i)
- A1
- B1,B1 Allow $1.81 \le A \le 1.83$
- M1 Allow $\pm \sqrt{3}$
- A1 Allow -60°
- B1,B1 AEF for r, 45° for θ
- B1 Correct *r* at correct end-values of θ ; Ignore extra θ used

- B1 Correct shape with r not decreasing
- (iv) Formula with correct *r* used Replace $\tan^2 \theta = \sec^2 \theta - 1$ Attempt to integrate <u>their</u> expression

Get $\theta + \sqrt{3} \ln \sec \theta + \frac{1}{2} \tan \theta$ Correct limits to $\frac{1}{4}\pi + \sqrt{3} \ln \sqrt{2} + \frac{1}{2}$

- 8 (i) Attempt to diff. using product/quotient Attempt to solve dy/dx = 0Rewrite as A.G.
- (ii) Diff. to f '(x) = $1 \pm 2 \operatorname{sech}^2 x$ Use correct form of N-R with their expressions from correct f(x) Attempt N-R with $x_1=2$ from previous M1 Get $x_2 = 1.9162(2)$ (3 s.f. min.) Get $x_3 = 1.9150(1)$ (3 s.f. min.)
- (iii) Work out e_1 and e_2 (may be implied)

- M1 r^2 may be implied
- B1
- M1 Must be 3 different terms leading to any 2 of $a\theta + b \ln (\sec\theta/\cos\theta) + c \tan \theta$
- A1 Condone answer x2 if 1/2 seen elsewhere
- A1 cao; AEF
- M1
- M1
- A1 Clearly gain A.G.
- B1 Or $\pm 2 \operatorname{sech}^2 x 1$
- M1
- M1 To get an x_2
- A1 A1 cao

B1√ -0.083(8), -0.0012 (allow ± if both of same sign); *e*₁ from 0.083 to 0.085

Use $e_2 \approx k e_1^2$ and $e_3 \approx k e_2^2$ Get $e_3 \approx e_2^3 / e_1^2 = -0.0000002$ (or 3)

- 9 (i) Rewrite as quad. in e^y Solve to $e^y = (x \pm \sqrt{x^2 + 1})$ Justify one solution only
- (ii) Attempt parts on sinh *x*. sinh^{*n*-1}*x* Get correct answer Justify $\sqrt{2}$ by $\sqrt{(1+\sinh^2 x)}$ for cosh *x* when limits inserted Replace cosh² = 1+ sinh²; tidy at this stage Produce I_{n-2} Gain A.G. <u>clearly</u>
- (iii) Attempt $4I_4 = \sqrt{2} 3I_2$, $2I_2 = \sqrt{2} I_0$ Work out $I_0 = \sinh^{-1} 1 = \ln(1 + \sqrt{2}) = \alpha$ Sub. back completely for I_4 Get $\frac{1}{8}(3\ln(1+\sqrt{2}) - \sqrt{2})$

M1 A1 $\sqrt{\pm}$ if same sign as B1 $\sqrt{}$ SC B1 only for $x_4 - x_3$

M1 Any form A1 Allow $y = \ln($) B1 $x - \sqrt{x^2 + 1} < 0$ for all real xSC Use $C^2 - S^2 = 1$ for $C = \pm \sqrt{1 + x^2}$ M1 Use/state cosh $y + \sinh y = e^y$ A1 Justify one solution only B1

M1

A1 $(\cosh x . \sinh^{n-1} x - \int \cosh^2 x . (n-1) \sinh^{n-2} x dx)$

B1 Must be clear

M1

A1 A1

M1 Clear attempt at iteration (one at least seen)

B1 Allow *I*₂ M1

A1 AEEF

4726

1 (i) $f(O) = In \ 3 \ f$ f'(O) = '/₃ f'(O) = -'/₉ A.G.

(ii) Reasonable attempt at Maclaurin

$$f(x) = \ln 3 + \frac{1}{3}x - \frac{1}{18}x^2$$

- 2 (i) f(0.8) = 0.03, f(0.9) = +0.077 (accurately e.g. accept -0.02 t0 -0.04) Explain (change of sign, graph etc.)
- (ii) Differentiate two terms
 Use correct form of Newton-Ra ph son with
 0.8, using their f '(x)
 Use their N-R to give one more approximation
 to 3 d.p. minimum
 Get x = 0.835
- 3 (i) Show area of rect. = $\frac{1}{4}(e^{1/16} + e^{1/4} + e^{9/16} + e^{1})$ Show area = 1.7054 Explain the < 1.71 in terms of areas
- (ii) Identify areas for > sign Show area of rect. = $\frac{1}{4} (e^{0} + e^{110} + e^{1/4} + e^{9/16})$ Get A > 1.27

- (ii) Correct definition of sinh *x* Invert and mult. by eX to AG.
 - Sub. $u = e^{x}$ and $du = e^{x} dx$

Replace to $2/(u^2 - 1) du$ Integrate to aln((u - l)/(u + 1))Replace u Bl Bl B1 Clearly derived

MI Form In3 + $ax + bx^2$, with a,brelated to f "f" A/\sqrt{J} On their values off' and f" SR Use ln(3+x) = In3 + In(1 + 1/3)x) MI Use Formulae Book to get In3 + Y3X - Y2(VJX)2 =In3 + Y3X - 1/1gX2 Al

B1

DI	
SR Use $x = \sqrt{J(tan^{-1}x)}$ and compare x to	
$\sqrt{J(\tan^{-1} x)}$ for x=0.8, 0.9	B 1
Explain "change in sign"	B 1

B1 Get $2x - I l(1 + x^2)$

M1 0.8 - f(0.8)/f '(0.8)

Ml√

Al 3d.p. - accept answer which rounds Ml Or numeric equivalent Al At least 3 d.p. correct Bl AG. Inequality required

B1 Inequality or diagram required MI Or numeric evidence Al cao; or answer which rounds down

- BI Correct shape for $\sinh x$
- B1 Correct shape for cosech x
- B1 Obvious point $(dy/dx \neq O)/asymptotes$ clear
- B1 May be implied
- B1 Must be clear; allow 2/(eX e -X) as mimimum simplification
- M1 Or equivalent, all *x* eliminated and not dx = du
- Al
- A1 $\sqrt{}$ Use formulae book, PT, or atanh⁻¹u
- Al No need for *c*

4726

Mark Scheme

Jan 2007

- 5 (i) Reasonable attempt at parts Get xnsin x - $\int \sin x. nx^{n-1} dx$ Attempt parts again Accurately Clearly derive AG.
 - (ii) Get $I_4 = (1/2\pi)^4 12I_2$ or $I_2 = (1/2\pi)^2 2I_0$ Show clearly $I_0 = 1$ Replace their values in relation Get $I_4 = 1/16\pi^4 - 3\pi^2 + 24$

6 (i)
$$x = \pm a$$
, $y = 2$

7 (i) Write as
$$A/t + B/t^2 + (Ct + D)/(t^2 + 1)$$

Equate $At(t^2+1) + B(t^2+1) + (Ct+D)t^2$ to $1 - t^2$ Insert t values l equate coeff. Get A = C = 0, B = L D = -2

(ii) Derive or quote $\cos x$ in terms of tDerive or quote $dx = 2 dt/(1 + t^2)$ Sub. in to correct P.F. Integrate to $-1/t - 2 tan^{-1}t$ Use limits to clearly get AG.

8 (i) Get
$$(e^{y} - e^{-y})/(e^{y} + e^{-y})$$

- (ii) Attempt quad. in e^{γ} Solve for e^{γ} Clearly get AG.
- (iii) Rewrite as $\tanh x = k$ Use (ii) for $x = \sqrt{2} \ln 7$ or equivalent
- (iv) Use of log laws Correctly equate $\ln A = \ln B$ to A = BGet $x = \pm \frac{3}{5}$

M1 Involving second integral Al M1 Al A1 Indicate $(1/2\pi)^n$ and 0 from limits

B1, B1, B1 Must be =; no working needed

- B1 Two correct labelled asymptotes ||Ox| and approaches
- B1 Two correct labelled asymptotes || *Oy* and approaches
- B1 Crosses at (³/₂*a*,0) (and (0,0) may be implied
- B1 90° where it crosses Ox; smoothly
- B1 Symmetry in Ox

M1 Allow $(At+B)/t^2$; justify $B/t^2 + D/(l + t^2)$ if only used

M1√

M1 Lead to at least two constant values

Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong

B1 B1

M1 Allow $k (l-t^2)/((t^2(l+t^2) \text{ or equivalent} Al \sqrt{\text{From their } k} Al$

B1 Allow $(e^{2Y}-1)/(e^{2y}+1)$ or if x used

M1 Multiply by e^{γ} and tidy M1

Al

M1 SR Use hyp defⁿ to get quad. in e^{X} M I Al Solve $e^{2x} = 7$ for x to $\frac{1}{2} \ln 7$ Al Bl One used correctly M1 Or $\ln(^{A}l_{B}) = 0$ Al

- (ii) U se correct formula with correct r $f \sec^2 x \, dx = \tan x \text{ used}$ Quote f2 secx tanx $dx = 2 \sec x$ Replace $\tan^2 x$ by $\sec^2 x - 1$ to integrate Reasonable attempt to integrate 3 terms And to use limits correctly Get $\sqrt{3} + 1 - \frac{1}{6}\pi$
- (iii) Use $x = r \cos\theta$, $y = r \sin\theta$, $r = (x^2 + y^2)^{1/2}$ Reasonable attempt to eliminate r, θ Get $y = (x-1)\sqrt{(x^2 + y^2)}$

B1 Shape for correct θ ; ignore other θ Used; start at (*r*,0)

B1 θ =0, *r*=1 and increasing *r*

B1 B1 B1 Or sub. correctly M1

M1 Al Exact only

M1 M1 A1 Or equivalent

- 1 Correct formula with correct *r* Rewrite as $a + b\cos 6\theta$ Integrate their expression correctly Get $\frac{1}{3}\pi$
- 2 (i) Expand to $\sin 2x \cos^{1}\!\!/ \pi + \cos 2x \sin^{1}\!\!/ \pi$ Clearly replace $\cos^{1}\!\!/ \pi$, $\sin^{1}\!\!/ \pi$ to A.G.
 - (ii) Attempt to expand $\cos 2x$ Attempt to expand $\sin 2x$ Get $\frac{1}{2}\sqrt{2}$ (1 + 2x - 2x² - 4x³/3)
- M1 Allow $r^2 = 2 \sin^2 3\theta$ M1 $a, b \neq 0$ A1 $\sqrt{1}$ From $a + b\cos 6\theta$ A1 cao
- B1
- B1
- M1 Allow $1 2x^2/2$
- M1 Allow $2x 2x^3/3$
- A1 Four correct unsimplified terms in any order; allow bracket; AEEF SR Reasonable attempt at $f^{n}(0)$ for n=0 to 3 M1 Attempt to replace their values in Maclaurin M1 Get correct answer only A1
- M1 Allow C=0 here
- $M1\sqrt{May}$ imply above line; on their P.F.
- M1 Must lead to at least 3 coeff.; allow cover-up method for *A*
- A1 cao from correct method
- B1 $\sqrt{}$ On their A
- B1 $\sqrt{}$ On their *C*; condone no constant; ignore any $B \neq 0$
- M1 Two terms seen
- M1 Allow +
- A1
- A1 cao
- B1 On any $k\sqrt{1-x^2}$
- M1 In any reasonable integral
- A1
- SRReasonable sub.B1Replace for new variable and attempt
to integrate (ignore
limits)M1Clearly get $\frac{1}{2}\pi$ A1

- 3
- (i) Express as $A/(x-1) + (Bx+C)/(x^2+9)$ Equate (x^2+9x) to $A(x^2+9) + (Bx+C)(x-1)$ Sub. for x or equate coeff.

Get A=1, B=0,C=9

- (ii) Get $A \ln(x-1)$ Get $C/3 \tan^{-1}(x/3)$
- 4 (i) Reasonable attempt at product rule Derive or quote diff. of $\cos^{-1}x$ Get $-x^2(1 - x^2)^{-1/2} + (1 - x^2)^{1/2} + (1 - x^2)^{-1/2}$ Tidy to $2(1 - x^2)^{1/2}$
 - (ii) Write down integral from (i) Use limits correctly Tidy to ½π

5

(i)	Attempt at parts on $\int 1 (\ln x)^n dx$
	Get x $(\ln x)^n - \int^n (\ln x)^{n-1} dx$
	Put in limits correctly in line above
	Clearly get A.G.
	Clearly get A.G.

- (ii) Attempt I_3 to I_2 as $I_3 = e 3I_2$ Continue sequence in terms of In Attempt I_0 or I_1 Get 6 - 2e
- 6 (i) Area under graph $(= \int 1/x^2 dx, 1 \text{ to } n+1)$ < Sum of rectangles (from 1 to *n*)

Area of each rectangle = Width x Height = $1 \times 1/x^2$

- (ii) Indication of new set of rectangles
 Similarly, area under graph from 1 to n
 > sum of areas of rectangles from 2 to n
 Clear explanation of A.G.
- (iii) Show complete integrations of RHS, using correct, different limits
 Correct answer, using limits, to one integral
 Add 1 to their second integral to get complete series
 Clearly arrive at A.G.
- (iv) Get one limit Get both 1 and 2

- M1 Two terms seen
- A1 M1

A1 ln e = 1, ln 1 = 0 seen or implied

M1

A1 $I_2 = e - 2I_1$ and/or $I_1 = e - I_0$

M1 $(I_0 = e-1, I_1 = 1)$

A1 cao

- B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)
- B1 Some evidence of area worked out seen or implied
- **B**1

A1

M1

A1

B1

B1

Quotable

- B1 Sum (total) seen or implied
- B1 Diagram; use of left-shift of previous areas
- M1 Reasonable attempt at $\int x^{-2} dx$

Quotable; limits only required

4726

7

- (i) Use correct definition of cosh or sinh x Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.
 - (ii) Get $\cosh(x y) = 1$ Get or imply (x - y) = 0 to A.G.
 - (iii) Use $\cosh^2 x = 9$ or $\sinh^2 x = 8$ Attempt to solve $\cosh x = 3$ (not -3) or $\sinh x = \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only) Get at least one *x* solution correct Get both solutions correct, *x* and *y*
- B1 Seen anywhere in (i) M1 A1 $\sqrt{}$ A1 Accept e^{x-y} and e^{y-x} M1
- A1
- B1 M1 $x = \ln(3 + \sqrt{8})$ from formulae book or from basic cosh definition
- A1
- A1 x, y = $\ln(3 \pm 2\sqrt{2})$; AEEF
 - SR Attempt tanh = sinh/coshB1Get tanh x = $\pm \sqrt{8/3}$ (+ or -)M1Get at least one sol. correctA1Get both solutions correctA1
 - $\begin{array}{ll} \text{SR Use exponential definition} & \text{B1} \\ \text{Get quadratic in } e^x \text{ or } e^{2x} & \text{M1} \end{array}$
 - Solve for one correct x A1 Get both solutions, x and y A1
- 8 (i) $x_2 = 0.1890$ $x_3 = 0.2087$ $x_4 = 0.2050$ $x_5 = 0.2057$ $x_6 = 0.2055$ $x_7 (= x_8) = 0.2056$ (to x_7 minimum) $\alpha = 0.2056$
 - (ii) Attempt to diff. f(x)Use α to show $f'(\alpha) \neq 0$
 - (iii) $\delta_3 = -0.0037$ (allow -0.004)
 - (iv) Develop from $\delta_{10} = f'(\alpha) \, \delta_9$ etc. to get δ_i or quote $\delta_{10} = \delta_3 f'(\alpha)^7$ Use their δ_1 and $f'(\alpha)$ Get 0.000000028

- B1
- B1 $\sqrt{1}$ From their x_1 (or any other correct)
- B1 $\sqrt{}$ Get at least two others correct, all to a minimum of 4 d.p.
- B1 cao; answer may be retrieved despite some errors
- M1 $k/(2+x)^3$
- A1 $\sqrt{}$ Clearly seen, or explain $k/(2+x)^3 \neq 0$ as $k \neq 0$; allow ± 0.1864
- $\begin{array}{ccc} \text{SR} & \text{Translate } y=1/x^2 & \text{M1} \\ & \text{State/show } y=1/x^2 \text{ has no TP} & \text{A1} \end{array}$
- B1 $\sqrt{}$ Allow \pm , from their x₄ and x₃
- M1 Or any δ_1 eg use $\delta_9 = x_{10} x_9$
- M1
- A1 Or answer that rounds to \pm 0.00000003

9 (i) Quote x = aAttempt to divide out

Get y = x - a

(ii) Attempt at quad. in x (=0) Use $b^{2} - 4ac \ge 0$ for real x Get $y^2 + 4a^2 \ge 0$ State/show their quad. is always >0

(iii)

B1

M1 Allow M1 for y=x here; allow

A1 (x-a) + k/(x-a) seen or implied

A1 Must be equations

M1

- M1 Allow >
- A1
- B1 Allow \geq
- B1 $\sqrt{}$ Two asymptotes from (i) (need not be labelled)
- B1 Both crossing points

B1 $$ Approaches – correct shap	e	
SR Attempt diff. by quotient/p	roduct	
rule	M 1	
Get quadratic in x for $dy/dx = 0$		
and note $b^2 - 4ac < 0$	A1	
Consider horizontal asymptotes B1		
Fully justify answer	B 1	

4726 Further Pure Mathematics 2

4726

1	(i)	Get f '(x) = $\pm \sin x/(1+\cos x)$ Get f "(x) using quotient/product rule Get f(0) = ln2, f '(0) = 0, f"(0) = $-\frac{1}{2}$	M1 M1 B1 A1	Reasonable attempt at chain at any stage Reasonable attempt at quotient/product Any one correct from correct working All three correct from correct working
	(ii)	Attempt to use Maclaurin correctly Get $\ln 2 - \frac{1}{4} x^2$	M1 A1√	Using their values in $af(0)+bf'(0)x+cf''(0)x^2$; may be implied From their values; must be quadratic
2	(i)	Clearly verify in $y = \cos^{-1}x$ Clearly verify in $y = \frac{1}{2}\sin^{-1}x$	B1 B1 SR	i.e. $x=\frac{1}{2}\sqrt{3}$, $y=\cos^{-1}(\frac{1}{2}\sqrt{3})=\frac{1}{6}\pi$, or similar Or solve $\cos y = \sin 2y$ Allow one B1 if not sufficiently clear detail
	(ii)	Write down at least one correct diff'al Get gradient of -2 Get gradient of 1	M1 A1 A1	Or reasonable attempt to derive; allow ± cao cao
3	(i)	Get <i>y</i> - values of 3 and $\sqrt{28}$ Show/explain areas of two rectangles eq <i>y</i> - value x 1, and relate to <i>A</i>	B1 ual B1	Diagram may be used
	(ii)	Show $A > 0.2(\sqrt{(1+2^3)} + \sqrt{(1+2.2^3)} + \dots \\\sqrt{(1+2.83)}) = 3.87(28)$ Show $A < 0.2(\sqrt{(1+2.2^3)} + \sqrt{(1+2.4^3)} + \dots \\ \dots + \sqrt{(1+3^3)}) = 4.33(11) < 4.34$	M1 A1 M1 A1	Clear areas attempted below curve (5 values) To min. of 3 s.f. Clear areas attempted above curve (5 values) To min. of 3 s.f.
4	(i)	Correct formula with correct <i>r</i> Expand r^2 as A + Bsec θ + Csec ² θ Get C tan θ Use correct limits in their answer Limits to ${}^{1}/_{12}\pi$ + 2 ln($\sqrt{3}$) + ${}^{2\sqrt{3}}/_{3}$	M1 M1 B1 M1 A1	May be implied Allow B = 0 Must be 3 terms AEEF; simplified
	(ii)	Use $x=r \cos\theta$ and $r^2 = x^2 + y^2$ Eliminate r and θ Get $(x-2)\sqrt{x^2 + y^2} = x$	B1 M1 A1	Or derive polar form from given equation Use their definitions A.G.

