OCR Maths M2

Mark Scheme Pack

2005-2014

$\mathbf{1}$	(i)	use of $\mathrm{h} / 4$	B1			
		com vert above lowest pt of contact	B1		can be implied	
		$\mathrm{r}=5 \times \tan 24^{\circ}$	M1			
		$\mathrm{r}=2.2$	A1	4	2.226	
	(ii)	No \& valid reason $\left(\mathrm{eg} 24^{\circ} 326.6^{\circ}\right)$	B1 $\sqrt{ }$	1	$\sqrt{ }$ Yes if their $\mathrm{r} \bullet 2.5$	$\mathbf{5}$

$\mathbf{2}$		$\mathrm{v}^{2}=2 \times 9.8 \times 10$	M1		${\text { energy } 1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{mu}}^{2}+\mathrm{mgh}$	
		$\mathrm{v}=14$	A1		$1 / 2 \mathrm{v}^{2}=1 / 2.36+9.8 \times 10$	
		speed $=\sqrt{ }\left(14^{2}+6^{2}\right)$	M1		$\left(\right.$ must be $\left.6^{2}\right) \mathrm{v}^{2}=36+196=232$	
		speed $=15.2 \mathrm{~ms}^{-1}$	A1			
		$\tan \theta=14 / 6$	M1		$\cos ^{-1}(6 / 15.2)$ etc	
		$\theta=66.8^{\circ}$ (below) horiz.	A1	6	or 23.2° to the vertical	$\mathbf{6}$

$\mathbf{3}$	(i)	Tcos $\theta=0.01 \times 9.8$	M1		resolving vertically	
		$8 / 10 \mathrm{~T}=0.01 \times 9.8$	A1		with $\cos \theta=8 / 10$	
		$\mathrm{~T}=0.1225 \mathrm{~N}$	A1	3	AG	
	(ii)	$\mathrm{T}+\mathrm{T} \sin \theta=\mathrm{ma}$	M1		resolving horizontally	
		use of $\mathrm{mr} \omega^{2}$	M1			
		$\omega=5.72 \mathrm{rads}^{-1}$	A1	3		
	(iii)	K.E. $=1 / 2 \times 0.01 \times(\mathrm{r} \omega)^{2}$	M1		$1 / 2 \mathrm{mv}^{2}$ with v=rw	
		K.E. $=0.0588$	A1 $\sqrt{ }$	2	$\int_{0.0018 \times \text { their } \omega^{2}}$	$\mathbf{8}$

4	(i)	$5 \mathrm{~m}=\mathrm{mu}+4 \mathrm{~m}$	M1		cons. of mom.	
		$\mathrm{u}=1$	A1			
		$\mathrm{e}=(2-1) / 5$	M1			
		$\mathrm{e}=$ 暈	A1	4		
	(ii)	$\mathrm{I}=4 \mathrm{~m}$	B1			
		\rightarrow	B1	2	to the right	
	(iii)	$4 \mathrm{~m}=5 \mathrm{mv}$	M1			
		$\mathrm{v}=\mathrm{F}^{-}$	A1			
		¢ <1	B1	3		9

5	(i)	$60 \mathrm{~T}=15 \times 30 \cos \theta$	M1		moments about A	
		"	A1			
		$60 \mathrm{~T}=15 \times 30 \times 0.6$	A1		$\cos \theta=0.6$	
		$\mathrm{T}=4.5 \mathrm{~N}$	A1	4	AG	
	(ii)	$\mathrm{X}=\mathrm{Tsin} \theta$	M1		res. horiz. (or moments)	
		$\mathrm{X}=3.6 \mathrm{~N}$	A1			
		$\mathrm{Y}+\mathrm{T} \cos \theta=15$	M1		res. vert.(3 terms) (or moments)	
		$\mathrm{Y}=12.3 \mathrm{~N}$	A1			
		$\mathrm{R}=12.8 \mathrm{~N}$	A1 $\sqrt{ }$		$\int\left(\right.$ their $\mathrm{X}^{2}+\mathrm{Y}^{2}$)	
		73.7° to horizontal	A1 $\sqrt{ }$	6	or 16.3° to vert. $\int \tan ^{-1}$ their(Y/X)	10
		or triangle of forces: Triangle (M1) $\mathrm{R}^{2}=15^{2}+4.5^{2}-2 \times 4.5 \times 15 \times 0.6$ (M1A1) $\mathrm{R}=12.8$ (A1) $\sin \theta / 4.5=\sin \alpha / 12.8$ (M1) $\theta=16.3^{\circ}$ to vert. (A1)				

6	(i)	$1 / 2.700 .20^{2}$ or $1 / 2.700 .15^{2}$	B1		either K.E.	
		$700 \times 9.8 \times 400 \sin 5^{\circ}$	B1		correct P.E.	
		$\begin{aligned} & 1 / 2.700 \cdot 15^{2}+700.9 .8 \cdot 400 \sin 5^{\circ}= \\ & 1 / 2.700 \cdot 20^{2}+\text { W.D. } \end{aligned}$	M1		for 4 terms with W.D.	
		W.D. $=178,000 \mathrm{~J}$	A1	4	or 178 kJ	
	(ii)	$\mathrm{D}=200+700.9 .8 \mathrm{sin} 5^{\circ}$	M1			
		$\mathrm{D}=798 \mathrm{~N}$	A1		may be implied	
		$\mathrm{P}=\mathrm{Dx} 15=12,000=12 \mathrm{~kW}$	A1	3	AG (11,968W)	
	(iii)	D' $=11,968 \div 20=598$	M1			
		D'-700.9.8sin ${ }^{\circ}-200=700 \mathrm{a}$	M1			
		$\mathrm{a}=0.285 \mathrm{~ms}^{-2} \quad \pm$)	A1	3	allow 0.283 (from 12kW)	10
		Alternative for false assumption			of constant acceleration	
	(i)	D-700 $\times 9.8 \sin 5^{\circ}=700 \mathrm{a}$ and $15^{2}=20^{2}+2 \mathrm{a} .400$	M1		($\mathrm{D}=445, \mathrm{a}=-0.21875$)	
		W.D. $=400 \mathrm{xD}=178,000$	A1		2 marks (out of 4) maximum	

7	(i)	$50 \mathrm{x} 9.8 \times 2=\mathrm{Rx} 3.75+80 \mathrm{x} 9.8 \times 0.25$	M1		moments about D.	
		"	A1		$\begin{aligned} & \text { SR/no g/ R = } 21.3 \\ & \text { (M1A1A0) } \end{aligned}$	
		$\mathrm{R}=209 \mathrm{~N}$	A1	3		
	(ii)	$130 \bar{x}=50 \times 2+80 \times 4.25$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		$\begin{array}{\|l} \hline \text { moments about BC or } \\ \text { FE..... } \\ 130 \bar{x}=80 \times 0.25+50 \times 2.5 \\ \hline \end{array}$	
		$\bar{x}=3.385$	A1		$\bar{x}=1.115$	
		$130 \bar{y}=50 \times 0.125+80 \times 0.25$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		moments about EC	
		$\bar{y}=0.202$	A1			
		$\tan \theta=0.615 / 0.202$	M1			
		$\theta=71.8^{\circ}$ to the horizontal	A1	8	71.6° to 72.0°	11

8	(i)	$\mathrm{x}=49 \cos \theta . \mathrm{t}$	B1				
		$\mathrm{y}=49 \sin \theta . \mathrm{t}-1 / 2.9 .8 . \mathrm{t}^{2}$	B1				
		$\mathrm{y}=\mathrm{xtan} \theta-4.9 \mathrm{x}^{2} / 49^{2} \cdot \cos ^{2} \theta$	$\begin{aligned} & \mathrm{M} \\ & 1 \end{aligned}$		aef (eliminating t)		
		$\mathrm{y}=\mathrm{xtan} \theta-\mathrm{x}^{2}\left(1+\tan ^{2} \theta\right) / 490$	A1	4	AG		
	(ii)	$30=70 \tan \theta-10\left(1+\tan ^{2} \theta\right)$	M 1				
		$\tan \theta=(70 \pm \sqrt{ } 3300) \div 20$	$\begin{aligned} & \mathrm{M} \\ & 1 \\ & \hline \end{aligned}$		(6.37/0.628)		
		81.1°	A1		θ_{1} or θ_{2}		
		$32.1{ }^{\circ}$	A1	4	"		
	(iii)	$\mathrm{x}^{2}\left(1+\tan ^{2} \theta\right) / 490=x \tan \theta$	$\begin{aligned} & \hline \mathrm{M} \\ & 1 \\ & \hline \end{aligned}$		set $\mathrm{y}=0$		
		$\mathrm{x}=490 \tan \theta /\left(1+\tan ^{2} \theta\right)$	A1				
		$\mathrm{x}=75.0$	A1				

$\mathbf{1}$		$\tan \theta=1 / 3 \quad\left(\theta=18.4^{\circ}\right.$ at B$)$	B 1		71.6° at C	
		$3 \times \mathrm{T} \sin \theta=20 \times 1.5$ have two distances and no g must	M 1		$\mathrm{M}(\mathrm{A})(\mathrm{d}=3 / \sqrt{10})$	
		A1			$\mathbf{4}$	
	$\mathrm{T}=31.6 \mathrm{~N}$	A 1	4			

2	(i)	$0=50 \sin 25^{\circ} \mathrm{t}-4.9 \mathrm{t}^{2}$	M1		or $0=50 \sin 25^{\circ}-9.8 t$ \& $2 \mathrm{t}: 2 \mathrm{x} 2.16$	
			A1			
		$\mathrm{t}=4.31 \mathrm{~s}$	A1	3		
	(ii)	$\mathrm{d}=50 \cos 25^{\circ} \times 4.31$	M1		or $\mathrm{u}^{2} \sin \left(2 \mathrm{x} 25^{\circ}\right) / \mathrm{g}$	
		195 m	A1/	2	$\int 50 \cos 25^{\circ} \mathrm{x}$ their t	5

3	(i)a	100 J	B1	1		
	b	7500 Nm	B1	1		
	(ii)	$\begin{aligned} & 400 \cos \alpha \times 25=7500+100 \\ & V_{\text {for }}=\mathrm{a}+\mathrm{b} \end{aligned}$	M1		sc N II gets M1A1only.This M1 for total M ($\mathrm{a}=0.08$)\&A1for α	
			A1/			
		$\alpha=40.5$	A1	3	or 0.707 rads	5

4	(i)	horiz comps in opp direct	B1		at E \& F	
		Right at E + Left at F	B1	2		
	(ii)	$\begin{aligned} & 1.6 \times 9.8 \times 30=20 \mathrm{X} \text { or } \\ & 0.5 \times 30 \mathrm{~g}+0.7 \mathrm{x} 30 \mathrm{~g}+ \\ & 0.2 \mathrm{x} 60 \mathrm{~g}=20 \mathrm{X} \\ & \hline \end{aligned}$	M1		or $10 \mathrm{X}+1.6 \mathrm{gx} 30=30 \mathrm{X} \quad \mathrm{M}(\mathrm{A})$	
			A1		or $10 \mathrm{X}+(\ldots=470.4)=30 \mathrm{X} \quad \mathrm{M}$ mark ok without g but 3 parts	
			A1	3		
-	(iii)	$\begin{aligned} & 1.6 \bar{y}= \\ & 20 \times 0.2+20 \times 0.2+40 \times 0.5 \end{aligned}$	M1		must be moments with vert dists	
			A1		or $1.6 \bar{y}=20 \times 0.2 \times 2+40 \times 0.7(22.5)$	
		$\bar{y}=17.5 \mathrm{~cm}$	A1	3		8

5	(i)	$6 \mathrm{~m}=3 \mathrm{mx}+2 \mathrm{my}$	M1		- 3mx ok if clear on diagram	
		$6=3 x+2 y$	A1		m must have been cancelled	
		$\mathrm{e}=1=(\mathrm{y}-\mathrm{x}) / 2$	M1		or $1 / 2.3 \mathrm{~m} .2^{2}=1 / 2.3 \mathrm{mx}^{2}+1 / 2.2 \mathrm{my}^{2}$	
			A1		$6=3 x^{2} / 2+y^{2} \quad$ aef	
		$x=0.4$ or $2 / 5$	A1		sc A1A0 if $\mathrm{x}=2, \mathrm{y}=0$ not rejected	
		$\mathrm{y}=2.4$ or $12 / 5$	A1	6		
	(ii)	4.8 m or $24 \mathrm{~m} / 5$	B1 $\sqrt{ }$		$\int 2 \mathrm{mx}$ their y or 3 m (2-their x)	
		same as original dir. of A	B1	2	use their diagram(or dir. of B)	
	(iii)	$\mathrm{e}=(2.8-1.0) / 2.4$	M1			
		0.75 watch out for \pm fiddles	A1 $\sqrt{ }$	2	$\int_{(1.8 / t h e i r ~ y) ~ w i t h ~} 0$ B e $\otimes 1$	10

6	(i)	$\mathrm{x}=7 \mathrm{t}$	B1			
		$\mathrm{y}=-4.9 \mathrm{t}^{2}$ or $-1 / 2 \mathrm{gt}^{2}$	M1		some attempt at vertical motion	
			A1		$\begin{aligned} & \text { sc } \mathrm{y}=\mathrm{xtan} \theta-\mathrm{gx}^{2} /\left(2 \mathrm{~V}^{2} \cos ^{2} \theta\right) \\ & \text { with } \theta=0 \mathrm{M} 1 \text { then } \mathrm{A} 1(\max =2) \end{aligned}$	
		$\mathrm{y}=-\mathrm{x}^{2} / 10 \mathrm{AG}$ (no fiddles)	A1	4		
	(ii)	$-20=-x^{2} / 10$	M1		or $\mathrm{t}=\sqrt{(20 / 4.9)}$ \& $\mathrm{x}=7 \mathrm{t}$	
		14.1 m	A1	2	sc B1 for 14.1 after wrong work	
	(iii)	$\begin{aligned} & 1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{~m} 7^{2}+\mathrm{mgx} 20 \quad \text { n.b. } \mathrm{v}^{2}=\mathrm{u}^{2} \\ & +2 \text { as gets M0 } \end{aligned}$	M1		OR $\mathrm{V}_{\mathrm{h}}=7$ (B1)	
			A1		$\mathrm{v}_{\mathrm{v}}= \pm 19.8$ (B1) $14 \sqrt{2,2} \sqrt{ } 98$ etc	
		$\mathrm{v}=21 \mathrm{~ms}^{-1}$	A1		$\mathrm{v}=21$ (B1)	
		$\mathrm{dy} / \mathrm{dx}=-2 \mathrm{x} / 10 \& \tan \theta$	M1		$\begin{aligned} & \text { OR } \quad \tan \theta=19.8 / 7 \text { or } \\ & \cos \theta=7 / 21 \text { or } \sin \theta=19.8 / 21 \end{aligned}$	
			A1			
		70.5° to horizontal	A1	6	or $19.5{ }^{\circ}$ to vertical	12

7	(i)	$\mathrm{F}=300 / 12$	M1			
		$\mathrm{R}=25$	A1	2		
	(ii)	$\mathrm{P}=17.5 \times 12 \quad\left(\mathrm{R}_{2}=17.5 \& \mathrm{~F}_{2}=17.5\right)$	M1		n.b. B1 only for 210 W	
		$\mathrm{P}=210 \mathrm{~W}$	A1	2	without working	
	(iii)	$500=$ Fx12	M1			
		$\mathrm{F}=41.67$ or 500/12 aef	A1			
		$41.67-25-75 \times 9.8 \sin 1^{\circ}=75 \mathrm{a}$	M1			
			A1			
		$0.0512 \mathrm{~ms}^{-2}$	A1	5	or 0.051	
	(iv)	$\mathrm{PE}=75 \times 9.8 \times 200 \sin 10^{\circ}$ (25530)	B1		OR $75 \times 9.8 \sin 10^{\circ}-120=75 a$	
		$\mathrm{WD}=200 \mathrm{x} 120$	B1		(M1 + A1)	
		$1 / 2.75 \mathrm{v}^{2}=$	M1		$\mathrm{a}=0.102$ (A1)	
		$1 / 2.75 .13^{2}+75 \times 9.8 \times 200 \sin 10^{\circ}-200.120$	A1		$\mathrm{v}^{2}=169+2 \mathrm{x} 0.102 \mathrm{x} 200$ (M1)	
		$14.5 \mathrm{~ms}^{-1}$	A1	5	$\mathrm{v}=14.5$	14

8	(i)	$\mathrm{R} \cos 30^{\circ}=0.1 \times 9.8$	M1		resolving vertically	
			A1			
		$\mathrm{R}=1.13 \mathrm{~N}$	A1	3		
	(ii)	$\mathrm{r}=0.8 \cos 30^{\circ}=0.693$ or $2 \sqrt{ } 3 / 5$	B1		may be implied	
		$R \cos 60^{\circ}=0.1 \times 0.693 \omega^{2}$	M1		or $0.1 \mathrm{v}^{2} / \mathrm{r}$ \& $\omega=\mathrm{v} / \mathrm{r}$	
			A1			
		$\omega=2.86$	A1	4		
	(iii)	$\mathrm{T}=1.96 \mathrm{~N}$	B1	1		
	(iv)	$R \cos 30^{\circ}=\mathrm{T} \cos 60^{\circ}+0.1 \mathrm{x} 9.8$	M1			
			A1			
		$\mathrm{R}=2.26 \mathrm{~N}$	A1			
		$\mathrm{R} \cos 60^{\circ}+\mathrm{T} \cos 30^{\circ}=0.1 \mathrm{x} \mathrm{v}^{2} / \mathrm{r}$	M1		or mr ω^{2} \& use of $\mathrm{v}=\mathrm{r} \omega$	
			A1		with $\mathrm{R}=1.13$ can get M 1 only	
		$4.43 \mathrm{~ms}^{-1}$	A1	6		14
or	(iv)	$\begin{aligned} & \text { LHS (or RHS) } \\ & \mathrm{T}+0.1 \mathrm{x} 9.8 \cos 60^{\circ} \end{aligned}$	M1*		method without finding R i.e. resolving along PA	
			A1			
		$\begin{aligned} & \text { RHS (or LHS) } \\ & 0.1 \times \mathrm{v}^{2} / \mathrm{r} x \cos 30^{\circ} \end{aligned}$	M1*			
			A1		r to be $0.8 \cos 30^{\circ}$ for A1	
		solve to find v	M1*		depends on 2* Ms above	
		$4.43 \mathrm{~ms}^{-1}$	A1	(6)		

1		$\begin{aligned} & \mathrm{mgh}=35 \times 9.8 \times 4 \\ & \mathrm{mgh} / \mathrm{t}=1372 / 10 \\ & 137 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	watch out for extras or 0.137 kW	4
2		$\begin{aligned} & v^{2}=2 \mathrm{gh} \\ & u=\sqrt{ } 4 \mathrm{~g} \text { or } \sqrt{ } 39.2 \text { or } 6.26 \\ & v=\sqrt{ } .8 \mathrm{~g} \text { or } \sqrt{ } 27.44(5.24) \\ & \mathrm{I}=\mathbf{P} 0.3(6.26+5.24) \\ & 3.45 \mathrm{Ns} \end{aligned}$	M1 A1 A1 M1 A1.	5	kinematics or energy speed of impact (\pm) speed of rebound (\pm) must be sum of mags. of vels. \checkmark must be positive	2 5
3	(i)	$\begin{aligned} & \mathrm{d}=2.25 \\ & \mathrm{~h}=1.125 \text { or } 1.12 \text { or } 1.13 \\ & \text { or } 9 / 8 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	3/8x6 OG (be generous) horizontal distance	
	(ii)	$$ $\text { above } V \text { depends on at leas }$	M1 M1 A1 A1 A1/ one	5	if not then next M1 ok or $\operatorname{mom}(A) \mathrm{T}_{2} \times 6 \cos 30^{\circ}=$ $12\left(6 \cos 30^{\circ}-\mathrm{h}\right)$ or $\mathrm{T}_{2}=9.40$ or $T_{1}=2.60$ or $\int\left(12-T_{2}\right)$ M marks ($\mathrm{T}_{\mathrm{s}}>0$)	7
4	(i)	$\mathrm{P}=13500 \mathrm{~W}$	B1.	1	or 13.5 kW	
	(ii)	$\begin{aligned} & 500=13500 / \mathrm{v} \\ & \mathrm{v}=27 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2		
	(iii)	$\begin{aligned} & 15000 / 25-500=950 a \\ & a=0.105 \text { or } 2 / 19 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	2 parts to F A0 for 900a or 100/950	
	(iv)	$\begin{aligned} & 15000 / 26-500 \\ & 950.9 .8 \sin 5^{\circ}=950 a \\ & \mathrm{a}=(-) .773 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	3 parts to F A0 for 900a s.c. accept 0.77	9
5	(i)	$\begin{aligned} & \bar{x}=9 \\ & \mathrm{c} \text { of } \mathrm{m} \text { of } \Delta 4 \mathrm{~cm} \text { above BD } \\ & (324+108)(\mathrm{m}) \bar{y}= \\ & 324(\mathrm{~m}) \times 9+108(\mathrm{~m}) \times(18+4) \\ & 432 \bar{y} \\ & 324 \times 9 \quad\left(18^{2} \times 9\right) \\ & 108 \times(18+4) \\ & \bar{y}=12.25 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \\ & \mathrm{A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	7	ignore any working 8 cm below C/see their diagram $432 \bar{y}=108 \times 8+18^{2}(12+9)$ from C left hand side $1^{\text {st }}$ term on right hand side 2916 $2^{\text {nd }}$ term on right hand side 2376 5292 $\div 432$ or 49/4	
	(ii)	$\begin{aligned} & \tan \theta=5.75 / 9 \\ & \theta=32.6^{\circ} \text { or } 147.4^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \delta \end{aligned}$	2	$\begin{aligned} & \text { must be .../9 } \\ & \tan ^{-1}((18-\text { their } \bar{y}) / 9) \text { or } 180^{\circ} . \end{aligned}$	9

± 1 in $3^{\text {rd }}$ sig. fig. except where stated

$\mathbf{1}$		com directly above lowest point	B1			
		$\tan \alpha=6 / 10$	M1			
		$\alpha=31.0$	A1	3	or 0.540 rads	$\mathbf{3}$

$\mathbf{2}$		$\mathrm{e}=1=(y-x) / 4$	B 1		or $1 / 2 \times 0.2 x^{2}+1 / 2 \times 0.1 y^{2}=$	
		$0.8=0.2 x+0.1 y$	B1		$1 / 2 \times 0.2 \times 4^{2}(\mathrm{~B} 1 / \mathrm{B} 1$ for any 2$)$	
		solving sim. equ.	M1		not if poor quad. soln.	
		$x=4 / 3$ only	A1	4		$\mathbf{4}$

$\mathbf{3}$	(i)	$x^{2}=21^{2}+2 \times 40 \times 9.8$	M1			
		$x=35$	A1			
		$0=y^{2}-2 \times 40 \times 9.8$	M1			
		$y=28$	A1		may be implied	
		$\mathrm{e}=28 / 35$	M1			
		$\mathrm{e}=0.8$	A1	6	aef	
	(ii)	$0.2 \times 28--0.2 \times 35$	M1		must be double negative	
		$\mathrm{I}=12.6$	A1	2		$\mathbf{8}$