19

5	(i)	Attempt use of product rule
		Clearly get $x = 1$

- (ii) Explain use of tangent for next approx. B1 Tangents at successive approx. give x>1 B1
- (iii) Attempt correct use of N-R with their derivative Get $x_2 = -1$ Get -0.6839, -0.5775, (-0.5672...)Continue until correct to 3 d.p. Get -0.567
- 6 (i) Attempt division/equate coeff. Get a = 2, b = -9Derive/quote x = 1
 - (ii) Write as quadratic in x Use $b^2 \ge 4ac$ (for real x) Get $y^2 + 14y + 169 \ge 0$ Attempt to justify positive/negative Get $(y+7)^2 + 120 \ge 0$ – true for all y

- 7 (i) Get $x(1+x^2)^{-n} \int x \cdot (-n(1+x^2)^{-n-1} \cdot 2x) dx$ Accurate use of parts Clearly get A.G.
 - (ii) Express x^2 as $(1+x^2) 1$ Get $\frac{x^2}{(1+x^2)^{n+1}} = \frac{1}{(1+x^2)^n} \frac{-1}{(1+x^2)^{n+1}}$ Show $I_n = 2^{-n} + 2n(I_n - I_{n+1})$ Tidy to A.G.
 - (iii) See $2I_2 = 2^{-1} + I_1$ Work out $I_1 = \frac{1}{4}\pi$ Get $I_2 = \frac{1}{4} + \frac{1}{8}\pi$

- M1 A1 Allow substitution of *x*=1
 - 1 Not use of G.C. to show divergence
 - Relate to crossing *x*-axis; allow diagram
- M1 A1√
- A1 To 3 d.p. minimum
- M1 May be implied
- A1 cao
- M1 To lead to some ax+b (allow b=0 here)
- A1 B1 Must be equations
- M1 $(2x^2 x(11 + y) + (y 6) = 0)$
- M1 Allow <, >
- A1
 - M1 Complete the square/sketch
- A1
- SC Attempt diff; quot./prod. rule M1 Attempt to solve dy/dx = 0 M1 Show $2x^2 - 4x + 17 = 0$ has no real roots e.g. $b^2 - 4ac < 0$ A1 Attempt to use no t.p. M1 Justify all y e.g. consider asymptotes and approaches A1
- M1 Reasonable attempt at parts
- A1
- B1 Include use of limits seen
- B1 Justified
- M1 Clear attempt to use their first line above
- A1

B1

M1 Quote/derive $\tan^{-1}x$

A1

4726

8	(i)	Use correct exponential for sinh x	B1	
	~ /	Attempt to expand cube of this	M1	Must be 4 terms
		Clearly replace in terms of sinh	B1	(Allow RHS \rightarrow LHS or RHS = LHS separately)
	(ii)	Replace and factorise Attempt to solve for $\sinh^2 x$ Get $k>3$	M1 M1 A1	Or state sinh $x \neq 0$ (= $\frac{1}{4}(k-3)$) or for k and use sinh ² x>0 Not \geq
	(iii)	Get $x = \sinh^{-1}c$ Replace in ln equivalent Repeat for negative root	$M1 \\ A1 \\ 1 \\ SR$	$(c=\pm\frac{1}{2})$; allow sinh $x = c$ As $\ln(\frac{1}{2}+\sqrt{\frac{5}{4}})$; their x May be given as neg. of first answer (no need for x=0 implied) Use of exponential definitions Express as cubic in $e^{2x} = u$ M1 Factorise to $(u-1)(u^2-3u+1)=0$ A1 Solve for $x = 0$, $\frac{1}{2}\ln(\frac{3}{2}\pm\frac{\sqrt{5}}{2})$ A1
9	(i)	Get sinh $y^{dy}_{dx} = 1$ Replace sinh $y = \sqrt{(\cosh^2 y - 1)}$ Justify positive grad. to A.G.	M1 A1 B1	Or equivalent; allow ± Allow use of ln equivalent with Chain Rule e.g. sketch
	(ii)	Get $k \cosh^{-1}2x$ Get $k=\frac{1}{2}$	M1 A1	No need for <i>c</i>
	(iii)	Sub. $x = k \cosh u$ Replace all $x \operatorname{to} \int k_1 \sinh^2 u du$ Replace as $\int k_2 (\cosh 2u - 1) du$ Integrate correctly Attempt to replace u with x equivalent Tidy to reasonable form	M1 A1 M1 A1√ M1 A1	Or exponential equivalent No need for <i>c</i> In their answer cao $(\frac{1}{2}x\sqrt{4x^2-1} - \frac{1}{4}\cosh^{-1}2x (+c))$

4726 Further Pure Mathematics 2

1		Write as $\frac{A}{x-2a} + \frac{Bx+C}{x^2+a^2}$	M1	Accept C=0
		Get $2ax = A(x^2+a^2) + (Bx+C)(x-2a)$ Choose values of x and/or equate coeff. Get $A = \frac{4}{5}$, $B = \frac{-4}{5}$, $C = \frac{2}{5}a$	A1√ M1 A1 A1 5	Follow-on for <i>C</i> =0 Must lead to at least one of their <i>A</i> , <i>B</i> , <i>C</i> For two correct from correct working only For third correct
2			B1 B1	Get (4,0), (3,0), (-2,0) only Get $(0,\sqrt{5})$ as "maximum"
			B1 B1 5	Meets x-axis at 90 ⁰ at all crossing points Use $-2 \le x \le 3$ and $x \ge 4$ only Symmetry in Ox
3		Quote/derive $dx = \frac{2}{1+t^2} dt$	B 1	
		Replace all x and dx from their expressions Tidy to $2/(3t^2+1)$ Get k tan ⁻¹ (At) Get $k = \frac{2}{3}\sqrt{3}, A = \sqrt{3}$ Use limits correctly to $\frac{2}{9}\sqrt{3\pi}$	M1 A1 M1 A1√ A1 6	Not $dx=dt$; ignore limits Not $a/(3t^2+1)$ Allow $A=1$ if from $p/(t^2+1)$ only Allow $k=a/\sqrt{3}$ from line 3; AEEF AEEF
4	(i)		B1	Correct $y = x^2$
			B1 B1 3	Correct shape/asymptote Crossing (0,1)
	(ii)	Define sech $x = 2/(e^x + e^{-x})$ Equate their expression to x^2 and attempt to simplify Clearly get A.G.	B1 M1 A1 3	AEEF
	(iii)	Cobweb Values > and then < root	B1 B1 2	Only from cobweb

5	(i)	Factorise to $\tan^{n-2}x(1+\tan^2 x)$	B1	Or use $\tan^n x = \tan^{n-2} x \cdot \tan^2 x$
		Clearly use $1 + \tan^2 = \sec^2$	M1	Allow wrong sign
		Integrate to $\tan^{n-1}x/(n-1)$	A1	Quote or via substitution
		Use limits and tidy to A.G.	<u>A1</u>	Must be clearly derived
			4	
	(ii)	Get $3(I_4 + I_2) = 1, I_2 + I_0 = 1$	B1	Write down one correct from reduction
				formula
		Attempt to evaluate I_0 (or I_2)	M1	$I_2 = a \tan x + b, a, b \neq 0$
		Get $\frac{1}{4\pi}$ (or 1 - $\frac{1}{4\pi}$)	A1	
		Replace to $\frac{1}{4}\pi - \frac{2}{3}$	<u>A1</u>	
			4	
6	(i)	Attempt to use N-R of correct form with clear f '(x) used	M1	
		Get 2.633929, 2.645672	A1	For one correct to minimum of 6 d.p.
			<u>A1</u> √	For other correct from their x_2 in correct NR
			3	
	(ii)	√7	B1	Allow ±
			1	
	(iii)	Get $e_1 = 0.14575$, $e_2 = 0.01182$	B1√	From their values
		Get $e_3 = 0.00008$	B 1√	
		Verify both ≈ 0.00008	B 1	From 0.000077 or 0.01182 ³ /0.14575 ²
			3	
_	(•)		7.1	
7	(1)	Attempt quotient/product on bracket		March - investigat
		Get $-3/(2+x)^2$	AI	May be implied
		Use Formulae Booklet or derive from $tanh y = (1-x)/(2+x)$	NII	Attempt tanh ⁻ part in terms of x
		Get -3	A1√	From their results above
		$(2+x)^2 \ 1-((1-x)/(2+x))^2$		
		Clearly tidy to A.G.	A1	
		Get f ''(x) = $2/(1+2x)^2$	B1	cao
			6	
			SC	Use reasonable ln definition M1
				Get $y=\frac{1}{2}\ln((1-k)/(1+k))$ for $k=(1-x)/(1+2x)A1$
				Tidy to $y=\frac{1}{2}\ln(3/(1+2x))$ A1
				Attempt chain rule M1
				Clearly tidy to A.G. A1
				Get f''(<i>x</i>) B1
	(ii)	Attempt $f(0)$, $f'(0)$ and $f''(0)$	M1	From their differentiation
		Get $\tanh^{-1} \frac{1}{2}$, -1 and 2	A1√	
		Replace $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3 (= \ln \sqrt{3})$	B1	Only
		Get $\ln\sqrt{3} - x + x^2$	<u>A1</u>	
			4	
			SC	Use standard expansion from $\frac{1}{2\ln 3} - \frac{1}{2\ln (1+2x)}$

8	(i)	Attempt to solve $r = 0$ Get $\alpha = \frac{1}{4}\pi$	M1 A1 2	From correct method; ignore others; allow θ
	(ii) ((a)Get $1 - \sin((2k+1)\pi - 2\theta)$ Expand as $\sin(A+B)$ Use k as integer so $\sin(2k+1)\pi = 0$	M1 M1	Attempt $f(\frac{1}{2}(2k+1)\pi - \theta)$, leading to 2θ here Or discuss periodicity for general <i>k</i>
		And $\cos(2k+1)\pi = -1$	A1 3	Needs a clear explanation
	((b) Quote $\frac{1}{4}(2k+1)\pi$	B1	For general answer or 2 correct (ignore other answers given)
		Select or give $k = 0, 1, 2, 3$	B1 2	For all 4 correct in $0 \le \theta < 2\pi$
rou	ıghly	(iii)		B1 Correct shape; 2 branches only,
				as shown
			B1 B1 B1	Clear symmetry in correct rays Get max. $r = 2$ At $\theta = \sqrt[3]{4\pi}$ and $\frac{7}{4\pi}$; both required (allow correct answers not in $0 \le \theta < 2\pi$ here)
	(•)		4	
9	(1)	Attempt to use parts Divide out $x/(1+x)$ Correct answer	MI M1	Two terms, one yet to be integrated Or use substitution
		$x \ln(1+x) - x + \ln(1+x)$ Limits to correct A.G.	A1 A1 4 SC SC	Quote $\int \ln x dx$ M1Clear use of limits to A.G.A1Attempt to diff ate by product ruleM1Clear of finite to A.G.A1
	(ii) ((a)Use sum of areas of rect.<		Clear use of limits to A.G. AI
		Area under curve (between limits 0 and 70) Areas = 1x heights = 1(ln2 + ln3+ln70)	B1 B1 2	Areas to be specified
	(t	b)Explain use of 69 Explain first rectangle Areas as above > area under curve	B1 B1 B1 3	Allow diagram or use of left shift of 1 unit
	(C) Show/quote $\ln 2 + \ln 3 + \dots \ln 70 = \ln 70!$ Use $N = 69, 70$ in (i)	B1 M1	No other numbers; may be implied by 228.39 or 232.65 seen; allow 228.4, 232.6 or 232.7
		Get 228.3, 232.7	A1 3	

4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$
		Get $1 + 2x + 2x^2$

(ii)
$$\ln((1+2x+2x^2))$$
 M1
+ $(1-2x+2x^2)) =$
 $\ln(2+4x^2) =$ A1 $\sqrt{1}$
 $\ln(2 + \ln(1 + 2x^2))$ M1
 $\ln(2 + 2x^2)$ A1

2 (i)
$$x_2 = 1.8913115$$
 B
 $x_3 = 1.8915831$ B
 $x_4 = 1.8915746$ B

(ii) $e_3/e_2 = -0.031(1)$ N

$$e_4/e_3 = -0.036(5)$$

State f'(α) $\approx e_3/e_2 \approx e_4/e_3$

3 (i) Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +

(ii) Get
$$2/(\sqrt{1-4x^2})$$

+ $1/(\sqrt{1-y^2}) \frac{dy}{dx} = 0$

 Find $y = \sqrt{3}/2$ M1

 Get $-2\sqrt{3}/3$ A1

M1 A1	Reasonable 3 term attempt e.g. allow 2 cao SC Reasonable attempt at $f'(0)$ and $f''(0)$ Get $1+2x+2x^2$ cao	$x^{2}/2$) M1 A1
M1	Attempt to sub for e^{2x} and e^{-2x}	
A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f '(x) and f"(x) One correct Attempt f(0), f '(0) and f"(0) Get cao	M1 A1 M1 A1
B1 B1√ B1	x_2 correct; allow answers which round For any other from their working For all three correct	
M1 A1 B1√	Subtraction and division on their values allow \pm Or answers which round to -0.031 and Using their values but only if approx. et allow differentiation if correct conclusion allow gradient for f'	; -0.037 qual; on;
M1 A1 B1	Implicit diff. to $dy/dx = \pm(1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values	
M1 A1 M1 A1√	Attempt implicit diff. and chain rule; all e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$ Method leading to y AEEF; from their <i>a</i> above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ Attempt to diff. as above	low) B1 M1
	Replace x in reasonable dy/dx and attempt to tidy Get result above	M1 A1

4	(i)	Let $x = \cosh \theta$ such that $dx = \sinh \theta d\theta$	M1
		Clearly use $\cosh^2 - \sinh^2 = 1$	A1
	(ii)	Replace $\cosh^2 \theta$	M1
		Attempt to integrate their	M1
		expression	
		Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta (+c)$	A1
		Clearly replace for <i>x</i> to A.G.	B1

5 (i) (a) State
$$(x=) \alpha$$
 B1
None of roots B1

(b) Impossible to say	
All roots can be derived	

B1 B1

B1

B1

B1

B1

B1

M1 A1

M1

M1

A1

M1 A1

A1

6	(i)	Correct definitions used
		Attempt at $(e^{x}-e^{-x})^{2}/4 + 1$
		Clearly derive A.G.

- (ii) Form a quadratic in sinh x Attempt to solve Get sinh $x = -\frac{1}{2}$ or 3 Use correct ln expression Get $\ln(-\frac{1}{2}+\frac{\sqrt{5}}{2})$ and $\ln(3+\sqrt{10})$
- 7 (i) $OP=3+2\cos \alpha$ $OQ=3+2\cos(\sqrt{2}\pi+\alpha)$ M1 $=3-2\sin \alpha$ Similarly $OR=3-2\cos \alpha$ M1

$$OS=3 + 2\sin\alpha$$

Sum = 12

(ii) Correct formula with attempt at r^2 M1 Square *r* correctly A1 Attempt to replace $\cos^2\theta$ with M1 $a(\cos 2\theta \pm 1)$ Integrate their expression A1 $\sqrt{}$ Get $^{11\pi}/_4 - 1$ A1

Clearly derive A.G.	
Allow $a (\cosh 2\theta \pm 1)$ Allow $b \sinh 2\theta \pm a\theta$	
Condone no + <i>c</i> SC Use expo. def ⁿ ; three terms Attempt to integrate Get $\frac{1}{8}(e^{2\theta}-e^{-2\theta}) + \frac{1}{2\theta}(+c)$ Clearly replace for <i>x</i> to A.G.	M1 M1 A1 B1
No explanation needed	
Some discussion of values close to 1 central leading to correct conclusion	or 2 or
Correct <i>x</i> for <i>y</i> =0; allow 0.591, 1.59,	2.31
Turning at (1,0.8) and/or (1,-0.8)	
Meets x-axis at 90°	
Symmetry in <i>x</i> -axis; allow	
Allow $(e^{x}+e^{-x})^{2}+1$; allow /2	
Factors or formula	
On their answer(s) seen once	
Any other unsimplified value	
Attempt at simplification of at least to correct expressions	wo
cao	
Need not be expanded, but three term	ıs if it is

Need three terms cao

8	(i)	Area = $\int 1/(x+1) dx$ Use limits to ln(<i>n</i> +1) Compare area under curve to areas of rectangles Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$ Clear detail to A.G.	B1 B1 B1 M1 A1
	(ii)	Show or explain areas of rectangles above curve Areas of rectangles (as above) >	M1 A1
		area under curve	
	(iii)	Add 1 to both sides in (i) to make $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{$	B1
		Add $\frac{1}{(n+1)}$ to both sides in (ii) to make $\sum {1/r}$	B1
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1
9	(i)	Require denom. = 0 <u>Explain</u> why denom. $\neq 0$	B1 B1
	(ii)	Set up quadratic in x Get $2yx^2$ - $4x$ + $(2a^2y+3a) = 0$ Use $b^2 \ge 4ac$ for real x	M1 A1 M1
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1

(iii)	Split into two separate integrals	M 1
	Get $k \ln(x^2 + a^2)$	A1
	Get $k_1 \tan^{-1}(x/a)$	A1
	Use limits and attempt to simplify	M1
	Get $\ln 2.5 - 1.5 \tan^{-1}2 + 3\pi/8$	
		A1

Justify inequality
Sum seen or implied as 1 x y values
Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
First and last heights seen or implied; A.G

Include or imply correct limits

- Must be clear addition
- Must be clear addition; A.G.
- Allow not convergent

Attempt to solve, explain always > 0 etc.