$\mathbf{4}$	(i)	$1 / 2 \times 80 \times 5^{2}$ or $1 / 2 \times 80 \times 2^{2} \quad$ either KE	B1		$1000 / 160$	
		70×25	B1		1750	
		$80 \times 9.8 \times 25 \sin 20^{\circ}$	B1		6703.6	
		$\mathrm{WD}=1 / 2 \times 80 \times 5^{2}-1 / 2 \times 80 \times 2^{2}+70 \times 25+80 \times 9.8 \times 25 \sin 20^{\circ}$	M1		4 parts	
		9290	A1	5		
	(ii)	Pcos30 $\times 25$	B1		or a=0.42	
		Pcos $30^{\circ} .25=9290 / \operatorname{Pos} 30^{\circ}-70-80 \times 9.8 \sin 20^{\circ}=80 \mathrm{a}$	M1			
		P $=429 /$ if P found $1^{\text {st }}$ then $\operatorname{Pcos} 30^{\circ} \times 25=9290$ ok	A1	3		$\mathbf{8}$

$\mathbf{5}$	(i)	$\mathrm{D}=3000 / 5^{2}=120$	M 1			
			A1	2	AG	
	(ii)	$120-75=100 \mathrm{a}$	M1			
		$\mathrm{a}=0.45 \mathrm{~ms}^{-2}$	A1	2		
	(iii)	$100 \times 9.8 \times 1 / 98$	B1		weight component	
		$3000 / \mathrm{v}^{2}=3 \mathrm{v}^{2}+100 \times 9.8 \times 1 / 98$	M1			
		$3000=3 \mathrm{v}^{4}+10 \mathrm{v}^{2}$	A1		aef	
		solving quad in v^{2}	M1		$\left(\mathrm{v}^{2}=30\right)$	
		$\mathrm{v}=5.48 \mathrm{~ms}^{-1}$	A1	5	accept $\sqrt{30}$	$\mathbf{9}$

6	(i)	com of $\Delta 4 \mathrm{~cm}$ right of C	B1			
		$1.5 \times 10+7 \times 20=\bar{X} \times 30$	M1			
			A1			
		$\bar{X}=5.17$	A1		$51 / 6$ 31/6	
		com of $\Delta 6 \mathrm{~cm}$ above E	B1		or 3 cm below C	
		$4.5 \times 10+6 \times 20=\bar{y} \times 30$	M1			
			A1			
		$\bar{y}=5.5$	A1	8		
	(ii)	$\tan \theta=5.17 / 3.5$	M1		right way up and (9- \bar{y})	
		55.9° or 124°	A1/	2	\int their $\bar{x} /(9-\bar{y})$	
	(iii)	$\mathrm{d}=15 \sin 45^{\circ} \quad(10.61)$	B1		dist to line of action of T	
		$\mathrm{Td}=30 \times 5.17$	M1		allow Tx15 i.e. T vertical	
		$\mathrm{T}=14.6$	A1	3		13

7	(i)	Tsin 30°	B1			
		Tsin $30^{\circ}=0.3 \times 0.4 \times 2^{2}$	M1		resolving horizontally	
			A1			
		$\mathrm{T}=0.96$	A1	4		
	(ii)	$\mathrm{R}+\mathrm{T} \cos 30^{\circ}=0.3 \times 9.8$	M1		resolving vertically	
			A1			
		$\mathrm{R}=2.11$	Al^{1}	3	\int their T (2.94-T $\left.\cos 30^{\circ}\right)$	
	(iii)	$\mathrm{T}_{1} \sin 30^{\circ}=0.3 \mathrm{x} \mathrm{v}^{2} / 0.4$	M1		or $0.3 \times 0.4 \times \omega^{2}$	
			A1		$\left(\mathrm{T}_{1}=1.5 \mathrm{v}^{2}\right)$	
		$\mathrm{T}_{1} \cos 30^{\circ}=0.3 \times 9.8$	B1		($\mathrm{T}_{1}=1.96 \sqrt{3}=3.3948$)	
		$\mathrm{R}=0$	B1		may be implied or stated	
		$\tan 30^{\circ}=\mathrm{v}^{2} /(0.4 \times 9.8)$ for elim of T_{1}	M1		and $\mathrm{v}=0.4 \omega \quad(\omega=3.76)$	
		$\mathrm{v}=1.50$	A1	6		13

8	(i)	$\mathrm{v}_{\mathrm{v}}=42 \sin 30^{\circ}(=21)$	B1			
		$0=21^{2}-2 \times 9.8 \times h$	M1			
		$\mathrm{h}=22.5$	A1	3		
	(ii)	$\mathrm{v}_{\mathrm{h}}=42 \cos 30^{\circ}(=36.4)$	B1			
		$\mathrm{v}_{\mathrm{v}}= \pm \mathrm{v}_{\mathrm{h}} \mathrm{x} \tan 10^{\circ}$	M1			
		$\mathrm{v}_{\mathrm{v}}= \pm 6.41$ or $21 \sqrt{ } 3 \tan 10^{\circ}$	A1		or 42cos $30^{\circ} \cdot \tan 10^{\circ}$	
		$-6.41=42 \sin 30^{\circ}-9.8 \mathrm{t}$	M1	**	must be -6.41(also see "or" x 2)	
		$\mathrm{t}=2.80$	A1	**		
		$y=42 \sin 30^{\circ} \times 2.8-4.9 \times 2.8^{2}$	M1	**		
		$y=20.4$	Al^{1}	**	\int their t	
		$x=42 \cos 30^{\circ} \times 2.80$	M1			
		$x=102$	A1/		\int their t	
		$\sqrt{\left(x^{2}+y^{2}\right)}$	M1			
		$d=104$	A1	11		
	or	$6.41^{2}=21^{2}+2 \times-9.8 \mathrm{~s}$	M1	**	vert dist first then time	
		s = 20.4	A1	**		
		$20.4=21 \mathrm{t}+1 / 2 .-9.8 \mathrm{t}^{2}$	M1	**		
		$\mathrm{t}=2.80$	A1	**		
	or	$22.5-\mathrm{s}$ and $6.41^{2}=2 \times 9.8 \mathrm{~s}$	M1	**	dist from top (s = 2.096)	
		$y=20.4$	A1	**		
		22.5 \& $2.1=1 / 2.9 .8 t^{2}$	M1	**	$\begin{aligned} & \text { 2 separate times }(2.143, \\ & 0.654) \end{aligned}$	
		$\mathrm{t}=2.80$	A1	**	$2.143+0.654$	14
		alternatively				
	(ii)	$y=x / \sqrt{3}-x^{2} / 270$ aef	B1		$\begin{aligned} & y=x \tan 30^{\circ}- \\ & 9.8 x^{2} / 2.42^{2} \cdot \cos ^{2} 30^{\circ} \end{aligned}$	
		$\mathrm{d} y / \mathrm{d} x=1 / \sqrt{3}-x / 135$	M1		for differentiating	
			A1		aef	
		$\mathrm{d} y / \mathrm{d} x=-\tan 10^{\circ}$	M1		must be $-\tan 10^{\circ}$	
		$1 / \sqrt{3}-x / 135=-\tan 10^{\circ}$	A1			
		solve for x	M1			
		$x=102$	A1/		\int on their dy/dx	
		$y=x / \sqrt{3}-x^{2} / 270$	M1			
		$y=20.4$	Al^{\prime}		\int their x	
		$\sqrt{\left(x^{2}+y^{2}\right)}$	M1			
		$d=104$	A1	(11)		

$\mathbf{1}$	$40 \cos 35^{\circ}$	B1	
	WD $=40 \cos 35^{\circ} \times 100$	M1	
	3280 J	A1 $\mathbf{3}$	ignore units

$\mathbf{2}$	$0=12 \sin 27^{\circ} \mathrm{t}-4.9 \mathrm{t}^{2}$ any correct.	M1	or $\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}(\mathrm{B} 2)$
	$\mathrm{t}=1.11 \ldots . \mathrm{method}$ for total time	A1	correct formula only
	$\mathrm{R}=12 \cos 27^{\circ} \mathrm{xt}$	M1	$12^{2} \mathrm{x} \sin 54^{\circ} / 9.8$ sub in values
	11.9	A1 $\mathbf{4}$	11.9

$\mathbf{3}$ (i)	WD $=1 / 2 \times 250 \times 150^{2}-1 / 2 \times 250 \times 100^{2}$	M1	
	1560000	A1	1562500
	$450000=1560000 / \mathrm{t}$	M1	
	3.47	A1 4	
(ii)	F $=450000 / 120$	M1	
	3750	A1	
	$3750=250 \mathrm{a}$	M1	
	$15 \mathrm{~ms}^{-2}$	A1 $\mathbf{4}$	

$\mathbf{4}$ (i)	$x=7 \mathrm{t}$	B1	
	$y=21 \mathrm{t}-4.9 \mathrm{t}^{2}$	M1	or $-\mathrm{g} / 2$
		A1	
	$y=21 . x / 7-4.9 x^{2} / 49$	M1	
	$y=3 x-x^{2} / 10$	A1 $\mathbf{5}$	AG
(ii)	$-25=3 x-x^{2} / 10$ (must be -25)	M1	or method for total time (5.26)
	solving quadratic	M1	or $7 \times$ total time
	36.8 m	A1 $\mathbf{3}$	

5(i)	$1 / 2.70 .4^{2}$	M1	
	560 J	A1 2	
(ii)	$70 \times 9.8 \times 6$	M1	
	4120	A1 2	4116
(iii)	60 d	B1	
	$8000=560+4120+60 \mathrm{~d}$	M1	4 terms
		A1 \boldsymbol{J} their KE and PE	
	55.4 m	A1 $\mathbf{4}$	

6 (i)	$5 \cos 30^{\circ}=0.3 \times 9.8+S \cos 60^{\circ}$	M1	res. vertically (3 parts with comps)
		A1	
	2.78 N	A1 3	
(ii)	$\mathrm{r}=0.4 \mathrm{sin} 30^{\circ}=0.2$	B1	may be on diagram
	$5 \sin 30^{\circ}+\operatorname{Ssin} 60^{\circ}=0.3 \times 0.2 \times \omega^{2}$	M1	res. horizontally (3 parts with comps)
	$9.04 \mathrm{rads}^{-1}$	A1 3	
(iii)	$\mathrm{v}=0.2 \times 9.04$	M1	or previous v via $\mathrm{mv}^{2} / \mathrm{r}$
	$\mathrm{KE}=1 / 2 \times 0.3 \times(0.2 \times 9.04)^{2}$	M1	
	0.491 J or 0.49	$\mathrm{A}_{1} 3$	\boldsymbol{f} their $\omega^{2} \times 0.006$

7 (i)	$1.8=-0.3+3 \mathrm{~m}$	M1	
	$\mathrm{m}=0.7$	A 12	AG
(ii)	$\mathrm{e}=4 / 6$	M1	accept 2/6 for M1
	$2 / 3$	A1 2	accept 0.67
(iii)	$\pm 3 \mathrm{f}$	B1	
	$1 / 3$ 3 $\mathrm{f}(\mathrm{Q} 1)$	B1 2	
(iv)	$\mathrm{I}=3 \mathrm{f} \times 0.7--3 \times 0.7$	M1	ok for only one minus sign for M1
		A1	
	$\mathrm{I}=2.1(\mathrm{f}+1)$	A1 3	aef 2 marks only for $-2.1(\mathrm{f}+1)$
(v)	$0.3+6.3 / 4=0.3 a+0.7 b$	M1	can be $-0.7 b$
	$3 a+7 b=18.75$	A1 $*$	aef
	$2 / 3=(a-b) / 5 / 4$	M1	allow e=3/4 or their e for M1
	$3 a-3 b=5 / 2$	A1 $*$	aef $*$ means dependent.
	solve	M1	
	$a=2.5$	A1	(2.46) allow $\pm(59 / 24)$
	$b=1.6$	A1 7	(1.625) allow $\pm(13 / 8)$

8 (i)	com of hemisphere 0.3 from O	B1	or 0.5 from base	
	com of cylinder $\mathrm{h} / 2$ from O	B1		
	$0.6 \times 45=40 \times 0.5+(0.8+h / 2) \times 5$ or	M1	or $40 \times 0.3-5 \times \mathrm{xh} / 2=45 \times 0.2$	
	$45(\mathrm{~h}+0.2)=5 \mathrm{~h} / 2+40(\mathrm{~h}+0.3)$	A1	or $5(0.2+\mathrm{h} / 2)=40 \times 0.1$	
	$27=20+(0.8+h / 2) \times 5$	M1	solving	
	$h=1.2$	A1 6	AG	
(ii)	1.2 T	B1		
	0.8 F	B1		
	$0.8 \mathrm{~F}=1.2 \mathrm{~T}$	M1		
	$\mathrm{F}=3 \mathrm{~T} / 2$	A1 4	aef	
(iii)	$\mathrm{F}+\mathrm{T} \cos 30^{\circ}$	B1	or $45 \times 0.8 \sin 30^{\circ}$	
	$45 \sin 30^{\circ}$ must be involved in res.	B1	$\mathrm{Tx}\left(1.2+0.8 \cos 30^{\circ}\right)$	
	resolving parallel to the slope	M1	mom. about point of contact	
	$\mathrm{F}+\mathrm{T} \cos 30^{\circ}=45 \sin 30^{\circ} \quad$ aef	A1	$45.0 .8 \sin 30^{\circ}=\mathrm{T}\left(1.2+0.8 \cos 30^{\circ}\right)$	
	$\mathrm{T}=9.51$	A1		
	$\mathrm{F}=14.3$	A1 6		16
or	$\mathrm{T}+\mathrm{Fcos} 30^{\circ}=\mathrm{Rsin} 30^{\circ}$	B1	res. horizontally	
(iii)	$\mathrm{Rcos} 30^{\circ}+\mathrm{Fsin} 30^{\circ}=45$	B1	res. vertically	
	$\tan 30^{\circ}=\left(\mathrm{T}+\mathrm{Fcos} 30^{\circ}\right) /\left(45-\mathrm{Fsin} 30^{\circ}\right)$	M1	eliminating R	

4729 Mechanics 2

$\mathbf{1}$ (i)	$12 \times \cos 55^{\circ}$ $6.88 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 2		
(ii)	$12 \times \cos 55^{\circ} \times 0.65$ $(\pm) 4.47 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 2	$J_{0.65 \times \text { their (i) }}$	$\mathbf{4}$

$\mathbf{2}$	$\mathrm{F}=0.2 \mathrm{mg} \cos 30^{\circ}$	M1	$=$	
		A1	$=(1.6974 \mathrm{~m})(49 \sqrt{ } 3 / 50 \mathrm{~m})$	
	$0.2 \mathrm{mgcos} 30^{\circ} \mathrm{xd}$	B1	$\mathrm{a}=0.2 \mathrm{~g} \cos 30^{\circ}+\mathrm{gsin} 30^{\circ}$	
$\mathrm{mg} \mathrm{x} \mathrm{d} \mathrm{x} \sin 30^{\circ}$	B1	$\mathrm{a}=(\pm) 6.60$		
$\mathrm{~d}=1 / 2 \mathrm{x} 25 /\left(0.2 \times 9.8 \cos 30^{\circ}+9.8 \times \sin 30^{\circ}\right)$	M1	$0=5^{2}-2 x 6.60 \mathrm{~d}$		
1.89 m	A1 $\mathbf{6}$		$\mathbf{6}$	

$\mathbf{3}$	direction of R perp. to wall R at 70° to rod $0.8 \times 25 \cos 60^{\circ}=1.6 \times \mathrm{R} \sin 70^{\circ}$ $0.8 \times 25 \cos 60^{\circ}$ $1.6 \times \mathrm{R} \sin 70^{\circ}$	B1		
	B 1	10° to horiz.		
$\mathrm{R}=6.65 \mathrm{~N}$	A1			
	moments about A			

$\mathbf{4}$ (i)	$45000 / \mathrm{v}=\mathrm{kv}$ $\mathrm{k}=50$	M1 A1 2	AG
(ii)	$45000 / 20-50 \times 20=1200 \mathrm{a}$	M1	
		A1	
(iii)	$\mathrm{P} / 15=50 \times 15+1200 \times 9.8 \sin 10^{\circ}$	A1 3	
	41900 W	M1	
	A1		

5 (i)	$2 \mathrm{mu}-3 \mathrm{kmu}=-\mathrm{mu}+\mathrm{kmv}$ $\mathrm{v}=\ldots \ldots$. $\mathrm{v}=3 \mathrm{u}(1-\mathrm{k}) / \mathrm{k}$	M1 M1 A1	attempting to make v the subject $3 \mathrm{l} / \mathrm{k}-3 \mathrm{u}$
	$(0<) \mathrm{k}<1$	A1 4	not ≤ 1
(ii)	$\mathrm{I}=\mathrm{mu}--2 \mathrm{mu}$	M1	or km(3u/k-3u+3u)
	3 mu	A1 2	+ only
(iii)	$\mathrm{v}= \pm 3 \mathrm{u}$	B1	
	$\mathrm{e}=(\mathrm{u} / 2+3 \mathrm{u}) / 4 \mathrm{u}$ $\mathrm{e}=7 / 8$ or 0.875	M1	

6 (i)(a)	$\begin{aligned} & \hline \mathrm{T} \cos 45^{\circ}=2.94 \\ & \mathrm{~T}=4.16 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } 2 \\ \hline \end{array}$	Resolving vertically AG
(b)	$\begin{aligned} & \text { Tcos } 45^{\circ}+\mathrm{T}=0.3 \times 1.96 \omega^{2} \\ & \text { (res. horiz.) } \\ & \omega=3.47 \mathrm{rad} \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	M1 A1 A1 3	$\begin{aligned} & \text { calculates } \mathrm{v}=6.81 \\ & (\text { Max 2/3) } \end{aligned}$
(ii)(a)	$\begin{aligned} & \mathrm{T} \cos 30^{\circ}+\mathrm{T} \cos 60^{\circ}=2.94 \\ & \mathrm{~T}=2.15 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Resolving vertically
(b)	$\begin{aligned} & \text { Tcos } 30^{\circ}+\mathrm{T} \cos 60^{\circ}=0.3 \mathrm{v}^{2} / 1.5 \\ & \text { (res. horiz.) } \\ & \mathrm{v}=3.83 \mathrm{~m} \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	$\begin{aligned} & \text { calculates } \omega=2.56 \\ & (\text { Max } 2 / 3) \end{aligned}$

7 (i)	$\begin{aligned} & 0=(175 \sin \theta)^{2}-2 \times 9.8 \times 650 \\ & \theta=40.2^{\circ} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \end{array}$	
(ii)	$\begin{aligned} & \text { Attempt at } t_{1}, t_{2}, t_{\text {top }} \text { or } t_{\text {total }} \\ & 5.61,23.65,14.63,29.26 \\ & t_{2}-t_{1} \text { or } 2\left(t_{\text {top }}-t_{1}\right) \text { or } t_{\text {total }}-2 t_{1} \\ & \\ & \text { time difference }=18.0 \end{aligned}$	$\begin{array}{ll}\text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ & \\ \text { A1 } & 5\end{array}$	$650=175 \sin 55^{\circ} . \mathrm{t}-4.9 \mathrm{t}^{2}$ etc
(iii)	$\begin{aligned} & \hline \mathrm{v}_{\mathrm{h}}=175 \cos 55^{\circ}(100.4) \\ & \mathrm{v}_{\mathrm{v}}=175 \sin 55^{\circ}-9.8 \times 5.61 \\ & \text { speed }=\sqrt{ }\left(88.4^{2}+100.4^{2}\right) \\ & 134 \mathrm{~m} \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \hline \end{array}$	or $\mathrm{KE} 1 / 2 \mathrm{mv}^{2}$ (B1) PE mx9.8x650 $\mathrm{v}=\sqrt{ }\left(175^{2}-2 \times 9.8 \times 650\right)$

8 (i)	$\begin{array}{\|l} \hline(2 x 4 x \sin \Pi / 2) / 3 x \Pi / 2 \\ 1.70 \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } 2 \end{array}$	$\begin{array}{\|l\|} \hline \text { or } 4 \mathrm{r} / 3 \Pi \\ \mathbf{A G} \\ \hline \end{array}$
(ii)(a)	$\begin{array}{\|lr\|} \hline \bar{x} \times \mathrm{xd}\left(8 \times 20-\Pi \times 4^{2} / 2\right)=10 \times 8 \times 20 \mathrm{~d}- \\ 12 \mathrm{x} \Pi \times 4^{2} / 2 \mathrm{xd} \\ 10 \times 8 \times 20(\mathrm{~d}) & (1600) \\ \left(8 \times 20-\Pi \times 4^{2} / 2\right)(\mathrm{d}) & (134.9) \\ \left(12 \times \Pi \mathrm{x} 4^{2} / 2\right)(\mathrm{d}) \\ \frac{x}{x}=9.63 \mathrm{~cm} \end{array}$	M1 A1 A1 A1 A1 5	$\begin{aligned} & \hline \text { or } 134.9 \bar{x}= \\ & 64 \times 4+38.9 \times 12+32 \times 18 \quad \text { (1298.8) } \\ & 64 \times 4 \\ & 38.9 \times 12 \\ & 32 \times 18 \\ & \text { AG } \end{aligned}$
(ii)	$\begin{align*} & \bar{y} \times \mathrm{xd}\left(8 \times 20-\Pi \times 4^{2} / 2\right)=4 \times 8 \times 20 \mathrm{~d}- \\ & 1.7 \mathrm{x} \Pi \times 4^{2} / 2 \mathrm{xd} \\ & 4 \times 8 \times 20(\mathrm{~d}) \\ & 1.7 \mathrm{~d} \times \Pi \times 4^{2} / 2 \tag{13.6П}\\ & \bar{y}=4.43 \mathrm{~cm} \end{align*}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { A1M1 } \\ \text { A1 } 4 \end{array}$	$\text { or } 64 \times 4=42.7+38.9 \bar{y}$ $\begin{aligned} & \bar{y}=5.49 \\ & 135 \bar{y}=32 \times 4+38.9 \times 5.49+64 \times 4 \end{aligned}$
(iii)	$\begin{array}{\|l\|} \hline 20 \cos 10^{\circ} \times \mathrm{T} \\ 15 \cos 10^{\circ} \times 9.63 \\ 15 \sin 10^{\circ} \times 4.43 \\ 20 \cos 10^{\circ} \mathrm{T}=15 \cos 10^{\circ} \times 9.63- \\ 15 \sin 10^{\circ} \times 4.43 \quad \text { (needs 3 parts) } \\ \mathrm{T}=6.64 \mathrm{~N} \end{array}$	B1 B1 B1 M1 A1 5	$\begin{aligned} & \text { = or } \\ & 10.6 \text { (A to com) } \\ & 34.7^{\circ} \angle \text { comAH } \\ & =15 \times 10.6 \mathrm{x} \cos 34.7^{\circ} \end{aligned}$

4729 Mechanics 2

$\mathbf{1}$	$200 \cos 35^{\circ}$	B1	
	$200 \cos 35^{\circ} \mathrm{xd=5000}$ $\mathrm{~d}=30.5 \mathrm{~m}$	M1	
A1 $\mathbf{3}$		$\mathbf{3}$	