Produce quadratic inequality in *y* from their quad.; allow use of = or < Factors or formula Justified from graph SC Attempt diff. by quot./product rule M1 Solve dy/dx = 0 for two values of *x* M1 Get x=2a and x=-a/2 A1 Attempt to find two *y* values M1 Get correct inequalities (graph used to justify them) A1

Or $p \ln(2x^2+2a^2)$ k_1 not involving a

AEEF

SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta d\theta$	M 1
Reduce to $\int p \tan \theta - p_1 \mathrm{d}\theta$	A1
(ignore limits here)	
Integrate to $p\ln(\sec\theta)-p_1\theta$	A1
Use limits (old or new) and	
attempt to simplify	M 1
Get answer above	A1

4726 Further Pure Mathematics 2

1(i)	Attempt area = $\pm \Sigma(0.3y)$ for at least three y values	M1	May be implied
	Get 1.313(1) or 1.314	A1	Or greater accuracy
(ii)	Attempt ± sum of areas (4 or 5 values) Get 0.518(4)	M1 A1	May be implied Or greater accuracy SC If answers only seen, 1.313(1) or 1.314 B2 0.518(4) B2 -1.313(1) or -1.314 B1 -0.518(4) B1
	Or		
	Attempt answer to part (i)-final rectangle Get 0.518(4)	M1 A1	
(iii)	Decrease width of strips	B1	Use more strips or equivalent
2	Attempt to set up quadratic in x Get $x^2(y-1) - x(2y+1) + (y-1)=0$	M1 A1	Must be quadratic; $= 0$ may be implied
	Clearly solve to AG	A1	Allow =,>,<, \leq here; may be implied If other (in)equalities used, the step to AG must be clear SC Reasonable attempt to diff. using prod/quot rule M1 Solve correct dy/dx=0 to get $x=-1, y = \frac{1}{4}$ A1 Attempt to justify inequality e.g. graph or to show $\frac{d^2y}{dx^2} > 0$ M1 Clearly solve to AG A1
3(i)	Reasonable attempt at chain rule Reasonable attempt at product/quotient rule Correctly get $f'(0) = 1$	M1 M1 A1	Product in answer Sum of two parts
	Correctly get $f''(0) = 1$	A1	SC Use of $\ln y = \sin x$ follows same scheme
(ii)	Reasonable attempt at Maclaurin with their values	M1	In $af(0) + bf'(0)x + cf''(0)x^2$
	Get $1 + x + \frac{1}{2}x^2$	A1√	From their $f(0)$, $f'(0)$, $f''(0)$ in a correct Maclaurin; all non-zero terms
4	Attempt to divide out.	M1	Or $A+B/(x-2)+(Cx(+D))/(x^2+4)$; allow $A=1$ and/or $B=1$ quoted
	Get $x^3 = A(x-2)(x^2+4)+B(x^2+4)+(Cx+D)(x-2)$	M1	Allow $$ mark from their Part Fract; allow $D=0$ but not $C=0$
	State/derive/quote A=1	A1	
	Use x values and/or equate coeff	M1	To potentially get all their constants

Get <i>B</i> =1,	<i>C</i> =1,	D=-2	
------------------	--------------	------	--

- Derive/quote $d\theta = 2dt/(1+t^2)$ 5(i) Replace their $\cos \theta$ and their $d\theta$, both in terms of t Clearly get $\int (1-t^2)/(1+t^2) dt$ or equiv Attempt to divide out Clearly get/derive AG
- A1 For one other correct from cwo
- For all correct from cwo A1

B1

B1	May be implied	
M1	Not $d\theta = dt$	
A1	Accept limits of t quoted here	;
M1	Or use AG to get answer above	ve
A1	-	
	SC	
	Derive $d\theta = 2\cos^{2t}/2\theta dt$	B1
	Replace $\cos\theta$ in terms of half-	-angles and
	their $d\theta$ ($\neq dt$) M1	C
	Get $\int 2\cos^{2t}/2\theta - 1 dt$ or	
	$\int 1 - 1/2\cos^{2t}/2\theta \cdot 2/(1+t^2) dt$	A1
	Use $\sec^{21/2} \theta = 1 + t^2$	M1
	Clearly get/derive AG	A1

Integrate to $a \tan^{-1} bt - t$ **(ii)** M1 $Get^{1/2}\pi - 1$ A1 Get $k \sinh^{-1}k_1 x$ 6 M1 Get $\frac{1}{3} \sinh^{-1}\frac{3}{4}x$ Get $\frac{1}{2} \sinh^{-1}\frac{2}{3}x$ A1 A1 Use limits in their answers Attempt to use correct ln laws to set up a

solvable equation in a Get $a = 2^{\frac{1}{3}} \cdot 3^{\frac{1}{2}}$

For either integral; allow attempt at ln version here Or ln version Or ln version M1 M1 Or equivalent A1

(ii)	Reasonable attempt at product rule, giving two terms	M1
	Use correct Newton-Raphson at least once with their f '(x) to produce an x_2	M1
	Get $x_2 = 2.0651$	A11
	Get $x_3 = 2.0653, x_4 = 2.0653$	A1
(iii)	Clearly derive $\coth x = \frac{1}{2}x$	B1
	Attempt to find second root e.g. symmetry Get ± 2.0653	M1
		A11
8(i)	(a) Get $\frac{1}{2}(e^{\ln a} + e^{-\ln a})$	M1
	Use $e^{\ln a} = a$ and $e^{-\ln a} = \frac{1}{a}$	M1
	Clearly derive AG	A1
	(b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh	M1
	Correct expansion seen as $e^{(x+y)}$ etc.	A1
	Clearly tidy to AG	A1
(ii)	Use $x = y$ and $\cosh \theta = 1$ to get AG	B1
(iii)	Attempt to expand and equate coefficients	M1
	Attempt to eliminate R (or a) to set up a solvable equation in a (or R)	M1
	Get $a = \frac{3}{2}$ (or $R = 12$)	A1
	Replace for a (or R) in relevant equation to set up solvable equation in P (or a)	M1
	Get $R=12$ (or $a = 3/2$)	A1
(iv)	Quote/derive $(\ln^3/_2, 12)$	B1v
		B11
9(i)	Use $\sin\theta . \sin^{n-1}\theta$ and parts	M1

- B1 *y*-axis asymptote; equation may be implied if clear
- B1 Shape
- B1 $y=\pm 1$ asymptotes; may be implied if seen as on graph

May be implied M1 A1√ One correct at any stage if reasonable cao; or greater accuracy which rounds A1 **B**1 AG; allow derivation from AG Two roots only M1 \pm their iteration in part (ii) A1√ M1 M1 A1 M1 4 terms in each A1 With $e^{-(x-y)}$ seen or implied A1 **B**1 M1 $(13 = R \cosh \ln a = R(a^2 + 1)/2a$ $5 = R \sinh \ln a = R(a^2 - 1)/2a$ M1 SC If exponential definitions used, $8e^{x} + 18e^{-x} = Re^{x}/a + Rae^{-x}$ and same scheme follows A1 M1 Ignore if $a=^{2}/_{3}$ also given A1 B1√ On their *R* and *a* B1√ M1 Reasonable attempt with 2 parts, one yet to be integrated

Get
$-\cos\theta.\sin^{n-1}\theta+(n-1)\int\sin^{n-2}\theta.\cos^2\thetad\theta$
Replace $\cos^2 = 1 - \sin^2$
Clearly use limits and get AG

(ii) (a) Solve for r=0 for at least one θ Get $(\theta) = 0$ and π

(b)Correct formula used; correct <i>r</i>			
Use $6I_6 = 5I_4$, $4I_4 = 3I_2$			
Attempt I_0 (or I_2)			
Replace their values to get I_6			
Get 5 $\pi/32$			
Use symmetry to get $5\pi/32$			

Or	
Correct formula used; correct r	M1
Reasonable attempt at formula	
$(2\mathrm{i}\mathrm{sin}\theta)^6 = (z - 1/z)^6$	M1
Attempt to multiply out both sides	
(7 terms)	M1
Get correct expansion	A1
Convert to trig. equivalent and integrate their	
expression	M1
Get 5 $\pi/32$	A1

Or Correct formula used; correct r M1 Use double-angle formula and attempt to cube (4 terms) M1 Get correct expression A1 Reasonable attempt to put $\cos^2 2\theta$ into integrable form and integrate M1 Reasonable attempt to integrate $\cos^{3}2\theta$ as e.g. $\cos^{2}2\theta$. $\cos^{2}\theta$ **M**1 cwo Get 5π/32 A1

A1 Signs need to be carefully considered

M1 A1

- M1 θ need not be correct
- A1 Ignore extra answers out of range
- B1 General shape (symmetry stated or approximately seen)
- B1 Tangents at θ =0, π and max *r* seen
- M1May be $\int r^2 d\theta$ with correct limitsM1At least oneM1 $(I_0 = \frac{1}{2}\pi)$ M1A1A1May be implied but correct use of limits
must be given somewhere in answer

cwo

4726 Further Pure Mathematics 2

1	(i)	Get 0.876096, 0.876496, 0.876642	B1√	For any one correct or $$ from wrong answer;
			B 1	All correct
			DI	Air contect
	(ii)	Subtract correctly (0.00023(0), 0.000084)	B1√	On their answers
		Divide their errors as e_4/e_3 only	M1	May be implied
		Get 0.365(21)	A1	Cao
2	(i)	Find $f'(x) = 1/(1+(1+x)^2)$	M1	Quoted or derived; may be simplified or
				left as $\sec^2 y dy/dx = 1$
		Get $f(0) = \frac{1}{4}\pi$ and $f'(0) = \frac{1}{2}$	A1√	On their $f'(0)$; allow $f(0)=0.785$ but not 45
		Attempt $f''(x)$	M1	Reasonable attempt at chain/quotient rule
				or implicit differentiation
		Correctly get $f''(0) = -\frac{1}{2}$	A1	A.G.
	(ii)	Attempt Maclaurin as $af(0)+bf'(0)+cf''(0)$	M1	Using their $f(0)$ and $f'(0)$
		Get $\frac{1}{4}\pi + \frac{1}{2}x - \frac{1}{4}x^2$	A1	Cao; allow 0.785
3	(i)	Attempt gradient as $\pm f(x_1)/(x_2 - x_1)$	M1	Allow reasonable <i>y</i> -step/ <i>x</i> -step
		Equate to gradient of curve at x_1	M1	Allow \pm
		Clearly arrive at A.G.	A1	Beware confusing use of \pm
		SC Attempt equation of tangent	M1	As $y - f(x_1) = f'(x_1)(x - x_1)$
		Put $(x_2, 0)$ into their equation	MI	
		Clearly arrive at A.G.	Al	
	(ii)	Diagram showing at least one more	BI	
		tangent Descriptions of tensor tensor time series	D 1	
		Description of tangent meeting x-axis,	BI	
		used as next starting value		
	(iii)	Reasonable attempt at N-R	M1	Clear attempt at differentiation
	(111)	Get 1 60		Or answer which rounds
		6011.00	111	of answer which founds
4	(i)	State $n = 1$ and $\theta = 0$	D1	May be seen or implied
•	(-)	State $r = 1$ and $\theta = 0$.	DI	ing be seen of implied
		\frown		
			B1	Correct shape, decreasing r (not through
		0 1	21	<i>O</i>)
	(ii)	Use $\frac{1}{2}\int r^2 dA$ with $r = e^{-2\theta}$ seen or implied	M1	Allow $\frac{1}{2}\int e^{4\theta} d\theta$
	(11)	Integrate correctly as $-\frac{1}{2}e^{-4\theta}$		Allow 72 J C UV
		Use limits in correct order	M1	In their answer
		Use $r_{i}^{2} - e^{-4\theta}$ ato	M1	May be implied
		$Ose r_1 = e etc.$		may be implied
		Creatly get $K = 78$	AI	

5	(i)	Use correct definitions of cosh and sinh	B1	
		Attempt to square and subtract	M1	On their definitions
		Clearly get A.G.	A1	
		Show division by cosh ²	B1	Or clear use of first result
	(ii)	Rewrite as quadratic in sech and		Or quadratic in cosh
		attempt to solve	M1	
		Eliminate values outside $0 < \text{sech} \le 1$	B1	Or eliminate values outside $\cosh \ge 1$ (allow positive)
		$\operatorname{Get} x = \ln(2 + \sqrt{3})$	A1	
		Get $x = -\ln(2+\sqrt{3})$ or $\ln(2-\sqrt{3})$	A1	
6	(i)	Attempt at correct form of P.F.	M1	Allow $Cx/(x^2+1)$ here; not $C = 0$
	. /	Rewrite as 4=		
		$A(1+x)(1+x^2) + B(1-x)(1+x^2) +$	M1 $$	From their P.F.
		(Cx + D)(1 - x)(1 + x)		
		Use values of <i>x</i> /equate coefficients	M1	
		Get $A = 1, B = 1$	A1	CWO
		Get $C = 0, D = 2$	A1	
				SC Use of cover-up rule for <i>A</i> , <i>B</i> M1 If both correct A1 cwo
	(ii)	$\operatorname{Get} A\ln(1+x) - B\ln(1-x)$	M1	Or quote from List of Formulae
		Get $D \tan^{-1} x$	B1	1
		Use limits in their integrated expressions	M1	
		Clearly get A.G.	A1	
7	(i)	I US - sum of groos of rootangles, groo -		
'	(1)	$1x y_{-}y_{-}y_{-}y_{-}y_{-}y_{-}y_{-}y_{-}$	B 1	
		RHS = Area under curve from $x = 0$ to n	B1	
	(ii)	Diagram showing areas required	B1	
		Use sum of areas of rectangles	B1	
		Explain/show area inequality with		
		limits in integral clearly specified	B1	
	(iii)	Attempt integral as $kx^{4/3}$	M1	
		Limits gives 348(.1) and 352(.0)	A1	Allow one correct
		Get 350	A1	From two correct values only

4726		Mark Scheme		January 2010	
8	(i)	Get $x = 1, y = 0$	B1,B1		
	(ii)	Rewrite as quadratic in x Use $b^2 - 4ac \ge 0$ for all real x Get correct inequality State use of $k>0$ to A.G.	M1 M1 A1 A1	$(x^{2}y - x(2y + k) + y = 0)$ Allow >, = here $4ky + k^{2} \ge 0$ SC Use differentiation (parts (ii) and (iii)) Attempt prod/quotient rule M1 Solve = 0 for x = -1 A1 Use x =-1 only (reject x=1), y = -\frac{1}{4}kA1 Fully justify minimum B1 Attempt to justify for all x M1 Clearly get A.G. A1	
	(iii)	Replace $y = -\frac{1}{4k}$ in quadratic in x Get $x = -1$ only	M1 A1		
			B1	Through origin with minimum at $(-1, -\frac{1}{4}k)$ seen or given in the answer	
			B1	Correct shape (asymptotes and approaches)	
		$(-1, -\frac{1}{4}k)$ $x = 1$		SC (Start again)Differentiate and solve $dy/dx = 0$ for at leastone x-value, independent of kM1Get $x = -1$ onlyA1	
9	(i)	Rewrite $\tanh y$ as $(e^y - e^{-y})/(e^y + e^{-y})$ Attempt to write as quadratic in e^{2y} Clearly get A.G.	B1 M1 A1	Or equivalent	
	(ii)	(a) Attempt to diff. and solve = 0 Get $\tanh x = b/a$ Use (-1) < $\tanh x < 1$ to show $b < a$	M1 A1 B1	SC Use exponentialsM1Get $e^{2x} = (a + b)/(a - b)$ A1Use $e^{2x} > 0$ to show $b < a$ B1SC Write $x = \tanh^{-1}(b/a)$ M1 $= \frac{1}{2}\ln((1 + b/a)/(1 - b/a))$ A1Use () > 0to show $b < a$ B1	
		(b) Get $\tanh x = 1/a$ from part (ii)(a) Replace as ln from their answer Get $x = \frac{1}{2} \ln ((a + 1)/(a - 1))$ Use $e^{\frac{1}{2}\ln((a+1)/(a-1))} = \sqrt{((a + 1)/(a - 1))}$ Clearly get A.G. Test for minimum correctly	B1 M1 A1 M1 A1 B1	At least once SC Use of $y = \cosh x(a - \tanh x)$ and $\cosh x = 1/\operatorname{sech} x = 1/\sqrt{(1 - \tanh^2 x)}$	

June 2010

- 1 Derive/quote $g'(x) = p/(1+x^2)$ Attempt f'(x) as $a/(1+bx^2)$ Use $x = \frac{1}{2}$ to set up a solvable equation in *p*, leading to at least one solution Get $p = \frac{5}{4}$ only
- 2 Reasonable attempt at $e^{2x} (1+2x+2x^2)$ Multiply out their expressions to get all terms up to x^2 Get $1+3x+4x^2$ Use binomial, equate coefficients to get 2 solvable equations in *a* and *n* Reasonable attempt to eliminate *a* or *n* Get *n*=9, *a*= $\frac{1}{3}$ cwo
- 3 Quote/derive correct $dx=2dt/(1+t^2)$ Replace all x (not dx=dt) Get 2/(t-1)² or equivalent Reasonable attempt to integrate their expression Use correct limits in their correct integra Clearly tidy to $\sqrt{3}+1$ from cwo
- **4** (i) Get a = -2Get b = 6Get c = 1

	B1 M1 Allow any $a, b=2$ or 4			
	M1 A1 AEEF			
1	M1 3 terms of the form $1+2x+ax^2$, $a\neq 0$			
1 et	M1 (3 terms) x (minimum of 2 terms) A1 cao Reasonable attempt at binomial, each term M1 involving <i>a</i> and <i>n</i> (<i>an</i> =3, $a^2n(n-1)/2=4$) M1 A1 cao SC Reasonable f '(<i>x</i>) and f "(<i>x</i>) using product rule (2 terms) M1 Use their expressions to find f '(0) and f "(0) M1 Get 1+3x+4x ² cao A1			
	B1 M1 From their expressions A1			
ral	M1 A1 $$ Must involve $\sqrt{3}$ A1 A.G.			
	B1May be quoted B1May be quoted B1May be quoted			

B1 Correct shape in $-1 < x \le 3$ only (allow just top or bottom half)

B1 90[°] (at x=3) (must cross x-axis i.e. symmetry)

B1 Asymptote at x = -1 only (allow -1 seen)

B1 $\sqrt{}$ Correct crossing points; $\pm \sqrt{(b/c)}$ from their *b*,*c*

4726

June 2010

5 (i) Reasonable attempt at parts M1 Leading to second integral A1 Or $(1-2x)^{n+1}/(-2(n+1))e^x$ Get $e^{x}(1-2x)^{n} - \int e^{x} n(1-2x)^{n-1} - 2 dx$ $-\int (1-2x)^{n+1}/(-2(n+1))e^{x}dx$ Evidence of limits used in integrated part M1 Should show ± 1 Tidy to A.G. A1 Allow $I_{n+1} = 2(n+1)I_n - 1$ (ii) Show any one of $I_3=6I_2-1$, $I_2=4I_1-1$, B1 May be implied $I_1 = 2I_0 - 1$ Get $I_0(=e^{\frac{1}{2}}-1)$ or $I_1(=2e^{\frac{1}{2}}-3)$ **B**1 Substitute their values back for their I_3 M1 Not involving *n* Get $48e^{\frac{1}{2}} - 79$ A1 6 (i) Reasonable attempt to differentiate $\sinh y = x$ to get dy/dx in terms of y M1 Allow $\pm \cosh y \, dy / dx = 1$ Replace sinh *y* to A.G. A1 Clearly use $\cosh^2 - \sinh^2 = 1$ SC Attempt to diff. $y = \ln(x + \sqrt{x^2 + 1})$ using chain rule M1 Clearly tidy to A.G. A1 (ii) Reasonable attempt at chain rule M1 To give a product Get $dy/dx = a \sinh(a\sinh^{-1}x)/\sqrt{(x^2+1)}$ A1 Reasonable attempt at product/quotient M1 Must involve sinh and cosh A1 $\sqrt{\text{From } dy/dx} = k \sinh(a \sinh^{-1} x)/\sqrt{(x^2+1)}$ Get d^2y/dx^2 correctly in some form Substitute in and clearly get A.G. A1 SC Write $\sqrt{(x^2+1)} dy/dx = k \sinh(a \sinh^{-1}x)$ or similar Derive the A.G. B1 $\sqrt{\text{Any 3}(\text{minimum})}$ correct from previous value **7** (i) Get 5.242, 5.239, 5.237 Get 5.24 B1 Allow one B1 for 5.24 seen if 2 d.p.used (ii) Show reasonable staircase for any region B1 Drawn curve to line Describe any one of the three cases **B**1 Describe all three cases **B**1 (iii) Reasonable attempt to use log/expo. rules M1 Allow derivation either way Clearly get A.G. A1 Attempt f'(x) and use at least once in correct N-R formula **M**1 Get answers that lead to 1.31 A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p. (iv) Show $f'(\ln 36) = 0$ **B**1 Explain why N-R would not work B1 Tangent parallel to Ox would not meet Ox again or divide by 0 gives an error

4726

8 (i) Use correct definition of $\cosh x$ **B**1 Attempt to cube their definition involving e^x and e^{-x} (or e^{2x} and e^x) M1 Must be 4 terms Put their 4 terms into LHS and attempt to simplify **M**1 Clearly get A.G. A1 SC Allow one B1 for correct derivation from $\cosh 3x = \cosh(2x+x)$ M1 (ii) Rewrite as $k \cosh 3x = 13$ M1 Allow $\pm \ln \operatorname{or} \ln(13/k \pm \sqrt{(13/k)^2 - 1})$ for their k Use ln equivalent on 13/kor attempt to set up and solve quadratic via exponentials Get $x = (\pm) \frac{1}{3} \ln 5$ A1 Replace in cosh *x* for *u* M1 Use $e^{a\ln b} = b^a$ at least once M1 Get $\frac{1}{2}(5^{\frac{1}{3}}+5^{-\frac{1}{3}})$ A1 **9** (i) Attempt integral as $k(2x+1)^{1.5}$ **M**1 Get 9 A1 cao Attempt subtraction of areas M1 Their answer – triangle A1 $\sqrt{}$ Their answer – 6 (>0) Get 3 (ii) Use $r^2 = x^2 + y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ **B**1 Eliminate x and y to produce quadratic equation (=0) in $r (\text{or } \cos\theta)$ **M**1 Solve their quadratic to get r in terms of θ A1√ (or vice versa) Clearly get A.G. A1 *r*>0 may be assumed Clearly show $\theta_1(at B) = \tan^{-1}3/4$ and θ_2 (at A) = π **B**1 SC Eliminate y to get r in terms of x only M1 Get r = x + 1A1 SC Start with $r=1/(1-\cos\theta)$ and derive cartesian (iii) Use area = $\frac{1}{2} \int r^2 d\theta$ with correct r B1 cwo; ignore limits Rewrite as $k \operatorname{cosec}^4(\frac{1}{2}\theta)$ M1 Not just quoted Equate to their part (i) and tidy M1 To get $\int =$ some constant Get 24 A1 A.G.

1	$t = \tan \frac{1}{2}x \Longrightarrow dt = \frac{1}{2}\sec^2 \frac{1}{2}x dx = \frac{1}{2}(1+t^2) dx$	B1	For correct result AEF (may be implied)
	$\int \frac{1}{1-t} dt = \int \frac{1}{1-t} \frac{2}{t} dt$	M1	For substituting throughout for <i>x</i>
	$\int_{1+\sin x + \cos x} dx = \int_{1+\frac{2t}{1+t^2}} \frac{1-t^2}{1+t^2} \cdot \frac{1-t^2}{1+t^2} dt$	A1	For correct unsimplified <i>t</i> integral
	$= \int \frac{1}{1+t} \mathrm{d}t = \ln \left 1+t \right (+c)$	M1	For integrating (even incorrectly) to $a \ln f(t) $. Allow or ()
	$= \ln k \left 1 + \tan \frac{1}{2} x \right (+c)$	A1 5	For correct x expression
		5	k may be numerical, e is not required
2 (i)	$f(x) = \tanh^{-1} x, f'(x) = \frac{1}{1 - x^2}, f''(x) = \frac{2x}{(1 - x^2)^2}$	M1	For quoting $f'(x) = \frac{1}{1 \pm x^2}$ and attempting to
	2 W / X	A1	For $f''(x)$ correct WWW
	$f''(x) = \frac{2(1-x^2)^2 - 2x \cdot 2(1-x^2) \cdot -2x}{(1-x^2)^4} OR \frac{2x \cdot 4x}{(1-x^2)^3} + \frac{2}{(1-x^2)^4}$	$\frac{M1}{D^2}$ A1	For using quotient <i>OR</i> product rule on $f''(x)$ For correct unsimplified $f'''(x)$
	$=\frac{2(1-x^2)^2+8x^2(1-x^2)}{(1-x^2)^4} OR \frac{8x^2}{(1-x^2)^3}+\frac{2(1-x^2)}{(1-x^2)^3}$		
	$=\frac{2(1+3x^2)}{(1-x^2)^3}$	A1 5	For simplified $f''(x)$ WWW AG
(ii)	f(0) = 0, f'(0) = 1, f''(0) = 0	B1√	For all values correct (may be implied) f.t. from (i)
	$f'''(0) = 2 \Longrightarrow \tanh^{-1} x = x + \frac{1}{3}x^3$	M1	For evaluating $f'''(0)$ and using Maclaurin expansion
		A1_3	For correct series
		8	
3 (i)(a)	Asymptote $y = 0$	B1 1	For correct equation (allow <i>x</i> -axis)
(b)	5ax $2 5 1 2 0$	M1	For expressing as a quadratic in x
	$y = \frac{1}{x^2 + a^2} \Rightarrow yx - 5ax + a y = 0$	M1	For using $b^2 - 4ac \leq 0$
	$b^2 > 4aa \rightarrow 25a^2 > 4a^2y^2 \rightarrow 5 < y < 5$	A1	For $25a^2 - 4a^2y^2$ seen or implied
	$b \neq 4ac \Rightarrow 25a \neq 4a y \Rightarrow -\frac{1}{2} \notin y \notin \frac{1}{2}$	A1 4	For correct range
	METHOD 2 $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$	M1*	For differentiating <i>y</i> by quotient <i>OR</i> product rule
	$\frac{dy}{dt} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$	A1	For correct values of x
	$dx \qquad -x \qquad -y \qquad -z$	MI	For finding y values and giving argument for range
	Asymptote, sketch etc $\Rightarrow -\frac{1}{2} \le y \le \frac{1}{2}$	A1 (*den)	For correct range
(ii)(a)	<i>y</i> = 0	B1 1	For correct equation (allow <i>x</i> -axis)
(b)	Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$	B1√	For correct maximum f.t. from (i)(b)
	V2 / V2	B1√ 2	For correct minimum f.t. from (i)(b) Allow decimals
(c)	$x \ge 0$	B1 1	For correct set of values (allow in words)
		9	

4 (i)	$8\sinh^4 x = \frac{8}{16} \left(e^x - e^{-x} \right)^4$	B 1		$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$ seen or implied
	$\equiv \frac{8}{16} \left(e^{4x} - 4e^{2x} + 6 - 4e^{-2x} + e^{-4x} \right)$	M 1		For attempt to expand $\left(\ldots\right)^4$
	16 ()			by binomial theorem OR otherwise
	$\equiv \frac{1}{2} \left(e^{4x} + e^{-4x} \right) - \frac{4}{2} \left(e^{2x} + e^{-2x} \right) + \frac{6}{2}$	M1		For grouping terms for $\cosh 4x$ or $\cosh 2x$
				<i>OR</i> using e^{4x} or e^{2x} expressions from RHS
	$\equiv \cosh 4x - 4\cosh 2x + 3$	A1	4	For correct expression AG
	SR may be done wholly from RHS to LHS	M1 N	M 1	Evidence of factorising required for 2nd M1
(ii)	METHOD 1 $\cosh 4x - 3\cosh 2x + 1 = 0$	B1 A	1	
()	$\Rightarrow (8\sinh^4 x + 4\cosh 2x - 3) - 3\cosh 2x + 1 = 0$	M1		For using (i) and $\cosh 2x \equiv \pm 1 \pm 2 \sinh^2 x$
	$\Rightarrow 8 \sinh^4 r + 2 \sinh^2 r - 1 = 0$	A1		For correct equation
	\rightarrow 0 shift $x + 2$ shift $x + 1 = 0$	M1		For solving their quartic for sinh r
	$\Rightarrow (4\sinh^2 x - 1)(2\sinh^2 x + 1) = 0 \Rightarrow \sinh x = \pm \frac{1}{2}$			For correct sink u (increase other roots)
		AI	_	For correct anguars (and no more)
	$\Rightarrow x = \ln\left(\pm\frac{1}{2} + \frac{1}{2}\sqrt{5}\right) = \pm\ln\left(\frac{1}{2} + \frac{1}{2}\sqrt{5}\right)$	A1√	5	f t from their value(s) for sinh x
		/	,	1.t. from their value(s) for similar $(1, 1, \overline{L})$
	SR Similar scheme for $8\cosh^{4} x - 14$	4 cosh	² x +	$5 = 0 \Rightarrow \cosh x = \frac{1}{2}\sqrt{5} \Rightarrow x = \pm \ln\left(\frac{1}{2} + \frac{1}{2}\sqrt{5}\right)$
	METHOD 2 $\cosh 4x - 3\cosh 2x + 1 = 0$			
	$\Rightarrow (2\cosh^2 2x - 1) - 3\cosh 2x + 1 = 0$	M1		For using $\cosh 4x \equiv \pm 2 \cosh^2 2x \pm 1$
	$\Rightarrow 2\cosh^2 2x - 3\cosh 2x = 0$	A1		For correct equation
	$\Rightarrow \cosh 2r = \frac{3}{2} \Rightarrow r = \frac{1}{2} \ln \left(\frac{3}{2} + \frac{1}{2} \sqrt{5} \right)$	M1		For solving for $\cosh 2x$
	$\Rightarrow \cos(2\pi - 2) = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 $	A1		For correct $\cosh 2x$ (ignore others)
	$=\pm\frac{1}{2}\ln\left(\frac{3}{2}+\frac{1}{2}\sqrt{5}\right)$	A1√		For correct answers (and no more)
				f.t. from value(s) for $\cosh 2x$
	METHOD 3 Put all into exponentials	M1		For changing to $e^{\pm kx}$
	$\Rightarrow e^{4x} - 3e^{2x} + 2 - 3e^{-2x} + e^{-4x} = 0$	A1		For correct equation
	$\Rightarrow \left(e^{4x}+1\right)\left(e^{4x}-3e^{2x}+1\right)=0$	M1		For solving for e^{2x}
		A1		For correct e^{2x} (ignore others)
	$\Rightarrow e^{2x} = \frac{1}{2} \left(3 \pm \sqrt{5} \right) \Rightarrow x = \frac{1}{2} \ln \left(\frac{3}{2} \pm \frac{1}{2} \sqrt{5} \right)$	A1√		For correct answers (and no more)
				f.t. from value(s) for e^{2x}
		9		
	3 5 . 2 3 3 2	M1		For attempt at N-R formula
5 (i)	$x_{n+1} = x_n - \frac{x_n^2 - 5x_n + 3}{2} = \frac{2x_n^2 - 3}{2}$	Al		For correct N-R expression
	$3x_n^2 - 5$ $3x_n^2 - 5$	A1	3	For correct answer (necessary details
				needed) AG
				Allow omission of suffixes
(ii)	F'(x) =	M1		For using quotient OR product rule
	$6x^{2}(3x^{2}-5)-6x(2x^{3}-3) = 6x(x^{3}-5x+3)$	N/1		to find $F'(x)$
	$\frac{1}{(2 - 2)^2} = \frac{1}{(2 - 2)^2}$	1111		For factorising numerator to show $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$
	$\left(3x^2-5\right) \qquad \left(3x^2-5\right)$			$k\left(x^{3}-5x+3\right)$
	$6\alpha(\alpha^3-5\alpha+3)$		-	
	$F'(\alpha) = \frac{\alpha (\alpha - \alpha - \beta)}{(\alpha - 2\alpha - \beta)^2} = 0$ since $\alpha^3 - 5\alpha + 3 = 0$	A1	3	For correct explanation of AG
	$(3\alpha^2-5)$			
(iii)	$x_1 = 2 \Longrightarrow 1.85714, \ 1.83479, \ 1.83424, \ 1.83424$	B1		First iterate correct to at least 4 d.p. $OR \frac{13}{7}$
	$(\alpha =)$ 1.8342	B1		For 2 equal iterates to at least 4 d p
		B1	3	For correct α to 4 d.p.
	SR For starting value leading to another			Allow answer rounding to 1.8342
	root allow up to B1 B1 B0			SR If not N-R, B0 B0 B0
		9		

-

8	(i)	METHOD 1		2
	(1)	$\sinh(\cosh^{-1}2) =$	M1	For appropriate use of $\sinh^2 \theta = \cosh^2 \theta - 1$
		$\sinh\beta = \sqrt{\cosh^2\beta - 1} = \sqrt{2^2 - 1} = \sqrt{3}$	A1 2	For correct verification to AG
		METHOD 2	M1	For attempted use of ln forms of $\sinh^{-1} x$
		$\sinh^{-1}\sqrt{3} = \ln(\sqrt{3}+2), \ \cosh^{-1}2 = \ln(2+\sqrt{3})$		and $\cosh^{-1} x$
		$\Rightarrow \sinh(\cosh^{-1}2) = \sqrt{3}$	A1	For both ln expressions seen
		METHOD 3		-
		$\cosh^{-1} 2 = \ln\left(2 + \sqrt{3}\right)$	M1	For use of ln form of $\cosh^{-1} x$ and
		$\sinh\left(\cosh^{-1}2\right) = 1\left(\sin\left(2+\sqrt{3}\right) - \sin\left(2+\sqrt{3}\right)\right)$	A1	For correct verification to \mathbf{AG}
		$\sin(\cos(2) - \frac{1}{2})$		SR Other similar methods may be used
		$=\frac{1}{2}\left(2+\sqrt{3}-\left(2-\sqrt{3}\right)\right)=\sqrt{3}$		Note that $\ln\left(2+\sqrt{3}\right) = -\ln\left(2-\sqrt{3}\right)$
	(ii)	$I = \int_{-\infty}^{\beta} \cosh^{n} x dx$	 M1*	For attempt to integrate $\cosh x \cdot \cosh^{n-1} x$
		$I_n = \int_0^\infty \cos x dx$	1011	by parts
		$= \left[\sinh x \cdot \cosh^{n-1} x\right]_{0}^{\beta} - \int_{0}^{\beta} \sinh^{2} x \cdot (n-1) \cosh^{n-2} x dx$	dx A1	For correct first stage of integration (ignore limits)
		$=\sinh\beta\cdot\cosh^{n-1}\beta-(n-1)\int_0^\beta\left(\cosh^2 x-1\right)\cosh^{n-2}x$	$\frac{1}{x} \frac{M1}{(*de)}$	For using $\sinh^2 x = \cosh^2 x - 1$
		$-2^{n-1}\sqrt{3}-(n-1)(I-I-1)$	A1	For $(n-1)(I_n - I_{n-2})$ correct
		-2 V3 $(n-1)(n-1)(n-2)$	B1	For $2^{n-1}\sqrt{3}$ correct at any stage
		$\Rightarrow n I_n = 2^{n-1} \sqrt{3} + (n-1) I_{n-2}$	A1 6	For correct result AG
	(iii)	$I_1 = \int_0^\beta \cosh x \mathrm{d}x = \sinh \beta = \sqrt{3}$	B1	For correct value
		$I_2 = \frac{1}{2} \left(2^2 \sqrt{3} + 2\sqrt{3} \right) = 2\sqrt{3}$	M1	For using (ii) with $n = 3 OR$ $n = 5$
		3 3 (12 12) 12	A1	For $I_3 = \frac{1}{3} \left(2^2 \sqrt{3} + 2I_1 \right)$
				$OR \ I_5 = \frac{1}{5} \left(2^4 \sqrt{3} + 4I_3 \right)$
		$I_5 = \frac{1}{5} \left(2^4 \sqrt{3} + 8\sqrt{3} \right) = \frac{24}{5} \sqrt{3}$	A1 4	For correct value
			12	
1	2x+3 A $Bx+C$	B1		For correct form seen anywhere
------	--	-----------	---	--
	$\frac{1}{(x+2)(x^2+0)} \equiv \frac{1}{x+3} + \frac{1}{x^2+0}$			with letters or values
	(x+3)(x+9) = x+9	D1		
	$A = -\frac{1}{c}$	BI		For correct A (cover up or otherwise)
	b	М1		For equating coefficients at least
	$2x+3 \equiv A(x^2+9) + (Bx+C)(x+3)$	IVII		once.(or substituting values) into
				correct identity.
	1 3			
	$B = \frac{1}{6}, C = \frac{3}{2}$	A1		For correct <i>B</i> and <i>C</i>
	-1 x+9			
	$\Rightarrow \frac{1}{6(x+3)} + \frac{x+3}{6(x^2+0)}$	A1		For correct final statement cao, oe
	0(x+3) - 0(x+9)			,
			5	
2(i)	Asymptote $x = 2$	B1		For correct equation
	$y = x - 4 - \frac{13}{x - 2}$	М1		For dividing out (remainder not
	x-2	1411		required)
	\Rightarrow asymptote $y = x = 4$	A1		For correct equation of asymptote
			3	(ignore any extras)
(ii)	METHOD 1	3.64		N.B. answer given
	$x^2 - (y+6)x + (2y-5) = 0$	MI		For forming quadratic in x
	$b^{2}-4ac(\geq 0) \Rightarrow (y+6)^{2}-4(2y-5)(\geq 0)$	M1		For considering discriminant
	\Rightarrow v ² +4v+56(\geq 0)	A1		For correct simplified expression in
	$(-1)^2 + 52 > 0 + 4 = 54 = 54$			y SOI
	$\Rightarrow (y+2) + 32 \ge 0$: this is true $\forall y$	A1		For completing square (or
	So y takes all values			equivalent) and correct conclusion
				www
	METHOD 2	3.71		For finding $\frac{dy}{dt}$ either by direct
	Obtain $\frac{dy}{dt} = \frac{x^2 - 4x + 17}{2}$ OR $1 + \frac{13}{2}$	NII		dx
	$dx (x-2)^2 (x-2)^2$	Δ1		differentiation or dividing out first
				Tor concer expression oc.
	$\rightarrow \frac{dy}{dy} > 1 \forall r$	M1		For drawing a conclusion
	$\rightarrow \frac{1}{\mathrm{d}x} = 1 \sqrt{x},$			
	so y takes all values.	A1		For correct conclusion www
			4	
	Alternate scheme:		4	
	Sketching graph			
	Graph correct approaching asymptotes	B1		A graph with no explanation can
	from both side			only score 2
	Graph completely correct	B1		
	Explanation about no turning values	B1		
1	Correct conclusion	B1		

Mark Scheme

3(i)	$x_1 = 3.1 \implies x_2 = 3.13140,$	B1	For correct x_2
	$x_3 = 3.14148$	B1 2	For correct x_3
(ii)	$F'(\alpha) \approx \frac{e_3}{e_2} = \frac{0.00471}{0.01479} = 0.318 \ (0.31846)$	M1 A1	For dividing e_3 by e_2 For estimate of $F'(\alpha)$
	$F'(\alpha) = \frac{1}{\alpha} = 0.3178 \ (0.31784)$	B1 3	For true F'(α) obtained from $\frac{d}{dx}(2 + \ln x)$ TMDP anywhere in (i) (ii) deduct 1
			once (but answers must round to given values or A0)
(iii)		B1 B1	For $y = x$ and $y = F(x)$ drawn, crossing as shown For lines drawn to illustrate iteration
	staircase	B1 3	(Min 2 horizontal and 2 vertical seen) For stating "staircase"