$\mathbf{2}$	$0.03 \mathrm{R}=1 / 2 \times 0.009\left(250^{2}-150^{2}\right)$	M1	$150^{2}=250^{2}+2 \mathrm{a} \times 0.03$		
	0.03 R	B 1	$\mathrm{a}= \pm 2 \mathrm{x} 10^{6} / 3$ or $\pm 666,667$	(A1)	
	either K.E.	B1	$\mathrm{F}=0.009 \mathrm{a}$	(M1)	
	$\mathrm{R}=6000 \mathrm{~N}$	A1 f $\mathbf{4}$	$\boldsymbol{f} \quad$ unit errors		$\mathbf{4}$

3 (i)	$\mathrm{D}=12000 / 20$	B1	
	$\begin{aligned} & 12000 / 20=\mathrm{k} \mathrm{x} 20+600 \times 9.8 \times 0.1 \\ & \mathrm{k}=0.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	AG
(ii)	$16000 / \mathrm{v}=0.6 \mathrm{v}+600 \times 9.8 \times 0.1$	M1	
	$0.6 \mathrm{v}^{2}+588 \mathrm{v}-16000=0$		attempt to solve quad. (3 terms)
	$\begin{aligned} & v=26.5 \mathrm{~m} \mathrm{~s}^{-1} \\ & 16000 / 32-0.6 \times 32=600 a \end{aligned}$	$\begin{aligned} & \text { A1 } 3 \\ & \text { M1 } \end{aligned}$	
(iii)		A1	
	$\mathrm{a}=0.801 \mathrm{~m} \mathrm{~s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0=35 \sin \theta \times \mathrm{t}-4.9 \mathrm{t}^{2}$	M1	$R=u^{2} \sin 2 \theta / g$ only ok if proved or $70 \sin \theta / \mathrm{g}$ aef their t	
	$\mathrm{t}=35 \sin \theta / 4.9 \quad 50 \sin \theta / 7$	A1		
	$\mathrm{R}=35 \cos \theta \mathrm{xt}$ aef	B1		
	$\mathrm{R}=35^{2} \sin \theta \cdot \cos \theta / 4.9$	M1	eliminate t	
	$\mathrm{R}=125 \sin 2 \theta$	$\text { A1 } 5$	AG	
(ii)	$\begin{aligned} & 110=125 \sin 2 \theta \\ & \theta=30.8^{\circ} \text { or } 59.2^{\circ} \\ & t=3.66 \mathrm{~s} \text { or } 6.13 \mathrm{~s} \end{aligned}$	M1 A1+1 A1 $1+15$	10	

\begin{tabular}{|c|c|c|c|c|}
\hline 5 (i)
(ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 3 / 8 \times 3 \quad(1.125) \\
\& 0.53 \mathrm{~d}=5 \times 0.02+(10+3 / 8 \times 3) \times 0.5
\end{aligned}
\]
\[
\mathrm{d}=10.7
\] \\
Attempt to calc a pair relevant to P,G
\[
\begin{aligned}
\& \mathrm{OP}=0.9(\text { pair }), \mathrm{p}=73.3^{\circ} \mathrm{q}=16.7^{\circ} \mathrm{r}=76.9^{\circ} \\
\& \left(77.2^{\circ}\right), \mathrm{s}=13.1^{\circ}\left(12.8^{\circ}\right) \mathrm{AC}=0.86, \\
\& \mathrm{BC}=0.67, \mathrm{AD}=10.4 \mathrm{BD}=10.2 \\
\& \mathrm{r}>\mathrm{p}, \mathrm{~s}<\mathrm{q}, \mathrm{p}+\mathrm{s}<90, \\
\& 0.67<0.86,10.2<10.4
\end{aligned}
\] \\
it is in equilibrium
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 4

4 \& | c.o.m. hemisphere $\begin{aligned} & 0.53 \mathrm{e}=3 \times 5 / 8 \times 0.5+8 \times 0.02+13 \mathrm{x} .01 \\ & 0.53 \mathrm{f}=3 \times 3 / 8 \times 0.5-5 \times 0.02-10 \times 0.01 \\ & \text { AG }(\mathrm{e}=2.316 \mathrm{f}=0.684) \\ & \text { distance } / \text { angle } \\ & \text { not a complimentary pair } \end{aligned}$ |
| :--- |
| make relevant comparison $0.7<0.9 \text { (OG < OP) } 10.7<10.9$ |

\hline
\end{tabular}

7 (i)	$\mathrm{u}=3 \mathrm{~m} \mathrm{~s}^{-1}$	B1	($\mathrm{e}=2 / 3$) (equs must be consistent) AG	
	$6=2 x+3 y$	M1		
		A1		
	$e=(y-x) / 3$	M1		
		A1		
	$y=2$	A1 6		
(ii)	$\mathrm{v}_{\mathrm{h}}=2$	B1	or (B1) $1 / 2 m x 2^{2}$	
	$\mathrm{v}_{\mathrm{v}}{ }^{2}=2 \times 9.8 \times 4$	M1	(B1) $1 / 2 m x v^{2}$	
	$\mathrm{v}_{\mathrm{v}}=8.85 \quad(14 \sqrt{ } 10 / 5)$	A1	$\text { (B1) } m x 9.8 x 4$	
	speed $=\sqrt{ }\left(8.85{ }^{2}+2^{2}\right)$	M1	$\mathrm{v}=\sqrt{ }\left(2^{2}+2 \mathrm{x} 9.8 \mathrm{x} 4\right)$	
	$9.08 \mathrm{~m} \mathrm{~s}^{-1}$	A1		
	$\tan (8.85 / 2)$ 77.3° to horizontal	M1	12.7° to vertical	13

4729 Mechanics 2

$\mathbf{1}$	$(20 \sin \theta)^{2}=2 \times 9.8 \times 17$	M1	or B2 for \max ht $=v^{2} \sin ^{2} \theta / 2 \mathrm{~g}$
		A1	
	$\sin \theta=\sqrt{ }(2 \times 9.8 \times 17) \div 20$	M1	subst. values in above
	$\theta=65.9^{\circ}$	A1 $\mathbf{4}$	

$\mathbf{2}$	$\bar{x}=8$	B1	
	T $\sin 30^{\circ} \times 12=8 \times 2 \times 9.8$	M1	ok if g omitted
		A1 ft	ft their \bar{x}
	$\mathrm{~T}=26.1$	A1 $\mathbf{4}$	

3 (i)	$140 \times \mathrm{X}=40 \times 70$	M1	
	$\mathrm{X}=20 \mathrm{~N}$	A1	
	at $F 20 \mathrm{~N}$ to the right	B1	inspect diagram
	at G 20 N to the left	B1 4	SR B1 for correct directions only
(ii)	$\mathrm{d}=(2 \times 40 \sin \Pi / 2) \div 3 \Pi / 2$	M1	must be radians
		A1	
	$\mathrm{d}=17.0$	A1	16.98 160/3П (8/15П m)
	$70 \bar{y}=100 \times 60+217 \times 10$	M1	
		A1 ft	ft 200 + their d or $2+$ their d (m)
	$\bar{y}=117$	A1 6	116.7 10

4 (i)	$P / 10-800 \times 9.8 \sin 12^{\circ}-100 k=800 \times 0.25$	M1	$\mathrm{P} / 10=\mathrm{D}_{1}$ ok
		A1	D_{1} ok
	P/20-400k $=800 \times 0.75$	M1	$\mathrm{P} / 20=\mathrm{D}_{2}$ ok
		A1	$\mathrm{D}_{1}=2 \mathrm{D}_{2}$ needed for this A1
	solving above	M1	
	$k=0.900$	A1	AG 0.9000395
	$P=19200$	A1 7	or 19.2 kW (maybe in part (ii))
(ii)	$0.9 v^{2}=28800 / v$	M1	ok if 19200/v
	solving above	M1 *	$\left(v^{3}=32000\right)$
	$v=31.7 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3	10

$\mathbf{5}$ (i)	$0.8 S$	B1	vert comp of S
	$0.6 T$	B1	vert comp of T
	$S \cos \alpha=T \cos \beta+0.2 \times 9.8$	M1	
	$0.8 S=0.6 T+1.96$	aef	A1 $\mathbf{4}$
(ii)	$0.6 S$	AG $\quad 4 S=3 T+9.8$	
	$0.8 T$	B1	
	$0.2 \times 0.24 \times 8^{2}$	B1	$3.072 \quad 384 / 125$
	$S \sin \alpha+T \sin \beta=0.2 \times 0.24 \times 8^{2}$	M1	must be $m r \omega^{2}$
	$6 S+8 T=30.72$	A1	aef
	eliminate S or T	M1	
	$S=3.4 \mathrm{~N}$	A1	3.411
	$T=1.3 \mathrm{~N}$	A1 $\mathbf{8}$	1.282

6 (i)	$\mathrm{x}=\mathrm{vcos} \theta \mathrm{t}$	B1	
	$y=v \sin \theta \mathrm{t}-1 / 2 \times 9.8 \mathrm{t}^{2}$	B1	or g
	substitute $\mathrm{t}=\mathrm{x} / \mathrm{vcos} \theta$	M1	
	$\mathrm{y}=\mathrm{xtan} \theta-4.9 \mathrm{x}^{2} / \mathrm{v}^{2} \cos ^{2} \theta$	A1 4	AG
(ii)	Sub $\mathrm{y}=-\mathrm{h}, \mathrm{x}=\mathrm{h}, \mathrm{v}=14, \theta=30$	M1	signs must be correct
	$-h=h / \sqrt{3}-h^{2} / 30$	A1	aef
	solving above	M1	
	$h=47.3$	A1 4	
(iii)	$\begin{aligned} & v_{v}{ }^{2}=\left(14 \sin 30^{\circ}\right)^{2}-2 \times 9.8 \times(-47.3) \\ & \text { (double negative needed) } \mathrm{ft} \text { their }-47.3 \end{aligned}$	M1	$14 \cos 30^{\circ} \mathrm{t}=47.3 \mathrm{ft} \& \mathrm{v}_{\mathrm{v}}=14 \sin 30^{\circ}-9.8 \mathrm{t}$
		A1 ft	$\mathrm{t}=3.90$ (or dy/dx=1/ $3-\mathrm{x} / 15$ etc ft)
	$\nu_{\mathrm{v}}= \pm 31.2$	A1	$v_{v}= \pm 31.2(\tan \alpha=1 / \sqrt{3-47.3 / 15)}$
	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$	M1	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$
	$\alpha=68.8^{\circ}$ below horiz/21.2 ${ }^{\circ}$ to d'vert.	A1 5	68.8\%
(iv)	$1 / 2 \mathrm{mx} 14^{2}+\mathrm{mx} 9.8 \times 47.3=1 / 2 \mathrm{mv}^{2}$	M1	$\mathrm{ft}\left(12.1^{2}+31.2^{2}\right)$
	$\mathrm{v}=33.5$	A1 2	33.5

7 (i)	$\mathrm{p}=4 \mathrm{~m} \mathrm{~s}^{-1}$	B1	P's first speed
	$0.8=0.2 \mathrm{p}_{1}+0.3 \mathrm{q}_{1}$	M1	
		A1	
	$0.5=\left(\mathrm{q}_{1}-\mathrm{p}_{1}\right) / 4$	M1	
		A1	
	solving above	M1	
	$\mathrm{q}_{1}=2.4 \quad 12 / 5$	A1	Q's first speed
	$\mathrm{p}_{1}=0.4 \quad 2 / 5$	A1 8	may be in (ii). SR 1 for both negative
(ii)	$0.8=0.2 \mathrm{p}_{2}+0.3 \mathrm{q}_{2}$	M1	
		A1	
	$0.5=\left(\mathrm{p}_{2}-\mathrm{q}_{2}\right) / 2$	M1	
		A1	
	solving above	M1	
	$\mathrm{p}_{2}=2.2 \quad 11 / 5$	A1	
	$\mathrm{q}_{2}=1.2 \quad 6 / 5$	A1 7	
(iii)	$\mathrm{R}=0.3 \times 1.2^{2} / 0.4$	M1	
	$\mathrm{R}=1.08 \mathrm{~N}$	A1 2	17