4(i)	$x = r\cos\theta, \ y = r\sin\theta$	M1	For substituting for <i>x</i> and <i>y</i>
	$\Rightarrow r = \frac{a\cos\theta\sin\theta}{\cos^3\theta + \sin^3\theta}$	A1	For correct equation oe (Must be $r = \dots$)
	for $0 \le \theta \le \frac{1}{2}\pi$	AI 3	For correct limits for θ (Condone <)
(ii)	$f\left(\frac{1}{2}\pi - \theta\right) = \frac{a\cos\left(\frac{1}{2}\pi - \theta\right)\sin\left(\frac{1}{2}\pi - \theta\right)}{\cos^3\left(\frac{1}{2}\pi - \theta\right) + \sin^3\left(\frac{1}{2}\pi - \theta\right)}$ $a\sin\theta\cos\theta$	M1	N.B. answer given For replacing θ by $\left(\frac{1}{2}\pi - \theta\right)$ in their $f(\theta)$
	$=\frac{\sin^3\theta+\cos^3\theta}{\sin^3\theta+\cos^3\theta}$	A1	For correct simplified form. (Must be convincing)
	$f(\theta) = f\left(\frac{1}{2}\pi - \theta\right) \Rightarrow \alpha = \frac{1}{4}\pi$	A1 3	For correct reason for $\alpha = \frac{1}{4}\pi$
(iii)	$r = \frac{a \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^3 + \left(\frac{1}{\sqrt{2}}\right)^3} = \frac{1}{2}\sqrt{2}a$	B1 1	For correct value of <i>r</i> . oe
(iv)		B1 B1	Closed curve in 1st quadrant only, symmetrical about $\theta = \frac{1}{4}\pi$ Diagram showing $\theta = 0, \frac{1}{2}\pi$ tangential
	+	2	at O

5(i)	$x = \sin y \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \cos y$	M1	For implicit diffn to $\frac{dy}{dx} = \pm \frac{1}{\cos y}$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$	A1	oe For using $\sin^2 y + \cos^2 y = 1$ to
			N.B. Answer given
	$+\sqrt{1}$ taken since $\sin^{-1} x$ has positive gradient	B1	For justifying + sign
		3	
(ii)	f(0) = 0, f'(0) = 1	B1	For correct values
	$f''(x) = \frac{x}{\left(1 - x^2\right)^{\frac{3}{2}}}$	M1	Use of chain rule to differentiate $f'(x)$
	$f'''(x) = \frac{\left(1 - x^2\right)^{\frac{3}{2}} + 3x^2 \left(1 - x^2\right)^{\frac{1}{2}}}{\left(1 - x^2\right)^3}$	M1	Use of quotient or product rule to differentiate f " (0).
	(1-x) $\Rightarrow f''(0) = 0, f'''(0) = 1$	A1	For correct values www, soi
	$\Rightarrow \sin^{-1} x = x + \frac{1}{6}x^3$	A1 5	For correct series (allow 3!) www
	Alternative Method: f(0) = 0, f'(0) = 1	B1	For correct values
	f'(x) = $\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \dots$	M1	Correct use of binomial
	f "(x) = $x + \frac{3}{2}x^3 + \dots$	M1	Differentiate twice
	f "'(x) = $1 + \frac{9}{2}x^2 + \dots$		
	\Rightarrow f '(0) = 1, f "(0) = 0, f "(0) = 1	A1	Correct values
	$\Rightarrow \sin^{-1} x = x + \frac{1}{6}x^3$	A1	Correct series
(iii)	$\left(\sin^{-1}x\right)\ln(1+x)$	B1ft	For terms in both series to at least
	$= \left(x + \frac{1}{6}x^{3}\right) \left(x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3}\right)$		<i>x</i> f.t. from their (ii) multiplied
	$=x^2 - \frac{1}{2}x^3 + \frac{1}{2}x^4$	M1	For multiplying terms to at least r^3
	2 2	A1	For correct series up to r^3 www
		A1	For correct term in x^4 www
		4	

6(i)	$I = \int_{-\infty}^{1} \frac{3}{2} dx$	M1	For integrating by parts
	$I_n = \int_0^1 x (1-x)^2 dx$		(correct way round)
	$= \left[-\frac{2}{5} x^{n} (1-x)^{\frac{5}{2}} \right]_{0}^{1} + \frac{2}{5} n_{0}^{\frac{1}{2}} x^{n-1} (1-x)^{\frac{5}{2}} dx$	A1	For correct first stage
	$\Rightarrow I_n = \frac{2}{5} n \int_0^1 x^{n-1} (1-x)^{\frac{5}{2}} dx$	A1	
	$\Rightarrow I_n = \frac{2}{5}n \int_0^1 x^{n-1} (1-x) (1-x)^{\frac{3}{2}} dx$	M1	For splitting $(1-x)^{\frac{5}{2}}$ suitably
	$\Rightarrow I_n = \frac{2}{5}nI_{n-1} - \frac{2}{5}nI_n$	A1	For obtaining correct relation between I_n and I_{n-1}
	$\Rightarrow I_n = \frac{2n}{2n+5} I_{n-1}$	A1 6	For correct result (N.B. answer given)
(ii)	$I_0 = \left[-\frac{2}{5} \left(1 - x \right)^{\frac{5}{2}} \right]_0^1 = \frac{2}{5}$	M1	For evaluating I_0 [<i>OR</i> I_1 by parts]
		M1	For using recurrence relation 3 [<i>OR</i> 2] times (may be combined together)
	$I_3 = \frac{6}{11}I_2 = \frac{6}{11} \times \frac{4}{9}I_1 = \frac{6}{11} \times \frac{4}{9} \times \frac{2}{7}I_0$	A1	For 3 [OR 2] correct fractions
	$I_3 = \frac{32}{1155}$	A1 4	For correct exact result

7(i)	$y = \tanh^{-1}x$ $y = \tanh^{-1}x$ $y = \tanh^{-1}x$	B1 B1 B1 4	Both curves of the correct shape (ignore overlaps) and labelled gradient = 1 at $x = 0$ stated For asymptotes $y = \pm 1$ and $x = \pm 1$ (or on sketch) Sketch all correct
(ii)	$\int_0^k \tanh x \mathrm{d}x = \left[\ln(\cosh x)\right]_0^k = \ln(\cosh k)$	M1 A1 2	For substituting limits into $\ln \cosh x$ For correct answer
(iii)	Areas shown are equal: $x = \tanh k$ $\Rightarrow y = k$	M1 A1	For consideration of areas For sufficient justification
	$\Rightarrow \int_0^{\tanh k} \tanh^{-1} x dx$ = rectangle (k × tanh k)– (ii) = k tanh k – ln(cosh k)	M1 A1 4	For subtraction from rectangle For correct answer N.B. answer given Alternative: Otherwise by parts, as $1 \times \tanh^{-1} x$ OR $1 \times \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

PTO for alternative schemes

7(iii)	Alternative method 1	M1	For integrating by parts (correct
	By parts:		way round)
	$I = \int_{0}^{\tanh k} \tanh^{-1} x \mathrm{d}x$		
	$u = \tanh^{-1} x$ $dv = dx$		
	$du = \frac{1}{1 - x^2} dx \qquad v = x$ $\Rightarrow I = \left[x \tanh^{-1} x \right]_0^{\tanh k} - \int_0^{\tanh k} \frac{x}{1 - x^2} dx$	A1 M1	For getting this far Dealing with the resulting integral
	$= k \tanh k + \frac{1}{2} \left[\ln(1 - x^2) \right]_0^{\tanh k}$		
	$= k \tanh k + \frac{1}{2} \ln(1 - \tanh^2 k)$		
	$= k \tanh k + \frac{1}{2} \ln(\operatorname{sech}^2 k)$	A1	
	$=k \tanh k + \ln(\operatorname{sech} k)$		
	Alternative method 2		
	By substitution	141	
	Let $y = \tanh^{-1} x \Longrightarrow x = \tanh y$	MI	For substitution to obtain
	\Rightarrow dx = sech ² y dy		equivalent integral
	When $x = 0$, $y = 0$		
	When $x = \tanh k$, $y = k$		
	$\Rightarrow I = \int_{0}^{\tanh k} \tanh^{-1} x \mathrm{d}x = \int_{0}^{k} \operatorname{ysech}^{2} y \mathrm{d}y$	A1	Correct so far
	$u = y \mathrm{d}v = \mathrm{sech}^2 y \mathrm{d}y$	M1	For integration by parts (correct
	$du = dy$ $v = \tanh y$		way round)
	$\Rightarrow I = [y \tanh y]_0^k - \int_0^k \tanh y dy$		
	$= k \tanh k - \ln \cosh k$	A1	Final answer

8 (i)		D1	
	$x = \cosh^2 u \Longrightarrow \mathrm{d}u = 2\cosh u \sinh u \mathrm{d}u$	RI	For correct result
	$\int \sqrt{\frac{x}{x-1}} \mathrm{d}x = \int \frac{\cosh u}{\sinh u} 2\cosh u \sinh u \mathrm{d}u$	M1	For substituting throughout for <i>x</i>
	$=\int 2\cosh^2 u\mathrm{d}u$	A1	For correct simplified <i>u</i> integral
	$= \int (\cosh 2u + 1) \mathrm{d}u = \sinh u \cosh u + u$	M1	For attempt to integrate $\cosh^2 u$
		A1	For correct integration
	$= x^{\frac{1}{2}} (x-1)^{\frac{1}{2}} + \ln\left(x^{\frac{1}{2}} + (x-1)^{\frac{1}{2}}\right) (+c)$	M1	For substituting for <i>u</i>
		A1	For correct result
		7	Oe as $f(x) + \ln(g(x))$
(ii)		B1	
	$2\sqrt{3} + \ln\left(2 + \sqrt{3}\right)$	1	
(iii)	$V = (\pi) \int_{1}^{4} \frac{x}{x-1} dx = (\pi) \left[x + \ln(x-1) \right]_{1}^{4}$	M1	For attempt to find $\int \frac{x}{x-1} dx$
	•1	A1	For correct integration (ignore π)
	$V \rightarrow \infty$	B1 3	For statement that volume is infinite (independent of M mark)

Question	Answer	Marks	Guidance	
1	$f'(x) = \frac{-3\sin 3x}{\cos 3x} = -3\tan 3x \Longrightarrow f'(0) = 0$	M1	For differentiating $f(x)$ twice (y' as a function of a function)	
	$f''(x) = -9\sec^2 3x \Longrightarrow f''(0) = -9$	A1	For correct f '(0) and f "(0) www (soi by correct expansion)	
	\rightarrow f(x) $9 r^2$	M1	For use of Maclaurin soi	If f''(0) =
	$\rightarrow I(x) = -\frac{1}{2}x$	A1	For correct series (condone $a = -\frac{9}{2}x^2$)	f'(0) = f(0) = 0 then M0
	ALT: $\ln(\cos 3x) = \ln\left(1 - \frac{1}{2}(3x)^2\right) = -\frac{9}{2}x^2$		SC Use of standard cos and ln series can earn second M1 A1	
		[4]		
		[4]		
2	$= \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\left(2x-1\right)^2 + 4} \mathrm{d}x \ OR \ \frac{1}{4} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\left(x-\frac{1}{2}\right)^2 + 1} \mathrm{d}x$	B1	For correct denominator (in 2nd case must include $\frac{1}{4}$)	
		M1	For integration to $k \tan^{-1}(ax+b)$ or $k \ln\left(\frac{ax+b-c}{ax+b+c}\right)$	
	$= \frac{1}{2} \left[\frac{1}{2} \tan^{-1} \frac{2x-1}{2} \right]_{\frac{1}{2}}^{\frac{3}{2}} OR \frac{1}{4} \left[\tan^{-1} \left(x - \frac{1}{2} \right) \right]_{\frac{1}{2}}^{\frac{3}{2}}$	A1	FT for $ax + b$ from their denominator For correct integration	
	$=\frac{1}{4}\left(\tan^{-1}1 - \tan^{-1}0\right) = \frac{1}{16}\pi$	M1	For substituting limits in any \tan^{-1} expression	
		A1 [5]	For correct value	

⁴⁷²⁶

Question		Answer	Marks	Guidance		
3		$\frac{2x^3 + x + 12}{(2x-1)\left(x^2 + 4\right)} \equiv A + \frac{B}{2x-1} + \frac{Cx+D}{x^2+4}$	B1	For correct form soi (A can be $Px + Q$, but not 0)		
		$2x^{3} + x + 12 \equiv$ A(2x-1)(x ² +4)+B(x ² +4)+(Cx+D)(2x-1)	M1	For multiplying out from their form		
		A = 1, B = 3 $x^{3}: 2 = 2A$ $x^{2}: 0 = -A + B + 2C$	B1 M1	For either <i>A</i> or <i>B</i> correct (dep on 1st B1) For equating at least 2 coefficients (or substitute two values for <i>x</i> or one of each)		
		$x^{*}: 1=8A-C+2D \qquad x^{*}: 12=-4A+4B-D$ $C=-1, D=-4$	A1A1	For C D correct		
		c = 1, b = 1 $\rightarrow 1, 3, -x - 4$	A1	For correct expression WWW		
		$\Rightarrow 1 + \frac{1}{2x-1} + \frac{1}{x^2+4}$		$\mathbf{SC4} \implies \frac{3}{3} + \frac{x^2 - x}{x}$		
			[7]	$2x-1 x^2+4$		
		ALT: Divide out as not proper $\Rightarrow 1 + \frac{x^2 - 7x + 16}{(2x - 1)(x^2 + 4)}$	B1	Divide out		
		$=1 + \frac{A}{2x - 1} + \frac{Bx + C}{x^2 + 4}$	B1	Writing in this form including 1		
		$x^{2} - 7x + 16 \equiv A(x^{2} + 4) + (Bx + C)(2x - 1)$	M1	For multiplying out from their form		
		$x^2: 1 = A + 2B$ $x: -7 = -B + 2C$	MI	For equating at least 2 coefficients (or substitute two values for x or one of each)		
		1:16 = 4A - C	A 1			
		$\Rightarrow A = 3, B = -1, C = -4$	AI A1	<i>B</i> correct <i>C</i> correct		
		$\Rightarrow 1 + \frac{3}{2} + \frac{-x-4}{2}$	A 1			
		$2x-1$ x^2+4	AI	For correct expression WWW		

(Question	Answer	Marks	Guidance
4	(i)	Given expression is sum of areas of rectangles	B1	For identifying rectangle widths and heights
		of width $\frac{1}{n}$, heights $e^{-1/x}$		
		Given integral is area under the curve which is	B1	For correct explanation of lower bound
		clearly greater	[2]	
4	(ii)	Upper bound =		
		$\frac{1}{n} \left(e^{-n} + e^{-\frac{n}{2}} + e^{-\frac{n}{3}} + \dots + e^{-\frac{n}{n-1}} + e^{-1} \right)$	M1 A1	For using <i>n</i> upper rectangles soi by e^{-n} and e^{-1} For correct expression
			[2]	
4	(iii)	Lower bound = $0.104(31)$	B1	For correct value
		Upper bound = $0.196(28)$	B1 [2]	For correct value – accept 0.197
4	(iv)	$\frac{1}{n}e^{-1} < 0.001$	B1	For a correct statement (includes <)
		$\Rightarrow n > \frac{1000}{e} = 367.879$	M1	For rearranging (ignore $\langle \rangle$ = and allow RHS = $10^{\pm m} e^{\pm 1}$)
		\Rightarrow least $N = 368$	A1	For correct value
			[3]	
5	(i)	$x_{n+1} = x_n - \frac{x_n^3 - k}{3x_n^2}$	M1	For correct $\frac{f(x)}{f'(x)}$ seen (x or x_n)
		$\Rightarrow x_{n+1} = \frac{2x_n^3 + k}{3x_n^2}$	A1	For simplification to AG (x_n and x_{n+1} required)
		'n	[2]	

Q	Juestio	n	Answer	Marks	Guidance	
5	(ii)			B1	For correct curve with α (or $\sqrt[3]{k}$) and $-k$ marked	Curve looks like cubic with one pt of inflection
			$ \begin{array}{c} x_1 & a \\ 0 \\ -k \end{array} x_2 \rightarrow x $	M1	For a suitable tangent shown	(g not nec. 0) at y axis
				AI	with x_1 and x_2 marked such that $ \alpha - x_2 > \alpha - x_1 $	
				[3]		
5	(iii)		$\alpha = \sqrt[3]{100}$	B1	For correct α (Condone $x =$)	
			$x_2 = 4.66667$	B1	For correct x_2 (to at least 5dp)	
			$x_3 = 4.64172$	B1	For correct x_3 (to at least 5dp)	
				[3]		
5	(iv)			M1	For calculating e_1 , e_2 , e_3 from α or something better than x_3	
			$e_1 = -0.35841$, $e_2 = -0.02508$, $e_3 = -0.00013$	A1	All correct to 5 dp	
			$\frac{e_2^3}{e_1^2} = -0.00012$	A1	For obtaining -0.00012 SC2 for consistently without -ve signs	
6	(i)		du.	[3] M1	For differentiating cos v wrt r	
	(1)		$\cos y = x \implies -\sin y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	1011	Tor unrefermating cosy with	
			$\Rightarrow \frac{dy}{dx} = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1 - x^2}}$	A1	For using $\cos^2 y + \sin^2 y = 1$ to obtain AG	
			- sign since $\frac{dy}{dx} < 0$ (e.g. by graph)	B1	For justification of $+$ taken	
				[3]	SC1 if in fractions $\frac{14}{3}$ and $\frac{2047}{441}$	

Question		n Answer	Marks	Guidance
6	(ii)	$\frac{dy}{dx} = -\frac{-2x}{\sqrt{1-x^2}}$	M1	For differentiating $\cos^{-1}(1-x^2)$ (as a function of a function)
		$\frac{dx}{\sqrt{1-\left(1-x^2\right)^2}}$	A1	For correct $\frac{dy}{dx}$ (unsimplified)
		$=\frac{2x}{\sqrt{2x^2 - x^4}} = \frac{2}{\sqrt{2 - x^2}}$	A1	For correct $\frac{dy}{dx}$ (simplified)
		$\frac{d^2 y}{dx^2} = 2\frac{1}{2}2x(2-x^2)^{-\frac{3}{2}} = \frac{2x}{(2-x^2)^{\frac{3}{2}}}$	M1	For differentiating $\frac{dy}{dx}$ using chain rule correctly (or product or
		$\Rightarrow \left(2 - x^2\right) \frac{d^2 y}{dx^2} = \frac{2x}{\sqrt{2 - x^2}} = x \frac{dy}{dx}$	A1	For verification of AG
			[5]	
7	(i)	$x = \sinh y = \frac{e^y - e^{-y}}{2}$	M1	For correct expression for sinh y and attempt to obtain quadratic
		$\Rightarrow e^{2y} - 2xe^{y} - 1 = 0 \Rightarrow e^{y} = x \pm \sqrt{x^{2} + 1}$	A1	For correct solution(s) for e^y
		reject – sign as $e^y > 0 \implies y = \ln\left(x + \sqrt{x^2 + 1}\right)$	A1 [3]	For justification of + sign to AG
		Alt: sinh $y + cosh y = c^{y}$		
		$\sin y + \cos y = e$		
		$\sin n \ y = x \Longrightarrow \cosh y = \pm \sqrt{x} + 1$		
		reject -ve sign as $e^{\gamma} > 0$		
		$\Rightarrow e^{y} = x + \sqrt{x^{2} + 1} \Rightarrow y = \ln\left(x + \sqrt{x^{2} + 1}\right)$		

Question		Answer	Marks	Guidance	
7	(ii)	$\ln\left(x+\sqrt{x^2+1}\right) - \ln\left(x+\sqrt{x^2-1}\right) = \ln 2$ $\longrightarrow \frac{x+\sqrt{x^2+1}}{2} = 2$	M1	For stating both ln expressions and attempting to exponentiate	Removing lns is not an attempt to exponentiate
		$x + \sqrt{x^2 - 1}$			
		$\Rightarrow \sqrt{x^2 + 1} - 2\sqrt{x^2 - 1} = x$	A1	For correct equation AG	
			M1	For attempting to square once	
		$\Rightarrow 4x^2 - 3 = 4\sqrt{x^4 - 1}$	A1	For a correct equation with $$ as subject	
		$\Rightarrow 24x^2 = 25 \Rightarrow x = \frac{5}{\sqrt{24}} \left(= \frac{5}{12} \sqrt{6} \right)$	A1	For correct x and no others isw	
			[5]		
8	(i)	$2\cos^2\alpha = 2\sin 2\alpha = 4\sin \alpha \cos \alpha$	M1	For equation in $\cos \alpha$ and $\sin \alpha$ (only - ie dealing with $\sin 2\alpha$	
		$\Rightarrow \tan \alpha = \frac{1}{2}$	A1	leading to $AG(\theta)$ may be used instead of α)	
			[2]	SK Allow Verification only if exact	
8	(ii)	Area $=\frac{1}{2}\int_{-\infty}^{\alpha}r_2^2 d\theta + \frac{1}{2}\int_{-\infty}^{\frac{1}{2}\pi}r_1^2 d\theta$	M1	For both integrals added with limits soi Allow θ for α ,	
		$2 \mathbf{J}_0 \mathbf{J}_0 \mathbf{J}_{\alpha} \mathbf{J}_{\alpha} \mathbf{J}_{\alpha}$		and reversal of r^2 terms	
		$=\frac{1}{2}\int_{0}^{\alpha}2\sin 2\theta \mathrm{d}\theta + \frac{1}{2}\int_{\alpha}^{\frac{1}{2}\pi}1 + \cos 2\theta \mathrm{d}\theta$	M1	For using $2\cos^2 \theta = 1 + \cos 2\theta$ in 2nd integral	
		$= \left[-\frac{1}{2}\cos 2\theta \right]_{0}^{\alpha} + \left[\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta \right]_{\alpha}^{\frac{1}{2}\pi}$	M1	For $k \cos 2\theta$ as first integrated term	
		$= \left(-\frac{1}{2}\cos 2\alpha + \frac{1}{2}\right) + \left(\frac{1}{4}\pi - \frac{1}{2}\alpha - \frac{1}{4}\sin 2\alpha\right)$	A1	For correct first area	
		$= \left(-\frac{1}{2}\left(1-2\sin^2\alpha\right) + \frac{1}{2}\right) + \left(\frac{1}{4}\pi - \frac{1}{2}\alpha - \frac{1}{2}\sin\alpha\cos\alpha\right)$	A1	For correct second area	
		$=\frac{1}{5}+\frac{1}{4}\pi-\frac{1}{2}\alpha-\frac{1}{2}\cdot\frac{1}{\sqrt{5}}\cdot\frac{2}{\sqrt{5}}$	M1	For using Pythagoras to find $\sin \alpha$ or $\cos \alpha$ <i>OR</i> t formula for $\cos 2\alpha$ or $\sin 2\alpha$	
		$=\frac{1}{4}\pi-\frac{1}{2}\alpha$	A1	For simplification to AG	
			[7]		

	Questior	n	Answer	Marks	Guidance	
9	(i)		$e^{\ln n} - e^{-\ln n}$	M1	For definition of $tanh(\ln n)$ seen	
			$\tanh(\ln n) = \frac{1}{e^{\ln n} + e^{-\ln n}}$		Or working with $tanh(lnn) = x$, definition of $tanh^{-1}x$ seen	
			$n - \frac{1}{2} - n^2 - 1$			
			$=\frac{n}{n+1}=\frac{n}{n^2+1}$	A1	For simplification to AG	
			$n + \frac{1}{n}$ $n + 1$		SC1 tanh $(\ln n) = \frac{e^{\ln n} - e^{-\ln n}}{e^{-\ln n}} = \frac{e^{2\ln n} - 1}{e^{-1}} = \frac{n^2 - 1}{n^2}$	
					$e^{\ln n} + e^{-\ln n} e^{2\ln n} + 1 n^2 + 1$	
				[2]		
9	(ii)		$I_n - I_{n-2} = \int_0^{\ln 2} (\tanh^n u - \tanh^{n-2} u) du$	M1	For factorising and replacing $(\tanh^2 u - 1)$ by \pm sech ² u	
			$\int \ln 2$, $n-2$ (, 2 , 1) , $\int \ln 2$, $n-2$, 2 ,		(or similarly considering I_n)	
			$= \int_0^{\infty} \tanh^{n-2} u (\tanh^2 u - 1) du = -\int_0^{\infty} \tanh^{n-2} u \operatorname{sech}^2 u du$			
			$\Rightarrow I_n - I_{n-2} = -\left[\frac{1}{n-1} \tanh^{n-1} u\right]^{\ln 2}$	Al	For correct integrated term	
			\dots \square	A 1		
			$\Rightarrow I_n - I_{n-2} = -\frac{1}{n-1} \left(\frac{3}{5}\right)^{n-1}$	AI	For simplification to AG	
				[3]		
9	(iii)		$I = \int_{-\infty}^{\ln 2} \tanh u du = [\ln \cosh u]^{\ln 2}$	M1	For integration to $k \ln \frac{\cosh u}{\sin u}$	
			$I_1 = \int_0^\infty \tan u du = [\operatorname{Incosin} u]_0$		sinh u	
			$-\ln(\cosh(\ln 2)) - \ln \frac{e^{\ln 2} + e^{-\ln 2}}{1 - \ln \frac{5}{2}}$	M1	For simplifying $\frac{\cosh}{\sinh}(\ln 2)$	
			$\frac{-1}{2}$		51111	
				A1	For correct value of I_1	
			$I_3 = I_1 - \frac{1}{2} \left(\frac{3}{5}\right)^2 = -\frac{9}{50} + \ln \frac{5}{5}$	B1ft	For correct I_3 . FT from I_1	
			3 1 2(3) 50 4		SC $I_3 = -\frac{9}{50} + \ln(\cosh(\ln 2))$ M1 B1ft	
				[4]		
9	(iv)		$(I_n - I_{n-2}) + (I_{n-2} - I_{n-4}) + \dots + (I_3 - I_1)$	M1	For attempting to sum equations of the form of (ii) and	
					cancelling soi	
			$= I_n - I_1 = -\left(\frac{1}{n-1}\left(\frac{3}{5}\right)^{n-1} + \frac{1}{n-3}\left(\frac{3}{5}\right)^{n-3} + \dots + \frac{1}{2}\left(\frac{3}{5}\right)^2\right)$			
				A 1 ft	For connect ensures ft from I	
			$\Rightarrow \frac{1}{2} \left(\frac{3}{5}\right)^2 + \frac{1}{4} \left(\frac{3}{5}\right)^2 + \frac{1}{6} \left(\frac{3}{5}\right)^2 + \dots = I_1 = \ln \frac{5}{4}$	АЩ	For contect answer it from I_1	
				[2]		

⁴⁷²⁶

Alternative to Q9(ii)

Q	uestion	Answer	Marks	Guidance	
9	(ii)	$I_{n} = \int_{0}^{\ln^{2}} \tanh^{n} u du = \int_{0}^{\ln^{2}} \tanh^{n-2} u . \tanh^{2} u du$	M1	For attempt to integrate by parts.	
		$= \int_{0}^{\ln 2} \tanh^{n-2} u. (1 - \operatorname{sech}^{2} u) \mathrm{d} u$			
		$= \int_{0}^{\ln 2} \tanh^{n-2} u. \mathrm{d}u - \int_{0}^{\ln 2} \tanh^{n-2} u \operatorname{sech}^{2} u \mathrm{d}u$			
		$\implies I_n = I_{n-2} - \left[\frac{\tanh^{n-1} u}{n-1}\right]_0^{\ln 2}$	A1	For correct integrated term	
		$\Rightarrow I_n - I_{n-2} = -\frac{\tanh^{n-1}(\ln 2)}{n-1}$			
		$= -\frac{1}{n-1} \left(\frac{2^2 - 1}{2^2 + 1}\right)^{n-1} = -\frac{1}{n-1} \left(\frac{3}{5}\right)^{n-1}$	A1	For simplification to AG	
			[3]		

Question	Answer	Marks	Guidance	
1	sech $2x = \frac{2}{e^{2x} + e^{-2x}}$	B1	For sech $2x$ expression oe	
	$u = e^{2x} \Rightarrow du = 2e^{2x} dx$ or $x = \frac{1}{2} \ln u \Rightarrow dx = \frac{1}{2u} du$	M1	For differentiating substitution correctly and substituting into <i>their</i> integral	
	$\Rightarrow I = \int \operatorname{sech} 2x dx = \int \frac{2}{e^{2x} + e^{-2x}} dx$ $= \int \frac{2}{\left(e^{2x} + e^{-2x}\right)} \cdot \frac{du}{2e^{2x}}$	A1	For correct integral	
	$= \int \frac{1}{u^2 + 1} du$ = $\tan^{-1} u (+c) = \tan^{-1} (e^{2x}) + c$	M1 A1 [5]	For integration to $\tan^{-1}()$ For correct expression (<i>c</i> required)	

(Question		Answer	Marks	Guidance
2	(i)		$r = 0 \Longrightarrow \cos \theta = 0, \sin 2\theta = 0$	M1	For $r = 0$ (soi) and attempt to solve for θ
			$\Rightarrow \theta = 0, \frac{1}{2}\pi$	A1	For both values and no others (ignore values outside range)
				[2]	
2	(ii)		$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\sin\theta\sin2\theta + 2\cos2\theta\cos\theta$	M1	For attempt to find $\frac{dr}{d\theta}$ using product rule
			= 0	A1	For correct $\frac{\mathrm{d}r}{\mathrm{d}\theta}$ set = 0 soi
			Alternatively:		
			$r = 2\cos^2\theta\sin\theta \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}\theta} = 2\cos^3\theta - 4\cos\theta\sin^2\theta$		
			$\Rightarrow 2\sin^2\theta\cos\theta = 2(1-2\sin^2\theta)\cos\theta$		
			$\Rightarrow \sin \theta = \frac{1}{\sqrt{3}} \left(\cos \theta = \frac{\sqrt{2}}{\sqrt{3}}, \ \tan \theta = \frac{1}{\sqrt{2}} \right)$	A1	For correct value of $\sin \theta$ (OR $\cos \theta OR$ $\tan \theta$) or decimal equivalent; $\sin \theta = 0.546$ or $\cos \theta = 0.816$ or $\tan \theta = 0.707$
			$\Rightarrow r = \frac{4}{3\sqrt{3}} = \frac{4}{9}\sqrt{3}$	A1	For correct <i>r</i> or anything that rounds to 0.77
	()			[4]	
2	(111)		$x = r\cos\theta, \ y = r\sin\theta$	MI	For substituting $x = r \cos \theta$ OR $y = r \sin \theta$
			$\Rightarrow r = \frac{x}{r} \cdot 2 \frac{y}{r} \frac{x}{r}$	M1	For $r^2 = x^2 + y^2$ soi
			$\Rightarrow \left(x^2 + y^2\right)^2 = 2x^2y$	A1	For a correct cartesian equation Any equivalent form without fractions
				[3]	

(Question		Answer	Marks	Guidance		
3	(i)		$ \tanh 2x \equiv \frac{\sinh 2x}{\cosh 2x} \equiv \frac{2\sinh x \cosh x}{\cosh^2 x + \sinh^2 x} $	M1	For $\frac{\sinh 2x}{\cosh 2x}$ and use double angle formulae		
			$\equiv \frac{2 \tanh x}{1 + \tanh^2 x}$	A1	For division by $\cosh^2 x$ seen	N.B. Tanh $(A + B)$ not in formula book	
				[2]			
3	(ii)		$\frac{10t}{(t^2+1)} = (1+6t)$	M1	For using (i) to obtain equation in <i>t</i> .		
			()	A1	Correct cubic equation		
			$\Rightarrow 6t^{-} + t^{-} - 4t^{-} + 1 = 0$ $\Rightarrow (t+1)(3t-1)(2t-1) = 0$	M1	Attempt to solve cubic (calculator OK)		
			$\Rightarrow t = (-1), \frac{1}{3}, \frac{1}{2}$	A1	Solution. Ignore any extra values at this stage		
			$x = \frac{1}{2} \ln \frac{1+t}{1-t} \implies x = \frac{1}{2} \ln 2, \frac{1}{2} \ln 3$	M1 A1 [6]	For using ln form for tanh ⁻¹ Correct 2 values (only) oe		
	•		Alternative: M1	[0]	Use exponentials to obtain a quadratic in e^{2x}		
			$e^{4x} - 5e^{2x} + 6 = 0$ A1		Correct		
			$\Rightarrow (e^{2x} - 2)(e^{2x} - 3) = 0 \qquad M1$		Solve quadratic		
			$\Rightarrow e^{2x} = 2, 3$ A1		Soln		
			$\Rightarrow 2x = \ln 2, \ \ln 3$ M1		Take logs		
			$\Rightarrow x = \frac{1}{2}\ln 2, \frac{1}{2}\ln 3 \qquad \qquad \text{A1}$				

•	Question	Answer	Marks	Guidance
4	(i)	y $x_2 = 1.3869$ $x_3 = 1.3938$ $x_1 x_2 x_3 \alpha \rightarrow x$	B1 B1 B1	For correct value (4 d.p. or better) For correct value. For sketch showing staircase towards α. (Vertical lines do not need to be labelled)
4	(ii)	$O = \begin{bmatrix} y \\ x_3 \\ x_2 \\ x_1 \\ x_2 \\ x_1 \\ $	B1 B1 [2]	For sketch like $y = \frac{1}{2}(x^4 - 1)$ and $y = x$ (curve or continuation of curve cuts - y axis.) For sketch showing staircase away from α .("Away" means labelling or arrows required.) Labelling means $x_1, x_2,$ in right place or numeric values.
4	(iii)	$x_{n+1} = x_n - \frac{x_n^4 - 2x_n - 1}{4x_n^3 - 2}$ 1.35 \rightarrow 1.398268 \rightarrow 1.395348 \rightarrow 1.395337 \Rightarrow 1.3953	M1 A1 A1 A1 [4]	For deriving the iterative formula For correct formula For 1st value For correct 4dp α with 2 iterates equal to 4 dp. (i.e. last two iterates agree to 4dp) www

Question		n	Answer	Marks	Guidance	
5	(i)		$f'(x) = \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+\frac{1}{x^2}}} \cdot \frac{-1}{x^2}$ $= \frac{1}{\sqrt{1-\frac{2}{x^2}}} \left(1 - \frac{1}{x}\right)$	M1 B1	For attempt to differentiate using chain rule. First term correct	
			$\sqrt{1 + x^{2}} \langle x \rangle$ $= 0 \Rightarrow x = 1$ $f(1) = 2 \sinh^{-1} 1 = 2 \ln \left(1 + \sqrt{2}\right)$	M1 A1 A1	For attempt to solve their $f'(x) = 0$ For correct value of x (ignore $x = -1$) www For correct value obtained WWW AG	
			()	[5]		
5	(ii)			B1	For correct shape in 3rd quadrant only(condone inclusion of the 1st quadrant part given)	
			$\left\{ f(x) \ge 2\ln\left(1+\sqrt{2}\right), \ f(x) \le -2\ln\left(1+\sqrt{2}\right) \right\}$	B1 B1 [3]	For one part of range For other part of range SC B1 Both ranges correct but < and > used	

⁴⁷²⁶

Question		n	Answer	Marks	Guidance
6	(i)		$I_n = \left[-x^n \cos x \right]_0^{\pi} + n \int_0^{\pi} x^{n-1} \cos x dx$	M1 A1	For attempt to integrate by parts For correct result before limits
			$= \pi^{n} + n \left\{ \left[x^{n-1} \sin x \right]_{0}^{\pi} - (n-1) \int_{0}^{\pi} x^{n-2} \sin x \mathrm{d}x \right\}$	M1 A1	For attempt at second integration by parts For correct result before limits
			$\Rightarrow I_n = \pi^n - n(n-1)I_{n-2}$	A1 [5]	For correct result www AG
6	(ii)		$I_1 = \left[-x \cos x \right]_0^{\pi} + \int_0^{\pi} \cos x dx$	M1	For integrating by parts for I_1
			$\Rightarrow I_1 = \pi + [\sin x]_0^{\pi} = \pi$	A1	For correct I_1 SC B1 $I_1 = \pi$ with no working
			$I_3 = \pi^3 - 6I_1$, $I_5 = \pi^5 - 20I_3$	M1	For substituting $n = 3$ or 5 in reduction formula
			$\Rightarrow I_5 = \pi^5 - 20\pi^3 + 120\pi$	A1	For correct result
				[4]	

(Juestion	Answer	Marks	Guidance	
7	(i)	a=2, b=n	B1	for any 2 correct	
		c = 1, d = n - 1	B1	for the third correct	
			B1	for all four correct. Allow values inserted in series.	
				SC treat $a = \frac{1}{2}$ etc as MR –1 once	
			[3]		
7	(ii)	$\int_{1}^{n} \frac{1}{x} \mathrm{d}x = \ln n$	B1	For integral evaluated soi (Definite integral between 1 and <i>n</i>)	
		$1 + \frac{1}{2} + \ldots + \frac{1}{n} < 1 + \ln n$	M1	For adding 1 OR $\frac{1}{n}$ to series	
		\Rightarrow f(n) < 1 (upper bound)	A1	For correct upper bound	
		\Rightarrow f(n) > $\frac{1}{n}$ (lower bound)	A1	For correct lower bound	
			[4]		
7	(iii)	$f(n+1) - f(n) = \frac{1}{n+1} - \ln(n+1) + \ln n$	B1	For correct expression	
		1 (n+1) 1 (1 1)	M1	For combining ln terms	Any expansion of
		$= \frac{1}{n+1} - \ln\left(\frac{1}{n}\right) \approx \frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{2n^2}\right)$	M1	For attempt to expand $\ln\left(1+\frac{1}{n}\right)$	$\ln(1+n)$ oe is 0
		$\approx \frac{1}{n+1} - \frac{2n-1}{2n^2}$	A1	Correct expansion of $\ln\left(1+\frac{1}{n}\right)$	
		$\approx -\frac{n-1}{2n^2(n+1)}$	A1	For correct expression AG	
			[5]		

Alternative answer to 7((iii)
--------------------------	-------

(Question	Answer	Marks	Guidance	
7	(iii)	$f(n+1) - f(n) = \frac{1}{n+1} - \ln(n+1) + \ln n$	B1	For correct expression	
		$=\frac{1}{n+1}-\ln\left(\frac{n+1}{n}\right)$			
		$=\frac{1}{n+1} + \ln\left(\frac{n}{n+1}\right)$	M1	For combining ln terms and attempt to expand	
		$= \frac{1}{n+1} + \ln\left(1 - \frac{1}{(n+1)}\right)$	M1	For attempt to expand $\ln\left(1 - \frac{1}{(n+1)}\right)$	
		$= \frac{1}{n+1} + \left(-\frac{1}{(n+1)} - \frac{1}{2(n+1)^2} \right)$	A1	Correct expansion of $\ln\left(1-\frac{1}{(n+1)}\right)$	
		$=-\frac{1}{2(n+1)^2}$			
				Max 4	