4729 Mechanics 2

1 (i)	$\begin{aligned} & 1 / 2 \times 75 \times 12^{2} \text { or } 1 / 2 \times 75 \times 3^{2} \text { (either KE) } \\ & 75 \times 9.8 \times 40 \quad \text { (PE) } \\ & R \times 180(\text { change in energy }=24337) \\ & 1 / 2 \times 75 \times 12^{2}=1 / 2 \times 75 \times 3^{2}+75 \times 9.8 \times 40-R \times 180 \\ & R=135 \mathrm{~N} \end{aligned}$	B1 B1 B1 M1 A1 5	M1 $12^{2}=3^{2}+2 a \times 180$ A1 $a=0.375$ (3/8) M1 $75 \times 9.8 \times \sin \theta-R=75 a$ A1 $R=135$ (max 4 for no energy)	5

2 (i)	$R=F=P / v=44000 / v=1400$ $v=31.4 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 2	
(ii)	$44000 / v=1400+1100 \times 9.8 \times 0.05$ $v=22.7 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 3	must have g
(iii)	$22000 / 10+1100 \times 9.8 \times 0.05-1400$ $=1100 a$ $a=1.22 \mathrm{~m} \mathrm{~s}^{-2}$	M1	

3 (i)	$\begin{aligned} & \cos \theta=5 / 13 \text { or } \sin \theta=12 / 13 \text { or } \theta=67.4^{\circ} \\ & 0.5 \times F \sin \theta=70 \times 1.4+50 \times 2.8 \\ & F=516 \mathrm{~N} \end{aligned}$	B1 M1 A1 A1 4	any one of these moments about A (ok without 70) $0.5 \sin \theta=0.4615$ SR 1 for 303 (omission of beam)
(ii)	$\begin{array}{\|ll} F \sin \theta=120+Y & \text { (resolving vertically) } \\ Y=356 & \text { ftheir } \mathrm{F} \times 12 / 13-120 \\ X=F \cos \theta & \text { (resolving horizontally) } \\ X=198 & \boldsymbol{f} \text { their } F \times 5 / 13 \\ \text { Force }=\sqrt{ }\left(356^{2}+198^{2}\right) \\ 407 \text { or } 408 \mathrm{~N} & \end{array}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } & \\ \text { M1 } \\ \text { A1 } & \\ \hline \end{array}$	M1/A1 for moments (B) $Y \times 2.8+1.4 \times 70=2.3 \times 516.7 \times 12 / 13$ (C) $0.5 \times Y=0.9 \times 70+2.3 \times 50$ (D) $1.2 X=1.4 \times 70+2.8 \times 50$

4 (i)	$T=0.4 \times 0.6 \times 2^{2}$	M1	
	$T=0.96 \mathrm{~N}$	A1 2	
(ii)	$S-T$	B1	may be implied
	$S-T=0.1 \times 0.3 \times 2^{2}$	M1	
		A1	
	$S=1.08$	A1 4	
(iii)	$v=r \omega$	M1	
	$v_{P}=0.6$	A1	
	$v_{B}=1.2$	A1	
	$1 / 2 \times 0.1 \times 0.6^{2}+1 / 2 \times 0.4 \times 1.2^{2}$	M1	$(0.018+0.288)$ separate speeds
	0.306	A1 $\mathbf{5}$	

5 (i)	$\begin{aligned} & d=(2 \times 6 \sin \pi / 4) / 3 \pi / 4 \\ & d=3.60 \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	must be correct formula with rads AG	
(ii)	$\begin{aligned} & đ \cos 45^{\circ}=" 2.55 " \\ & 5 \bar{x}=3 \times 3+2 \times " 2.55 " \\ & \bar{x}=2.82 \\ & 5 \bar{y}=3 \times 6+2 \times(12+" 2.55 ") \\ & \bar{y}=9.42 \end{aligned}$		B1 M1 A1 A1 M1 A1 A1 7	may be implied moments must not have areas $2 \mathrm{~kg} / 3 \mathrm{~kg}$ misread (swap) gives $\begin{aligned} & (2.73,11.13) \theta=21.7^{\circ} \\ & (\text { MR }-2)(\max 7 \text { for }(\mathrm{ii})+(\mathrm{iii})) \\ & \text { SR }-1 \text { for } \bar{x}, \bar{y} \text { swap } \end{aligned}$	
(iii)	$\begin{aligned} & \tan \theta=2.82 / 8.58 \\ & \theta=18.2^{\circ} \end{aligned}$	J	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { M0 for their } \bar{x} / \bar{y} \\ & \boldsymbol{f} \text { their } \bar{x} /(18-\bar{y}) \end{aligned}$	11

6 (i)	$\begin{aligned} & I=0.9=6 \times 0.2-v \times 0.2 \\ & v=1.5 \end{aligned}$	M1 A1 A1 3	needs to be mass 0.2
(ii)	$0.6=(c-b) / 6$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	restitution (allow 1.5 for M1)
	$6 \times 0.2=0.2 b+0.1 c$	M1	momentum (allow 1.5 for M1)
		A1	
	$b=2.8$	A1	
	$\begin{aligned} & 0.4 \times 5+0.2 \times 1.5=0.4 a+0.2 \times 6 \quad \text { or } \\ & I=0.9=-0.4 a--0.4 \times 5 \\ & a=2.75 \\ & 2.75<2.8 \end{aligned}$ no further collision	M1 A1	1st collision (needs their 1.5 for M1)
		A1	
		M1	compare v 's of A and B (calculated)

7(i)	$\begin{align*} & 9=17 \cos 25^{\circ} \times t \\ & t=0.584 \quad\left(\text { or } 9 / 17 \cos 25^{\circ}\right) \\ & d=17 \sin 25^{\circ} \times 0.584+1 / 2 \times 9.8 \times \times 0.584^{2} \\ & =h t \text { lost }(5.87) \\ & h=2.13 \end{align*}$	M1 A1 M1 A1 A1 5	$\begin{aligned} & \text { B1 } y=x \tan \theta-4.9 x^{2} / v^{2} \cos ^{2} \theta \\ & \text { M1/A1 } y=9 \tan \left(-25^{\circ}\right)-4.9 \times 9^{2} / 17^{2} \cos ^{2} 25^{\circ} \end{aligned}$ A1 y = -5.87 2.13
(ii)	$\begin{aligned} & v_{h}=17 \cos 25^{\circ} \quad(15.4) \\ & v_{v}=17 \sin 25^{\circ}+9.8 \times 0.584 \\ & v_{v}^{2}=\left(17 \sin 25^{\circ}\right)^{2}+2 \times 9.8 \times 5.87 \\ & v_{v}=12.9 \\ & \tan \theta=12.9 / 15.4 \\ & \theta=40.0^{\circ} \text { below horizontal } \end{aligned}$	B1 M1 A1 M1 A1 5	M1/A1 dy/dx = $\tan \theta-9.8 x / v^{2} \cos ^{2} \theta$ A1 $\mathrm{d} y / \mathrm{d} x=-0.838$ M1 $\tan ^{-1}(-.838)$ or 50.0° to vertical
(iii)	$\begin{aligned} & \text { speed }=\sqrt{ }\left(12.9^{2}+15.4^{2}\right) \\ & 1 / 2 m v^{2}=1 / 2 m \times 20.1^{2} \times 0.7 \\ & v=16.8 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	(20.1) NB 0.3 instead of 0.7 gives 11.0 (M0)

4729 Mechanics 2

1	$\begin{aligned} & 75 \times 9.8 \times 40 \\ & (75 \times 9.8 \times 40) \div 120 \\ & 245 \mathrm{~W} \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \\ \hline \end{array}$	Average Speed $=40 \div 120$ (75×9.8) \times (Average speed)
2 (i)	$\begin{aligned} & \mathrm{v}^{2}=2 \times 9.8 \times 3 \text { or } 2 \times 9.8 \times 1.8 \\ & \mathrm{v}_{1}=\sqrt{6 g} \text { or } \sqrt{58.8} \text { or } \frac{7}{5} \sqrt{30} \text { or } 7.67 \\ & \mathrm{v}_{2}=\sqrt{3.6 g} \text { or } \sqrt{35.28} \text { or } \frac{21}{5} \sqrt{2} \text { or } 5.94 \\ & \mathrm{I}= \pm 0.2(5.94+7.67) \\ & 2.72 \end{aligned}$	M1 A1 A1 M1 A1ft [5]	Kinematics or energy Speed of impact (\pm) Speed of rebound (\pm) +ve , ft on v_{1} and V_{2}
(ii)	$\begin{aligned} & \mathrm{e}=5.94 / 7.67 \\ & 0.775 \text { or } \frac{\sqrt{15}}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft [2] } \end{aligned}$	Allow 0.774, ft on v_{1} and v_{2}
3 (i)	$\begin{aligned} & \overline{\mathrm{u}}=0.2 \text { (from vertex) or } 0.8 \text { or } 0.1 \\ & 0.5 \mathrm{~d}=0.2 \times \overline{\mathrm{u}}+0.3 \times 0.65 \\ & \mathrm{~d}=0.47 \end{aligned}$	B1 M1 A1 A1 $[4]$	com of conical shell AG
(ii)	$\begin{aligned} & \mathrm{s}=0.5 \\ & \mathrm{~T} \sin 80^{\circ} \times 0.5=0.47 \times 0.5 \times 9.8 \\ & \mathrm{~T}=4.68 \mathrm{~N} \end{aligned}$	 B1 M1 A1 A1 $[4]$	slant height, may be implied
4 (i)	$\begin{aligned} & \mathrm{D}-400=700 \times 0.5 \\ & \mathrm{D}=750 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	3 terms
(ii)	$\begin{aligned} & \mathrm{P}=750 \times 12 \\ & 9000 \mathrm{~W} \text { or } 9 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft [2] } \end{aligned}$	
(iii)	$\begin{aligned} & \mathrm{P} / 35=400 \\ & 14000 \mathrm{~W} \text { or } 14 \mathrm{~kW} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	
(iv)	$\begin{aligned} & \mathrm{D}=14000 / 12 \\ & 3500 / 3=400+700 \times 9.8 \sin \theta \end{aligned}$ $\theta=6.42^{\circ}$	B1ft M1 A1 A1 $\quad[4]$	$\begin{aligned} & \text { May be implied } \\ & 3 \text { terms } \\ & \text { Their P/12 } \end{aligned}$