Q	Question		Answer	Marks	Guidance	
8	(i)		q(x) = x + 2	B1	For correct $q(x)$ soi oe	
			$y = \frac{A}{x+2} + \frac{1}{2}x + 1$	M1	For expressing y in this form. Allow $cx+d$ for A	
			$\left(-1,\frac{17}{2}\right) \Longrightarrow A = 8$	A1	For correct A	
			$\frac{1}{2}r^2 + 2r + 10$	A1	For correct $p(x)$	
			$y = \frac{2^{x} + 2x + 10}{x+2} \Rightarrow p(x) = \frac{1}{2}x^2 + 2x + 10$		Allow equal multiples of $p(x)$ and $q(x)$	
				[4]		
			Alternative: $q(x) = x + 2$ B1		For correct $q(x)$ soi oe	
			$y = \frac{ax^{2} + bx + c}{q(x)} = ax + (b - 2a) + \frac{c - 2b + 4a}{x + 2} M1$		For division by <i>their</i> $q(x)$	1 st line of division and 1 st term in quotient should be seen for correct method
			$y = \frac{1}{2}x + 1 \implies a = \frac{1}{2}, b = 2$ A1		For correct <i>a</i> and <i>b</i> oe	
			$\left(-1,\frac{17}{2}\right) \Rightarrow c-2b+4a=8 \Rightarrow c=10$ A1		For correct <i>c</i> oe	
8	(ii)		$\frac{1}{2}x^2 + (2 - y)x + 10 - 2y = 0$	M1	For attempt to rearrange as quadratic in <i>x</i>	
			$b^2 - 4ac \ge 0 \Rightarrow (2 - y)^2 \ge 2(10 - 2y)$	M1	For use of $b^2 - 4ac$ ($\leq or \geq or = or < or >$)	
			$\rightarrow v^2 \ge 16 \rightarrow \{v \le -4, v \ge 4\}$	A1	For critical values ± 4	
			$ \Rightarrow y = 10 \Rightarrow (y = \tau, y = \tau) $	A1	For correct range. (Must be \leq and \geq) www	
			(pto for alternative)	[4]		
8	(iii)		$\left(\frac{1}{2}x+1\right)^2 = \frac{\frac{1}{2}x^2+2x+10}{x+2}$ OR $y^2 = \frac{4}{y} + y$	B1ft	For a correct equation derived from intersection of C ₂ with $y = \frac{1}{2}x + 1$ FT from (i)	
			$\Rightarrow x^{3} + 4x^{2} + 4x - 32 = 0 \text{ OR } y^{3} - y^{2} - 4 = 0$	M1 A1	For obtaining a cubic Correct cubic	
			\Rightarrow (2, 2)	A1 [4]	Coordinates correct www	

Alternative to 8(ii)

Q	uestio	n	Answer	Marks	Guidance
<u>Q</u> 8	(ii)	n	Answer $y = \frac{\frac{1}{2}x^{2} + 2x + 10}{x + 2}$ $\Rightarrow \frac{dy}{dx} = \frac{(x + 2)(x + 2) - (\frac{1}{2}x^{2} + 2x + 10)}{(x + 2)^{2}}$ $= 0 \text{ when } (x + 2)(x + 2) = (\frac{1}{2}x^{2} + 2x + 10)$	Marks M1 M1	Guidance Diffn using quotient rule Attempt to find soln using $\frac{dy}{dx} = 0$
			$\Rightarrow \frac{1}{2}x^{2} + 2x - 6 = 0 \Rightarrow x^{2} + 4x - 12 = 0$ $\Rightarrow (x+6)(x-2) = 0$ $\Rightarrow x = 2, y = 4 \qquad x = -6, y = -4$ $\{y \le -4, y \ge 4\}$	A1 A1	For correct range. (Must be \leq and \geq) www
			Alternatively: $y = \frac{1}{2}x + 1 + \frac{8}{x+2}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2} - \frac{8}{(x+2)^2}$ M1 $= 0 \text{ when } \frac{1}{2} - \frac{8}{(x+2)^2} \Rightarrow (x+2)^2 = 16$ M1 $\Rightarrow x+2 = \pm 4 \Rightarrow x = 2 \text{ or } -6$ $\Rightarrow y = 4 \text{ or } -4$ A1 $\{y \le -4, y \ge 4\}$ A1		Diffn using chain rule Attempt to find soln using $\frac{dy}{dx} = 0$ For correct range. (Must be \leq and \geq) www

(Question		Answer	Marks	Guidance		
1			$\frac{A}{x-1} + \frac{Bx+C}{x^2+4}$ $\Rightarrow 5x \equiv A(x^2+4) + (Bx+C)(x-1) \left[+D(x-1)(x^2+4) \right]$	B1	Sight of expression	Allow addition of constant	
			Equate coefficients or substitute values for x	M1	For Equating 3 coeffs or sub 3 times		
			$\Rightarrow A = 1$ $B = -1$	A1	For one value (not D)		
			C = 4	A1	For 2^{nd} and 3^{rd} values (not D)		
			$\Rightarrow \frac{5x}{(x-1)(x^2+4)} = \frac{1}{(x-1)} + \frac{4-x}{(x^2+4)}$	A1	For final answer expressed properly		

	Question	n Answer	Marks	Guidance	
2	(i)	x = 1 $y = \frac{x^2 - 3}{x - 1} = \frac{(x - 1)(x + 1) - 2}{x - 1} = x + 1 \left[-\frac{2}{x - 1} \right]$ $\Rightarrow y = x + 1$	B1 M1 A1	Or long division with quotient x + Must be stated	
			[3]		
2	(ii)	(0,3) ($\sqrt{3}$,0) and ($-\sqrt{3}$,0)	B1 [1]	All three	Allow when $x = 0$, $y = 3$, etc but do NOT allow $y = 3$, etc
2	(iii)	$\frac{dy}{dx} = \frac{2x(x-1) - (x^2 - 3)}{(x-1)^2} = \frac{x^2 - 2x + 3}{(x-1)^2}$ $= \frac{(x-1)^2 + 2}{(x-1)^2} > 0 \text{ for all } x.$ So no turning points.	M1 A1 A1 [3]	Differentiate Gradient function Conclusion	Alternative method: Diffn final expression from (i) $\frac{dy}{dx} = 1 + \frac{2}{(x-1)^2}$ >1 so no turning points. Or "b ² - 4ac"=-8 < 0 so no roots.
2	(iv)		B1 B1 B1 [3]	Correct shape going through axes at correct points which must be stated. Correct asymptotes included Approaches correct asymptotes correctly	Allow omission of $(0, 3)$ if not in (ii). Oblique asymptote can be $y=x+c$ with $c \neq 1$

Question	Answer	Marks	Guidance
3	$3\frac{e^{x}+e^{-x}}{2}-4\frac{e^{x}-e^{-x}}{2}=7$	M1	Use of formulae
	$\Rightarrow 3\left(e^{x} + e^{-x}\right) - 4\left(e^{x} - e^{-x}\right) = 14$	A1	Correct equation
	$\Rightarrow -e^{x} + 7e^{-x} = 14$ $\Rightarrow e^{2x} + 14e^{x} - 7 = 0$	A1	Correct quadratic equation in e^x
	$\Rightarrow e^{x} = \frac{-14 \pm \sqrt{196 + 28}}{2}$	M1	Solve quadratic
	$\left[e^{x} > 0\right]$ so $e^{x} = \frac{-14 + \sqrt{196 + 28}}{2}$		
	$= -7 + \sqrt{56}$	A1	Correct value for e ^{<i>x</i>} (ignore -ve value)
	$\Rightarrow x = \ln\left(2\sqrt{14} - 7\right)$	A1	One value only with statement of rejection of invalid value for e^x
		[6]	
	Alternative		
	Make sinh or cosh the subject, square, use $c^2 - s^2 = 1$	M1 A1	
	Gives $7s^2 + 56s + 40 = 0$		
	Or $7c^2 + 42c - 65 = 0$	A1	

(Juestio	n	Answer	Marks	Guidance
4	(i)		$I_n = \int_0^1 x^n \cdot e^{2x} \mathrm{d}x.$		
			Set $u = x^n$ $du = nx^{n-1}dx$	M1	Integration by parts
			$\mathrm{d}v = \mathrm{e}^{2x}\mathrm{d}x \qquad v = \frac{1}{2}\mathrm{e}^{2x}$	A1	Correct way round and correct diffn
			$\Rightarrow I_n = \int_0^1 x^n e^{2x} dx = \left[\frac{1}{2}x^n e^{2x}\right]_0^1 - \frac{1}{2}n \int_0^1 x^{n-1} e^{2x} dx$	A1	Indefinite form acceptable
			$I_n = \frac{1}{2}e^2 - \frac{1}{2}nI_{n-1}$	A1	Using limits
				[4]	
4	(ii)		$I_0 = \int_0^1 e^{2x} dx = \frac{1}{2} \left[e^{2x} \right]_0^1 = \frac{1}{2} \left(e^2 - 1 \right)$	M1	Attempt to find I_0 or I_1 .
				A1	
			$I_{1} = \frac{1}{2}e^{2} - \frac{1}{2}I_{0} = \frac{1}{2}e^{2} - \frac{1}{2}\left(\frac{1}{2}(e^{2} - 1)\right) = \frac{1}{4}e^{2} + \frac{1}{4}$	M1	Using this to progress, dep
			$I_2 = \frac{1}{2}e^2 - I_1 = \frac{1}{2}e^2 - \left(\frac{1}{4}e^2 + \frac{1}{4}\right) = \frac{1}{4}e^2 - \frac{1}{4}e^2$		
			$I_3 = \frac{1}{2}e^2 - \frac{3}{2}I_2 = \frac{1}{2}e^2 - \frac{3}{2}\left(\frac{1}{4}e^2 - \frac{1}{4}\right) = \frac{1}{8}e^2 + \frac{3}{8}e^2$	A1	
				[4]	

(Questio	on	Answer	Marks	Guidance		
5	(i)		$f'(x) = -\sin x \cdot e^{-x} + \cos x \cdot e^{-x}$				
			\Rightarrow f'(0) = 1	M1	Diffn using product correctly.		
				Al	For both values www.		
			f(0) = 0	AI	For both values www		
			1(0) = 0				
				[3]			
5	(ii)		$f'(x) = \cos x \cdot e^{-x} - \sin x \cdot e^{-x} = \cos x \cdot e^{x} - f(x)$	M1	Diffn		
			$f''(x) = -f'(x) - \cos x \cdot e^{-x} - f(x)$				
			=-f'(x)-f'(x)-f(x)-f(x)				
			$f''(x) = -2f'(x) - 2f(x) OR - 2\cos x e^{-x}$				
			Showing the two equal	Al			
			f''(0) = -2				
				[4]			
5	(iii)		f''(x) = -2f'(x) - 2f(x)				
			\Rightarrow f "(x) = -2f "(x) - 2f '(x) oe	B1	Not involving trig or exp fns	=-f''+2f	
			\Rightarrow f "(0) = 4 - 2 = 2	B1		Or $2f' + 4f$	
				[2]			
5	(iv)		$z = x^3$	M1			
			$f(x) = x - x^2 + \frac{1}{3}$	A1			
]			[2]			
			Alternative:				
			Write down correct series expansion for e^{-x} and sinx and	M1			
			multiply	Al			

	Juestion	Answer	Marks	Guidance
6		$x^2 + 4x + 8 = (x+2)^2 + 4$	M1	Complete the square in order to use
			Al	standard form
		$\int_{0}^{1} \frac{1}{\sqrt{x^{2} + 4x + 8}} dx = \int_{0}^{1} \frac{1}{\sqrt{(x + 2)^{2} + 4}} dx$	M1	Use correct standard form in integration
		$= \left[\sinh^{-1} \frac{x+2}{2} \right]_{0}^{1} = \sinh^{-1} \left(\frac{3}{2} \right) - \sinh^{-1} 1$	A1	Answer in sinh ⁻¹ form
		$= \ln\left(\frac{3}{2} + \sqrt{1 + \frac{9}{4}}\right) - \ln\left(1 + \sqrt{2}\right) = \ln\left(\frac{3}{2} + \sqrt{\frac{13}{4}}\right) - \ln\left(1 + \sqrt{2}\right)$	M1	Attempt to turn into log form
		$=\ln\left(\frac{3+\sqrt{13}}{2+2\sqrt{2}}\right)$	A1	www isw
			[6]	
4		Alternative for last 4 marks		
			M1	Attempt to use Standard form
		$\int_{0}^{1} \frac{1}{\sqrt{(x+2)^{2}+4}} dx = \left[\ln\left((x+2) + \sqrt{(x+2)^{2}+4}\right) \right]_{0}^{1}$	Al M1	Limits
		$= \ln\left(3 + \sqrt{13}\right) - \ln\left(2 + \sqrt{8}\right) = \ln\left(\frac{3 + \sqrt{13}}{2 + 2\sqrt{2}}\right)$	A1	www isw
1		Alternative for last 4 marks		
		$x+2=2\tan\theta \Rightarrow I=\left[\ln\left(\sec\theta+\tan\theta\right)\right]_{\pi/2}^{\tan^{-1}\frac{3}{2}}$	M1	Substitution
			M1	Deal with limits
		$= \ln\left(\frac{3}{2} + \frac{\sqrt{13}}{2}\right) - \ln\left(1 + \sqrt{2}\right) = \ln\left(\frac{3 + \sqrt{13}}{2 + 2\sqrt{2}}\right)$	A1	www isw

	Questi	on	Answer	Marks	Guidance	
7	(i)			B1 B1	Enclosed loop with axes tangential	Ignore anything in other quadrants
				B1	$\theta = \frac{\pi}{4}$ is a line of symmetry drawn and	
			P is at $r = 5$, $\theta = \frac{\pi}{4}$	B1	For both	
				[4]		
7	(ii)		Area = $\frac{1}{2} \int_{0}^{\pi/2} r^2 d\theta = \frac{1}{2} \int_{0}^{\pi/2} 25 \sin^2 2\theta d\theta$	M1	Correct formula with <i>r</i> substituted.	
			$= \frac{25}{4} \int_{0}^{\frac{\pi}{2}} (1 - \cos 4\theta) \mathrm{d}\theta = \frac{25}{4} \left[\theta - \frac{1}{4} \sin 4\theta \right]_{0}^{\frac{\pi}{2}}$	M1	Correct method of integration including limits	
			$=\frac{25}{4}\left(\left(\frac{\pi}{2}-0\right)-(0)\right)=\frac{25\pi}{8}$	A1	www	
_	([3]		
7	(m)		Equation is of the form $x + y = c$	BI		
			P is $\left(\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right)$ oe	BI		
			$\Rightarrow x + y = 5\sqrt{2}$	B1	Ft. $x + y = c$ where c comes from their P.	
				[3]		
7	(iv)		$r = 5\sin 2\theta = 10\sin \theta \cos \theta$	M1	Square and convert r^2	
			$\Rightarrow r^{2} = 100 \sin^{2} \theta \cos^{2} \theta = 100 \left(\frac{y}{r}\right)^{2} \left(\frac{x}{r}\right)^{2}$	M1	Substitute for <i>r</i> and θ	
			$\Rightarrow \left(x^2 + y^2\right)^3 = 100x^2y^2$	A1	NB Answer given	
				[3]		

	Question		Answer	Marks	Guidance		
8	(i)	(a)	$x_1 = 4.15, x_2 = 4.1474$ $x_3 = 4.1465, x_4 = 4.1463$ $\beta = 4.146$	M1 A1 [2]	Using iterative formula at least once using at least 4dp www	All iterates must be seen	
8	(i)	(b)	Staircase diagram will always move to upper root	B1 B1 B1 [3]	Sketch showing an example $x_1 > \alpha$ Example with $x_1 < \alpha$ Statement Dep on 1st two B	Ignore any statement when $x_1 > \beta$	
8	(ii)	(a)	$\ln(x-1) = x - 3 \Longrightarrow \ln(x-1) - (x-3) = 0$	M1	Get equation in correct form		
			$\Rightarrow f(x) = \ln(x-1) - (x-3)$ $\Rightarrow f'(x) = \frac{1}{x-1} - 1$	M1	Differentiate		
			$\Rightarrow x_{n+1} = x_n - \frac{\ln(x_n - 1) - (x_n - 3)}{\frac{1}{x_n - 1} - 1}$	M1	Use correct formula		
			$= x_n - \frac{(x_n - 1)(\ln(x_n - 1) - (x_n - 3))}{1 - (x_n - 1)}$	A1	Mult by $(x - 1)$ soi		
			$=\frac{x_n(2-x_n) + (x_n-1)(x_n-3) - (x_n-1)\ln(x_n-1)}{2-x_n}$ $=\frac{2x_n - x_n^2 + x_n^2 - 4x_n + 3 - (x_n-1)\ln(x_n-1)}{2-x_n}$	A1			
			$\Rightarrow x_{n+1} = \frac{3 - 2x_n - (x_n - 1)(\ln(x_n - 1))}{2 - x_n}$	[5]			

Question		Answer		Marks	Guidance			
8	(ii)	(b)	1.2 1.152359 1.158448 1.158594	1.152(359) 1.158448 1.158594 1.158594	Root = 1.159	B1 B1 B1 [3]	For <i>x</i> ₂ For enough iterates to determine 3dp www	Allow 3 dp x_2 must be right for last B1. Any error is likely to be self- correcting

Annotations

Annotation in scoris	Meaning
✓ and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c. The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

А

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

Mark Scheme

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Q	Question	Answer	Marks	Guidance		
1		$\cos\theta = \frac{1-t^2}{1+t^2}$	M1	Using <i>t</i> substitution for both $\cos \theta$ and $d\theta$		
		$\frac{\mathrm{d}t}{\mathrm{d}\theta} = \frac{1}{2}\sec^2\frac{1}{2}\theta = \frac{1}{2}\left(1 + \tan^2\frac{1}{2}\theta\right)$	A1	Subs correct		
		$\Rightarrow dt = \frac{1+t^2}{2}. d\theta \Rightarrow d\theta = \frac{2dt}{1+t^2}$	M1	Dealing with limits and attempting integration.		
		$\Rightarrow I = \int_{0}^{1} \frac{1}{1 + \frac{1 - t^{2}}{1 + t^{2}}} \frac{2dt}{1 + t^{2}} = \int_{0}^{1} \frac{1 + t^{2}}{1 + t^{2} + 1 - t^{2}} \frac{2dt}{1 + t^{2}}$	A1	Correct integral		
		$\int_{0}^{1} \frac{2dt}{2} = [t]_{0}^{1} = 1$	A1 [5]	Answer		
		Alternative				
		$1 + \cos\theta = 2\cos^2\frac{1}{2}\theta$ $\Rightarrow \int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos\theta} d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1}{\cos^2\frac{1}{2}\theta} d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sec^2\frac{1}{2}\theta d\theta$	SC3			
		$=\frac{1}{2}\left[2\tan\frac{1}{2}\theta\right]_{0}^{\frac{\pi}{2}}=\tan\frac{\pi}{2}-\tan 0=1$				
2	(i)	$\cosh x = \frac{e^x + e^{-x}}{2}, \ \sinh x = \frac{e^x - e^{-x}}{2}$	B1	Correct formulae		
		$\Rightarrow \cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2$	M1	Dealing with squaring correctly	Difference of squares can be used	
		$=\frac{1}{4}\left(e^{2x}+2+e^{-2x}-e^{2x}+2-e^{-2x}\right)=\frac{1}{4}\cdot 4=1$	A1 [3]	www All steps seen		

(Question		Answer	Marks	Guidance		
2	(ii)		$\Rightarrow \cosh^2 x - 1 = 5 \cosh x - 7$				
			$\Rightarrow \cosh^2 x - 5\cosh x + 6 = 0$	M1	Use (i)		
			$\Rightarrow (\cosh x - 2)(\cosh x - 3) = 0$	M1	Attempt to solve quadratic	E.g. correct formula or expansion of their brackets gives 2 out of 3 terms correct	
			$\Rightarrow \cosh x = 2, 3$	A1			
			$\Rightarrow x = \cosh^{-1} 2 = \pm \ln \left(2 \pm \sqrt{3} \right)$	A1	Use correct ln formula	Condone lack of ±	
			and $x = \cosh^{-1} 3 = \pm \ln \left(3 \pm \sqrt{8} \right)$	A1	Use correct ln formula	Condone lack of ±	
				[5]			
3	(i)		$\frac{dy}{dx} = \frac{1}{(1-x)^2} \times \frac{-(3+x)-(1-x)}{(3+x)^2}$	B1	Sight of standard diffn for $tanh^{-1}x$		
			$\frac{dx}{1 - \left(\frac{1 - x}{3 + x}\right)} \qquad (3 + x)$	M1	Fn of fn and diffn of quotient		
				A1	Soi correct quotient (i.e. correct expression for 2nd part)		
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{-4}{\left(3+x\right)^2 - (1-x)^2}\right) = \frac{k}{1+x}$	A1			
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{2(1+x)}$	A1	Correct for <i>y</i> ′		
			$\Rightarrow \frac{d^2 y}{dx^2} = \frac{1}{2(1+x)^2}$	A1	2 nd diffn (NB AG)		
				[6]			

(Question		Answer	Marks	Guidance	
3	(ii)		When $x = 0$, $y = \tanh^{-1} \frac{1}{3}$ or $\frac{1}{2} \ln 2$ or $\ln \sqrt{2}$	B1	For 1 st value (needs to be exact)	
			$\frac{dy}{dx} = -\frac{1}{2}$			
			$\frac{d^2 y}{dr^2} = \frac{1}{2}$	B1	For both	
			$\Rightarrow y = \tanh^{-1}\frac{1}{3} + \left(-\frac{1}{2}\right)x + \left(\frac{1}{2}\right)\frac{x^2}{2}$	M1	Use of correct Maclaurin's series	
			$= \tanh^{-1}\frac{1}{3} - \frac{1}{2}x + \frac{x^2}{4}$	A1	Accept 0.347	
				[4]		
4	(i)		$u = \cos^{n-1} x, \mathrm{d}v = \cos x \mathrm{d}x$	M1*	By parts the right way round	
			$du = -(n-1)\cos^{n-2}x\sin x, v = \sin x$	A1		
			$\Rightarrow I_n = \left[\cos^{n-1} x \sin x\right]_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \cos^{n-2} x \sin^2 x dx$	A1	Integral so far	
			$= 0 + (n-1)(I_{n-2} - I_n)$	*M1	Correct use of $\sin^2 x = 1 - \cos^2 x$ Dependent on 1st M	
			$\Rightarrow nI_n = (n-1)I_{n-2} \Rightarrow I_n = \frac{n-1}{n}I_{n-2}$	A1	www AG	
				[5]		
4	(ii)		$I_1 = 1$	B1	For I_1 soi	
			$I_{11} = \frac{10}{11}I_9 = \dots = \frac{10}{11} \cdot \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3}I_1$	M1	Use of (i) to give product of 5 fractions	
			$\Rightarrow I_{11} = \frac{3840}{10395} = \frac{256}{693}$ oe	A1	Correct fraction	
				[3]		

	Question	Answer	Marks	Guidance		
5	(i)	$f(x) = x^{3} + 4x^{2} + x - 1$ f'(x) = 3x ² + 8x + 1	B1	Diffn		
		$\Rightarrow x_{n+1} = x_n - \frac{x_n^3 + 4x_n^2 + x_n - 1}{3x_n^2 + 8x_n + 1}$	M1	Correct application of N-R formula		
		$=\frac{x_n\left(3x_n^2+8x_n+1\right)-\left(x_n^3+4x_n^2+x_n-1\right)}{3x_n^2+8x_n+1}$	A1	And completed with suffices on last line		
		$=\frac{2x_n^3+4x_n^2+1}{3x_n^2+8x_n+1}$	[3]	NB AG		
5	(ii)	$x_2 = -0.72652,$	B1		NB $x_4 = -0.726109$	
		$x_3 = -0.72611$	B1			
		$\Rightarrow \alpha = -0.72611$	B1 [3]			
5	(iii)	Sketch plus at least one tangent	B1	At least the first tangent and vertical line to curve		
		Converges to another root.	B1	Or positive root or, for e.g. " $x = 0$ is the wrong side of a turning point" www	Use of formula to find this root numerically is not acceptable	
			[2]			

C	Question		Answer	Marks	Guidance
6	(i)		Width of rectangles is $\frac{3}{n}$	B1	Statement about width
			\Rightarrow Sum of areas of rectangles	M1	Height or area of at least one rectangle
			$=\frac{3}{n} \times \left(\ln(\ln 3) + \ln\left(\ln\left(3 + \frac{3}{n}\right)\right) + \dots \right)$	A1	Correct conclusion www
			$= \frac{3}{n} \times \sum_{r=0}^{n-1} \ln\left(\ln\left(3 + \frac{3r}{n}\right)\right)$		1468 or
				[3]	
6	(ii)		$= \frac{3}{n} \times \sum_{r=1}^{n} \ln \left(\ln \left(3 + \frac{3r}{n} \right) \right)$	B1	
				[1]	
6	(iii)		$U - L = \frac{3}{n} \times \ln(\ln 6) - \frac{3}{n} \times \ln(\ln 3)$	M1*	Subtraction to obtain the difference of two terms
			$= \frac{3}{n} \left(\ln(\ln 6) - \ln(\ln 3) \right) = \frac{3}{n} \ln\left(\frac{\ln 6}{\ln 3}\right)$	A1	
			$\Rightarrow n > \frac{3}{0.001} \ln\left(\frac{\ln 6}{\ln 3}\right) \Rightarrow n > \frac{3}{0.001} \times \ln(1.6309)$	*M1	Dealing with inequality to obtain <i>n</i> dep on first M
			\Rightarrow least $n = 1468$	A1 [4]	Accept $n \ge 1468$ or $n > 1467$
7	(i)		r – _1	B1	B1 for each
Ĺ			x = -1 x = 7	B1	
			v = 1	B1	-1 for any extras
				[3]	

Question	Answer	Marks	Guidance		
7 (ii)	$\frac{dy}{dx} = \frac{(x^2 - 6x - 7)2x - (x^2 + 1)(2x - 6)}{(x + 1)^2(x - 7)^2}$	M1 A1	Diffn using quotient rule	Or expand as partial fractions and use fn of fn rule	
	= 0 when $(x^2 - 6x - 7)2x - (x^2 + 1)(2x - 6) = 0$				
	$3x^2 + 8x - 3 = 0$	A1	Quadratic		
	$\Rightarrow x = -3, \frac{1}{3}; \qquad y = \frac{1}{2}, -\frac{1}{8}$	A1	Both <i>x</i> values	Or: A1 one pair	
	i.e. $\left(-3, \frac{1}{2}\right), \left(\frac{1}{3}, -\frac{1}{8}\right)$	A1	Both <i>y</i> values	A1 other pair	
		[5]			
7 (iii)	When $y = 1$, $x^2 - 6x - 7 = x^2 + 1$	M1			
	$\Rightarrow 6x = -8 \Rightarrow x = -\frac{4}{3} \Rightarrow \left(-\frac{4}{3}, 1\right)$	A1 A1 [3]	Coordinate pair needs to be seen.		
7 (iv)		B1	Left section, cutting asymptote and approaching $y = 1$ from below		
		B 1	Right hand section		
		B1	Middle section all below <i>x</i> -axis labelling intercept on graph or by a statement		
		[3]			

Mark Scheme

(Question	n Answer	Marks	Guidance		
8	(i)	Substitute $r^2 = x^2 + y^2$, $x = r\cos\theta$	M1			
			Al Al			
		$\Rightarrow r^2 - r\cos\theta = r \Rightarrow r = 1 + \cos\theta$	[3]	Cau		
8	(ii)		B1 B1	Cardioid (General shape) Correct shape at pole, $r = 2$ and symmetric	e.g. cusp clearly at pole, vertical tangent at $r = 2$	
	(***)		[2]			
8	(m)	Line cuts curve at $(0, 1)$ and $(2, 0)$	BI			
		Total area = $2 \times \frac{1}{2} \times \int (1 + \cos \theta)^2 d\theta$				
		$= \int_0^{\pi} (1+2\cos\theta + \cos^2\theta) d\theta = \int_0^{\pi} \left(1+2\cos\theta + \frac{1+\cos 2\theta}{2}\right) d\theta$ $= \left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta\right]^{\pi} = \frac{3}{2}\pi$	M1 A1	Formula for area used	Sight of expansion and attempt to integrate	
		area in 1st quadrant = $\frac{1}{2} \times \int_0^{\frac{1}{2}\pi} (1 + \cos\theta)^2 d\theta$				
		$=\frac{1}{2}\left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{1}{2}\pi} = \frac{3}{8}\pi + 1$	A1			
		Area under line in 1st quadrant = 1	M1			
		\Rightarrow Area enclosed by line and curve $=\frac{3}{8}\pi + 1 - 1 = \frac{3}{8}\pi$				
		$\Rightarrow ratio = \left(\frac{3}{2}\pi - \frac{3}{8}\pi\right): \frac{3}{8}\pi = 3:1$	A1	Or ratio 1 : 3		
			[6]			

4729

Question		on	Answer	Marks	Guidance
1	(i)		$(20\sin\theta)^2 - 2g(2.44) = 0$	M1	Use $v^2 = u^2 + 2as$ vertically with $v = 0$
			$\theta = 20.2$	A1	$\theta = 20.22908$
				[2]	
	(ii)		$20\sin\operatorname{cv}(\theta)t - 1/2gt^2 = 0$	M1	Use $s = ut + \frac{1}{2}at^2$ vertically with $s = 0$ OR use $v = u + at$ and doubles t AND
			AND range = $20 \operatorname{cv}(t) \cos \operatorname{cv}(\theta)$		horizontally with time found from vertical. (t = 1.4113 s or 1.4093 s (from 20.2))
			Range = 26.5 m	A1	Range = 26.48541 m or 26.45387m (from 20.2)
				[2]	
		OR	$20^2 \sin(2 \times \operatorname{cv}(\theta))$	M1	Use of range formula
			<u> </u>		
			Range = 26.5 m	A1	Range = 26.48541 m or 26.45387m (from 20.2)
				[2]	
2	(i)			M1	Attempt to use trigonometry to form equation for r
			$r/6 = \tan 21$	A1	
			r = 2.3(0)	A1	r = 2.30318
				[3]	
	(ii)		$\mu < \operatorname{cv}(r)/6 \text{ or } \mu mg \cos 21 < mg \sin 21$	M1	Attempt comparison between weight comp and max friction.
			$\mu < 0.384$ or tan 21	A1	$\mu < 0.38386 \text{ or } 0.38333 \text{ (from 2.3); allow } \leq$
				[2]	
3	(i)		CoM of triangle = $\frac{1}{3} \times cv(12)$ from <i>BD</i>	B1	OR $^{2}/_{3}$ x cv(12) from C. CoM of triangle
				M1	Table of values idea
			$(80 + 60)x_{\rm G} = 4(80) + 12(60)$	AI A1	
			$r_{c} = 7.43 \text{ cm}$	A1 A1	7.42857 or $^{52}/_{2}$ cm
				[5]	
	(ii)		$\tan\theta = (8 - x_{\rm G})/5$	M1	Using tan to find a relevant angle
			$\tan\theta = 0.5714/5$	A1ft	ft their $x_{\rm G}$ to target angle with the vertical
			$\theta = 6.52^{\circ}$	A1	6.5198 Allow 6.5(0) from $x_{\rm G} = 7.43$
				[3]	

4729

(Question	Answer	Marks	Guidance
4	(i)		M1	Moments about P
		$18(10) - T(20\sin\theta) + 3(6) = 0$	A1	Need a value for $\sin\theta$ or θ
		T = 16.5 N	A1	Exact
			[3]	
	(ii)	$X = T \cos \theta$	B1ft	ft candidates value of T. Resolve horizontally ($X = 13.2$ N) or moments; Need
				a value for $\cos\theta$ or θ
			M1	Resolve vertically or moments
		$Y + T\sin\theta - 18 - 3 = 0$	A1ft	ft candidates value of T. Y = 11.1 N; Need a value for $\sin\theta$ or θ
		$R = \sqrt{(13.2^2 + 11.1^2)} = 17.2 \text{ N}$	A1	R = 17.2467
			[4]	
	(iii)	$\mu = cv(Y)/cv(X) = 11.1/13.2$	M1	Use of $Fr = \mu R$
		$\mu = 0.841$	A1	$\mu = 0.8409$; allow ³⁷ / ₄₄
			[2]	
5	(i)	Driving Force = $10000/20$ (= 500)	B1	
			M1	Attempt at N2L with 3 terms
		cv(10000/20) - 1300 + 800gsina = 0	A1	
		$\sin \alpha = 5/49$	A1	AG at least one more line of correct working (at least e.g. $-800+800g\sin\alpha=0$);
				allow verification (e.g. $500 - 1300 + 800 = 0$)
			[4]	
	(ii)	$800(22.1)gsin\alpha$	BI	Work done against weight; Need a value for $\sin \alpha$ or α
			M1	Total work done, 3 terms needed
		$800(22.1)g\sin\alpha + 1300(22.1) + \frac{1}{2}(800)(8^2)$	Al	Need a value for sin α or α ; (72010 J)
		2 (10)	MI	Time = work done(from at least one correct energy term)/power
		t = 3.6(0) s	Al	'Exact' 18 3.6005
			[5]	
6	(1)		*M1	Attempt at use of conservation of momentum
		$(2m)(4) - (3m)(2) = 2mv_A + 3mv_B$		
		()/(A) = 0	*M1	Attempt at use of coefficient of restitution
		$(v_B - v_A)/(42) = 0.4$		Caladian fam. and
		$S_{1} = 104 \text{ m}^{-1} \text{ S}_{1} = 126 \text{ m}^{-1}$		Solving for v_A and v_B
		Speed $A = 1.04 \text{ m/s}^\circ$, Speed $B = 1.36 \text{ m/s}^\circ$		Final answers must be positive
			[0]	
1				

Mark Scheme

(Question		Answer	Marks	Guidance
	(ii)		Energy before = $\frac{1}{2}(2m)(4^2) + \frac{1}{2}(3m)(2^2)$	B1ft	Energy before or Loss in A's KE
			Energy after = $\frac{1}{2}(2m)(1.04^2) + \frac{1}{2}(2m)(1.04^2)$	B1ft	Energy after or Loss in B's KE
			$\frac{1}{2}(3m)(1.30^{-})$	M1	Difference of total OP sum of differences (total kinetic energy must
			22m - 5.850m	1111	decrease)
			18.1 <i>m</i>	A1	18.144 <i>m</i> (Exact)
				[4]	
		OR	1 m.m.	*B1	Loss of kinetic energy formula, where $A = approach$ speed
			$\frac{1}{2}\frac{m_1m_2}{m+m}(1-e^2)A^2$		
			2 m + m2	Den*M1	Substitution of values into quoted formula
			1(2m)(3m)	Dep III	Substitution of values into quoted formalia
			$\frac{1}{2} \frac{(2m)(3m)}{2m+3m} (1-0.4^2)(4+2)^2$	A1	
			18.1 <i>m</i>	A1	18.144 <i>m</i> (Exact)
				[4]	
	(iii)			M1	Attempt at change in momentum and equate to impulse. Must use 2m or 3m
			2m(4) - 2m(-1.04) = 2.52	Alft	$Or \ 3m(2) - 3m(-1.36) = 2.52$
			m = 0.25	Al [2]	Exact
7	(i)			[5] M1	Resolve vertically (3 terms): may be different T 's at this stage
l '	(1)		$T\cos 30 + T\cos 45 = 0.4g$	A1	Resolve vertically (5 terms), may be different 1 's at this stage
			T = 2.49 N	A1	T = 2.4918
				[3]	
	(ii)			M1	Resolve horizontally (3 terms); may be different T 's at this stage
			$cv(T)sin30 + cv(T)sin45 = 0.4v^{2}/0.5$	A1	Or use acceleration = $0.5 \omega^2$
			$v = 1.94 \text{ m s}^{-1}$	Al	v = 1.93904
	(iii)		0.5 0.5	[3]	
			$(2AP =) \frac{0.5}{\sin 45} + \frac{0.5}{\sin 20}$	M1	Reasonable attempt to use trigonometry to find total length of string
			AP = 0.854 m	A1	AG $(AP - 0.85355 \text{ m})$
				[2]	HO (III = 0.05555III)
				[]	
1					

(Question		Answer	Marks	Guidance
	(iv)		$2T\sin\theta = 0.4(0.854\sin\theta)(3.46^2)$	M1	θ angle with vertical. Resolve horizontally. Allow with T only. $r =$
					component of 0.854
			T = 2.04 N	A1	T = 2.04474 N using $AP = 0.854$ m, $T = 2.04367$ N using exact AP
			$2T\cos\theta = 0.4g$	M 1	θ angle with vertical. Resolve vertically. Allow with T only
			$\theta = 16.5^{\circ} \text{ or } 16.6^{\circ}$	A1	$\theta = 16.55377^{\circ}$ using $AP = 0.854$ m, $\theta = 16.4526^{\circ}$ using exact AP
				[4]	SC M1A0M1A1 for use of T instead of 2T throughout
8	(i)		$v_x = 12\cos 20$	*B1	11.27631
			$8 = 12t\cos 20$	B1	Using suvat to find expression in t only. $(t = 0.70945)$
				*M1	Attempt at use of $v = u + at$
			$v_y = 12\sin 20 - gcv(t)$	A1	-2.84838
			$\tan\theta = v_y / v_x$	Dep**M1	Use trig to find a relevant angle
			14.2° below horizontal	A1	14.1763 (75.8° downward vertical)
				[6]	
	(ii)		$8 = Vt\cos 20$	B1	
			_	*M1	Attempt at use of $s = ut + \frac{1}{2} at^2$
			$1.5 = Vt\sin 20 - gt^2/2$	A1	
			Eliminate <i>t</i>	dep*M1	OR Eliminate V and solve for t
			Attempt to solve a quadratic for V	dep*M1	AND Sub value for <i>t</i> and solve for <i>V</i>
			V = 15.9	A1	V = 15.8606
				[6]	
		OR	$y = x \tan \theta - g x^2 \sec^2 \theta / 2u^2$	*B1	Use equation of trajectory
			Substitute values for y, x, θ	dep*M1	
			$1.5 = 8\tan 20 - g8^2 \sec^2 20/2V^2$	A1	
			Attempt to solve a quadratic for V	dep*M2	SC M1 for solving for V^2
			<i>V</i> = 15.9	A1	V = 15.8606
				[6]	