5	$\begin{aligned} & 16-12=2 x+3 y \\ & 4=2 x+3 y \\ & 1 / 2.2(8)^{2}+1 / 2.3(4)^{2} \text { or } 1 / 2.2 x^{2}+1 / 2 . .3 y^{2} \text { or } \\ & \pm 1 / 2.2\left(8^{2}-x^{2}\right) \text { or } \pm 1 / 23\left(4^{2}-y^{2}\right) \\ & 1 / 2.2(8)^{2}+1 / 2.3(4)^{2}-1 / 2.2 x^{2}-1 / 2 . . .3 y^{2}=81 \\ & 2 x^{2}+3 y^{2}=14 \end{aligned}$ Attempt to eliminate x or y from a linear and a quadratic equation $15 y^{2}-24 y-12=0 \text { or } 10 x^{2}-16 x-26=0$ Attempt to solve a three term quadratic $\begin{aligned} & x=-1 \text { (or } x=2.6) \\ & y=2 \text { (or } y=-2 / 5) \\ & x=-1 \text { and } y=2 \text { only } \end{aligned}$ speeds 1,2 away from each other	M1 A1 B1 M1 A1 M1 A1 M1 A1 A1 A1 A1 [12]	aef aef aef
6 (i)	$\begin{aligned} & 30^{2}=V_{1}^{2} \sin ^{2} \theta_{1}-2 \times 9.8 \times 250 \\ & V_{1}^{2} \sin ^{2} \theta_{1}=5800 \mathrm{AEF} \\ & V_{1} \cos \theta_{1}=40 \\ & V_{1}=86.0 \\ & \theta_{1}=62.3^{\circ} \end{aligned}$	M1 A1 B1 A1 A1 [5]	$1 / 2 m V_{1}^{2}=1 / 2 m 50^{2}+m \times 9.8 \times 250$ AG AG
(ii)	$\begin{aligned} & 0=\sqrt{ } 5800 \mathrm{t}_{\mathrm{p}}-4.9 \mathrm{t}_{\mathrm{p}}^{2} \\ & \mathrm{t}_{\mathrm{p}}=15.5 \\ & -\sqrt{ } 5800=30-9.8 \mathrm{t}_{\mathrm{q}} \\ & \mathrm{t}_{\mathrm{q}}=10.8 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	$\begin{aligned} & 30=V_{1} \sin \theta_{1}-9.8 t \\ & t=4.71 \end{aligned}$
(iii)	$\begin{array}{\|l\|} \hline \mathrm{R}=40 \times 15.5 \\ \mathrm{R}=621 \\ V_{2} \cos \theta_{2} \times 10.8=621 \\ 0=V_{2} \sin \theta_{2} \times 10.8-4.9 \times 10.8^{2} \\ V_{2} \sin \theta_{2}=53.1 \text { or } 53.0 \\ \text { Method to find a value of } V_{2} \text { or } \theta_{2} \\ \theta_{2}=42.8^{\circ} \\ V_{2}=78.2 \mathrm{~m} \mathrm{~s}^{-1} \text { or } 78.1 \mathrm{~m} \mathrm{~s}^{-1} \end{array}$	 M1 A1 B1 M1 A1 M1 A1 A1 [8]	$\begin{aligned} & (620,622) \\ & V_{2} \cos \theta_{2}=57.4 \\ & (52.9,53.1) \\ & 42.6^{\circ} \text { to } 42.9^{\circ} \\ & \text { or } 78.1^{\circ} \end{aligned}$
7 (i)	$\begin{aligned} & \cos \theta=3 / 5 \text { or } \sin \theta=4 / 5 \text { or } \tan \theta=4 / 3 \\ & \text { or } \theta=53.1^{\circ} \\ & R \cos \theta=0.2 \times 9.8 \\ & R=3.27 \mathrm{~N} \text { or } 49 / 15 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \\ \hline \end{array}$	$\theta=$ angle to vertical
(ii)	$\begin{aligned} & \mathrm{r}=4 \\ & \mathrm{R} \sin \theta=0.2 \times 4 \times \omega^{2} \\ & \omega=1.81 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 A1 A1 [4]	

(iii)	$\begin{aligned} & \varphi=26.6^{\circ} \text { or } \sin \varphi=\frac{1}{\sqrt{5}} \text { or } \cos \varphi=\frac{2}{\sqrt{5}} \text { or } \\ & \tan \varphi=0.5 \\ & \mathrm{~T}=0.98 \text { or } 0.1 \mathrm{~g} \\ & \mathrm{~N} \cos \theta=\mathrm{T} \sin \varphi+0.2 \times 9.8 \\ & \mathrm{~N} \times 3 / 5=0.438+1.96 \\ & \mathrm{~N}=4.00 \\ & \mathrm{~N} \sin \theta+\mathrm{T} \cos \varphi=0.2 \times 4 \times \omega^{2} \\ & 4 \times 4 / 5+0.98 \cos 26.6^{\circ}=0.8 \omega^{2} \\ & \omega=2.26 \operatorname{rad~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		$\varphi=$ angle to horizontal Vertically, 3 terms may be implied Horizontally, 3 terms	15

$\mathbf{1}$	$v^{2}=2 \times 9.8 \times 10$	M1	Using $v^{2}=u^{2}+2$ as with $u=0$
	$v=14 \mathrm{~ms} \mathrm{~s}^{-1}$	A1	
	speed $=\sqrt{ }\left(7^{2}+14^{2}\right)$	M1	Method to find speed using their " v "
	15.7 or $7 \sqrt{ } 5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	$\tan ^{-1}(14 / 7)$ or $\tan ^{-1}(7 / 14)$	M1	Method to find angle using their " v "
	$63.4^{\circ} \quad$ to the horizontal	A1 6	26.6 6° to vertical

2 (i)	$\begin{aligned} & (6 \sin \Pi / 2) \div(\Pi / 2) \\ & 3.82 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Use of correct formula AG
(ii)	$\begin{aligned} & 8 ₫=3(6-3.82)+5 \mathrm{x} 9.82 \\ & \text { or } 8 \mathrm{x}= \pm\{3(-3.82)+5 \mathrm{x} 3.82\} \\ & \mathrm{d}=6.95 \text { or } 6.96 \text { or } \mathrm{x}=+/-0.955 \\ & \tan \theta=0.96 / 6 \\ & \theta=9^{\circ} \end{aligned}$	M1 A1 A1 M1 A1 5	Method to find centre of mass Attempt to find the required angle 7

3 (i)	$\begin{aligned} & \mathrm{D}=128000 / 80(=1600) \\ & \mathrm{k}(80)^{2}=128000 / 80 \end{aligned}$ $\begin{aligned} & \mathrm{k}=1 / 4 \\ & \mathrm{R}=900 \mathrm{~N} \end{aligned}$	B1 M1 A1 A1 B1 5	Driving force $=$ resistance FT on their $k(R=3600 k)$
(ii)	$\begin{aligned} & \mathrm{D}=128000 / 60(=21331 / 3) \\ & 2000 \times 9.8 \times \sin 2^{\circ} \\ & 6400 / 3-900-2000 \times 9.8 \times \sin 2^{\circ}=2000 a \\ & \mathrm{a}=0.275 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	B1 B1 M1 A1 4	4 terms required 9

4 (i)	$\begin{aligned} & 4 \mathrm{~T} \cos 20^{\circ}=5 \times \mathrm{g} \times 2.5 \\ & \mathrm{~T}=32.6 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$	Using moments; allow sin/cos mix Allow with omission of g
(ii)	$\begin{aligned} & \mathrm{X}=\mathrm{T} \sin 20^{\circ} \\ & \mathrm{X}=11.1 \\ & \mathrm{Y}+\mathrm{T} \cos 20^{\circ}=5 \times \mathrm{g} \\ & \text { or } 2.5 \mathrm{Y}=1.5 \times \mathrm{T} \cos 20 \text { or } 4 \mathrm{Y}=1.5 \times 5 \mathrm{~g} \\ & \mathrm{Y}=18.4 \\ & \mathrm{R}=\sqrt{ }\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right) \text { or } \tan ^{-1}(\mathrm{Y} / \mathrm{X}) \\ & \text { or } \tan ^{-1}(\mathrm{X} / \mathrm{Y}) \\ & \mathrm{R}=21.5 \mathrm{~N} \\ & \theta=58.8^{\circ} \text { above the horizontal } \end{aligned}$	M1 A1 M1 A1 M1 A1 A1 7	allow $\sin /$ cos mix FT their T FT their T, but not from omission of g $X \neq 0, Y \neq 0$ or 31.2° to left of vertical 10

5 (i)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{R} \sin 45^{\circ}=\mathrm{mg} \\ & \mathrm{~T} \sin 45^{\circ}-\mathrm{R} \cos 45^{\circ}=\mathrm{ml} \sin 45^{\circ} \omega^{2} \\ & 2 \mathrm{~T}=\sqrt{ } 2 \mathrm{mg}+\mathrm{ml} \omega^{2} \\ & \mathrm{~T}=\mathrm{m} / 2\left(\sqrt{ } 2 \mathrm{~g}+1 \omega^{2}\right) \end{aligned}$	*M1 A1 *M1 A1 Dep*M1 A1 6	3 terms 3 terms; $\mathrm{a}=\mathrm{r} \omega^{2}$ Method to eliminate R AG www
(ii)	$\begin{aligned} & \mathrm{R}=0 \\ & 2 \mathrm{R}=\sqrt{ } 2 \mathrm{mg}-\mathrm{ml} \omega^{2} \\ & \text { or } \mathrm{T} \cos 45^{\circ}=\mathrm{mg} \\ & \text { or } \mathrm{T}=\mathrm{ml} \omega^{2} \\ & \text { Solve to find } \omega \\ & \\ & \omega=4.16 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 4	may be implied

6 (i)	$\begin{aligned} & 2 m u=2 m v+3 m v \\ & v=2 / 5 u \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \end{array}$	Conservation of momentum Must be $v=$
(ii)	$\begin{aligned} & \mathrm{e}=(3 v-v) / u \\ & \mathrm{e}=4 / 5 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Using restitution AG
(iii)	$\begin{aligned} & \text { Initial K.E. }=9 m v^{2} / 2=18 m u^{2} / 25 \\ & \text { Final K.E. }=9 m v^{2} / 8=9 m u^{2} / 50 \\ & 1 / 2 m(V)^{2}=\text { Final K.E. } \\ & V=3 u / 5 \end{aligned}$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \\ & \text { M1 } \\ & \text { A1 } 4 \end{aligned}$	FT on their v from (i) FT on their v from (i) AG
(iv)	$\begin{aligned} & 4 m u / 5-3 m u / 5=2 m x+m y \\ & u / 5=2 x+y \\ & \mathrm{e}=4 / 5=(y-x) / u \\ & 4 u=5 y-5 x \\ & \text { solving } 2 \text { relevant equations } \\ & x=-u / 5 y=3 u / 5 \\ & y=3 u / 5 \\ & \text { away from wall }(x)+\text { towards wall }(y) \end{aligned}$	M1 A1 FT M1 FT A1 M1 A1 A1 A1 8	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef both 17

7 (i) Or last 4 marks of (i)	$\begin{aligned} & \mathrm{R}=0.2 \times 9.8 \times \cos 30^{\circ}(=1.70) \\ & \mathrm{F}=0.1 \times 9.8 \times \cos 30^{\circ}(=0.849) \\ & \\ & 1 / 2 \times 0.2 \times 11^{2}-1 / 2 \times 0.2 \mathrm{v}^{2}= \\ & 0.2 \times 9.8 \times 5 \sin 30+5 \times 0.849 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \\ & \\ & \mathrm{~F}+0.2 \mathrm{~g} \sin 30= \pm 0.2 \mathrm{a} \\ & \mathrm{a}= \pm 9.1 \\ & \mathrm{v}^{2}=11^{2}+2 \times \mathrm{a} \times 5 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 A1 A1 6 M1 A1 M1 A1	FT on their R, but not $\mathrm{R}=0.2 \mathrm{~g}$ Use of conservation of energy AG Use of N2L, 3 terms Complete method to find v
(ii) Or first 5 marks of (ii)	$\begin{aligned} & \mathrm{t}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{t}=0.919 \mathrm{~s} \\ & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & \mathrm{s}=2.72 \times 0.919-4.9 \times 0.919^{2} \\ & \mathrm{~s}=-1.6 \text { (or better) } \end{aligned}$ Ht drop to $C=5 \sin 30^{\circ}=2.5 \mathrm{~m}$ Ball does not hit the roof $y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 V^{2}$ substitute values $\begin{aligned} & V=5.44 \quad \theta=30^{\circ} \quad \mathrm{x}=5 \cos 30^{\circ} \\ & \mathrm{y}=2.5-9.8 \times 25 \times 3 / 4 \times 4 / 3 /\left(2 \times 5.44^{2}\right) \\ & \mathrm{y}=-1.6 \text { (or better) } \end{aligned}$	M1 A1 B1 M1 A1 B1 A1 7 B1 M1 A1 A1 A1	time to lateral position over C Ht dropped all 3 correct
OR (ii)	$\begin{aligned} & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \end{aligned}$ $\mathrm{t}=1.04$ $x=5.44 \cos 30 \times 1.04=4.9 \text { (or better) }$ Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 A1 A1 B1 A1 7	aef time to position level with $A C$
OR (ii)	$\mathrm{y}=\mathrm{x} \tan \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 \mathrm{~V}^{2}$ substitute values $-2.5=0.577 x-0.221 x^{2}$ Attempt to solve quadratic for x $\mathrm{x}=4.9$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	$\begin{aligned} & \mathrm{u}=5.44 \sin 30^{\circ}=2.72 \\ & -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \\ & \mathrm{t}=1.0 \text { (or better) } \\ & \mathrm{T}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{T}=0.92 \text { (or better) } \\ & \text { Ball does not hit the roof } \end{aligned}$	B1 M1 A1 A1 M1 A1 A1 7	aef time to position level with $A C$ time to lateral position over C

OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations to get at least x or y $\mathrm{x}=5.2$ (or better) or $\mathrm{y}=-3.0$ (or better) Horizontal distance from B to C $=$ $5 \cos 30=4.3$ (or better) Or Ht drop to $C=5 \sin 30^{\circ}=2.5$ Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Equation of BC Must be the one needed for comparison
OR (ii)	Attempt at equation of trajectory $\mathrm{y}=0.577 \mathrm{x}-0.221 \mathrm{x}^{2}$ $y=-0.577 x$ Solving their quadratic and linear equations $\mathrm{x}=5.2$ (or better) and $\mathrm{y}=-3.0$ (or better) Distance $=6.0$ (or better) Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Distance from B to point of intersection

Question		Expected Answer	Mark	Rationale/Additional Guidance
1	(i)	$\begin{aligned} & 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+1 \times 0.6 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+0 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=4 \times 0.3 \\ & \mathrm{OR}_{3} \mathrm{y}_{\mathrm{G}}=1 \times 0.3+1 \times 0.6+0 \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=4 \times 0.3-1 \times 0.3 \\ & \mathrm{x}_{\mathrm{G}}=0.4 \text { (from AD) OR } \mathrm{x}_{\mathrm{G}}=0.2 \quad \text { (from BC) } \\ & \mathrm{y}_{\mathrm{G}}=0.3 \mathrm{~m} \text { from } \mathrm{AB} \text { or } \mathrm{CD} \\ & \mathrm{AG}^{2}=0.4^{2}+0.3^{2} \\ & \mathrm{AG}=0.5 \mathrm{~m} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Table of moments idea. M0 for reducing to 1D problem. Masses/weights may be included. Pythagoras with 2 appropriate distances. This may only be seen in (ii), allow M1A1 in this case.
	(ii)	$\begin{aligned} & \mathrm{v}=0.5 \times 3 \\ & \mathrm{v}=1.5 \mathrm{~ms}^{-1} \end{aligned}$		Allow use of candidate's $0.2,0.4,0.3,0.5$
2	(i)	$\begin{aligned} & \left(\mathrm{k} 25^{3 / 2}\right) \times 25=15000 \\ & \mathrm{k}=4.8 \end{aligned}$	M1 A1 A1 [3]	Tractive force \times speed $=$ power
	(ii)	$\begin{aligned} & \mathrm{R}=4.8 \times 16^{3 / 2} \\ & \mathrm{~T}-4.8 \times 16^{3 / 2}+700 \mathrm{~g} \times 1 / 15=700 \times 0.3 \\ & \mathrm{P}=59.9 \times 16 \\ & \mathrm{P}=958 \mathrm{~W} \end{aligned}$	B1 M1 A1 M1 A1 [5]	307.2 N2L, 4 terms to find tractive force (T) Allow cv(R), R not 600; ($T=59.866$..) $16 x$ Tractive force

3	(i)		$\begin{aligned} & \mathrm{T}_{\mathrm{A}} \cos 30+\mathrm{T}_{\mathrm{B}} \cos 60=0.4 \mathrm{~g} \\ & 2 \mathrm{~T} \cos 30+\mathrm{T} \cos 60=0.4 \mathrm{~g} \\ & \mathrm{~T}_{\mathrm{B}}=1.76 \mathrm{~N} \\ & \mathrm{~T}_{\mathrm{A}}=3.51 \mathrm{~N} \end{aligned}$	M1 A1 A1 A1 [4]	Resolves vertically, 3 terms $\mathrm{T}=1.756$. Watch for MR of $\mathrm{T} \cos 30+2 \mathrm{~T} \cos 60=0.4 \mathrm{~g}$ Accept 3.52
	(ii)		$\begin{aligned} & r=0.5 \sin 30(=0.25) \\ & 3.51 \sin 30+1.76 \sin 60=0.4 \omega^{2} 0.5 \sin 30 \\ & \omega=5.72 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 A1ft A1 [4]	N2L radial, 3 terms cv(1.76, 3.51, 0.25) Accept 5.73
4	(i)		$\begin{aligned} & W D=100 \cos 20 \times 30 \\ & W D=2820 \mathrm{~J} \end{aligned}$	M1 A1 [2]	Product of 3 relevant elements. Angle could be 5, 25 or complements 2819.1...
	(ii)		$\begin{aligned} & \hline \mathrm{PE}=25 \mathrm{~g} \times 30 \sin 5 \\ & \mathrm{PE}=641 \end{aligned}$	$\mathrm{M} 1$ [2]	Product of weight and vertical height. Allow without g 640.6
	(iii)	OR	$\begin{aligned} & 2819.1=640.6 \\ & +30 \times 70+25 \mathrm{v}^{2} / 2 \\ & \mathrm{v}=2.51 \mathrm{~ms}^{-1} \\ & 25 a=100 \cos 20-70-25 \mathrm{~g} \sin 5 \\ & a=0.105 \\ & v^{2}=2 \times 30 \times{ }^{\prime} a^{\prime} \\ & v=2.51 \end{aligned}$	M1 A1ft A1 A1 [4] *M1 A1 dep*M1 A1 [4]	4 term energy equation $\mathrm{ft}(\mathrm{cv} 2820$ and cv 641) cao 4 term equation Allow 0.1 here Or equivalent complete method cao

5	(i)		$\begin{aligned} & x_{H}=3 \times 0.6 / 8 \\ & \pi\left(0.6^{2} \times 0.6\right)(0.6 / 2)-\left(0.6^{3} \times 2 \pi / 3\right) 0.225 \\ & =\pi \times 0.6^{3}(1+2 / 3) x_{G} \\ & x_{G}=0.09 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ [5]	CoM hemisphere ($\mathrm{X}_{\mathrm{H}}=0.225$), may be implied Use of table of moments idea SC Volume of sphere used, max B1M1A1, moment equation fully correct for A1 (3/5) Accept -0.09
	(ii)	(a)	$\begin{aligned} & \mathrm{mg}(0.09 \cos 45)= \\ & 2(0.6+0.6 \cos 45+0.6 \sin 45) \\ & \mathrm{m}=4.65 \mathrm{~kg} \end{aligned}$	M1 A1 A1 A1 [4]	Attempt at moments (must resolve), allow without g $\begin{aligned} & 2\left(0.6+\sqrt{ }\left[0.6^{2}+0.6^{2}\right]\right) \\ & (4.6451 \ldots) \end{aligned}$
	(ii)	(b)	$\begin{aligned} & 2 / 4.6451 \mathrm{~g} \\ & \mu \geq 0.0439 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Ratio force/weight cv(4.65) Correct inequality sign, accept 0.044
6	(i)		$\begin{aligned} & 0=(14 \sin 30)^{2}-2 \mathrm{gh} \\ & \mathrm{~h}=2.5 \mathrm{~m} \end{aligned}$		$\mathrm{h}=(14 \sin 30) \times 1 / 1.4-\mathrm{g}(1 / 1.4)^{2} / 2$ or use $\left(\mathrm{u}^{2} \sin ^{2} \theta\right) / 2 \mathrm{~g}$
	(ii)		$\begin{aligned} & 0.4 \times 15=0.4(14 \cos 30)+I \\ & I=1.15 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ [3]	Impulse = change in momentum Not 14 or 0 for horizontal speed before impulse aef
	(iii)		$\begin{aligned} & \mathrm{v}^{2}=(14 \sin 30)^{2}+15^{2} \\ & v=16.6 \mathrm{~ms}^{-1} \\ & \tan \theta=14 \sin 30 / 15 \text { OR } \tan \psi=15 / 14 \sin 30 \\ & \theta=25(.0)^{\circ} \text { OR } \psi=65(.0)^{\circ} \end{aligned}$	M1 A1 M1 A1 [4]	Not $(14 \sin 30)^{2}+(14 \cos 30)^{2}$ Allow $\sqrt{ } 274$ Correct trig to find an appropriate angle; not $14 \cos 30$ for 15
	(iv)		$\begin{aligned} & \mathrm{t}=14 \sin 30 / \mathrm{g}(=1 / 1.4=0.7142 . .) \\ & \mathrm{T}=1.43 \mathrm{~s} \\ & \mathrm{R}=14 \cos 30 / 1.4+15 / 1.4 \\ & \mathrm{R}=19.4 \mathrm{~m} \end{aligned}$	M1 A1 M1A1 A1 [5]	Rise or fall time (not to be given in (i)) Accept 10/7 $\left(14^{2} \sin (2 \times 30)+16.6^{2} \sin (2 \times 25)\right) / 2$ g. 14 resolved, 15 not

[END]

1	$\begin{aligned} & \mathrm{PE}=70 \times 3 \mathrm{~g} \\ & \mathrm{KE} \text { change }=70 \times\left(2.1^{2}-1.4^{2}\right) / 2 \\ & \mathrm{PE} \text { change }+\mathrm{KE} \text { change } \\ & 2143.75 \mathrm{~J} \end{aligned}$	B1 B1 M1 A1 [4]	2058 85.75 Must include evaluation Accept 2140. Allow all values to be negative.
ii ${ }^{\text {OR }}$	$\begin{aligned} & 20(90+\mathrm{T})=2143.75 \\ & \mathrm{~T}=17.1875 \mathrm{~N} \\ & \\ & 70 \mathrm{~g} \cdot 0.15-90-\mathrm{T}=70 \cdot(-0.06125) \\ & \mathrm{T}=17.1875 \mathrm{~N} \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1	Work done = Energy change used $\mathrm{ft}(\mathrm{cv}(2143.75))$ accept 17.2 Use of $\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as to find a AND use of N 2 law(4 terms) accept 17.2

i i	$21000 / 25$ $0=21000 / 25-25 \mathrm{k}-1250 \mathrm{gsin} 2$ $\mathrm{k}=16.5$	B1 M1 A1 A1	Use of force $=$ power/speed 3 terms $\mathrm{cv}(21000 / 25)$
ii	$21000 / \mathrm{v}=16.5 \mathrm{v}$ $\mathrm{v}=35.7 \mathrm{~ms}^{-1}$	M1 A1ft A1 $[3]$	ft on cv(k)

3	$\begin{aligned} & -(8 \cos 30 / 3)\left(8^{2} \sin 60 / 2\right) \\ & +(4)\left(8^{2}\right) \\ & =\left(8^{2}+8^{2} \sin 60 / 2\right)\left(x_{G}\right) \\ & x_{G}=2.09 \mathrm{~cm} \end{aligned}$	M1 A1 A1 A1 A1 [5]	Table of moments idea, may include g and/or density. -2.309×27.7
ii	$\begin{aligned} & \tan \theta=(2.09 / 4) \\ & \theta=27.6^{\circ} \end{aligned}$	M1 A1ft [2]	$\mathrm{ft} \mathrm{cv}\left(\mathrm{X}_{\mathrm{G}}\right)$

$\begin{aligned} & \hline 4 \\ & \text { ia } \\ & \text { b } \end{aligned}$	If reversed $2.9+2=\mathrm{e}(3+1.5)$ e > 1 impossible $\begin{aligned} & 2.9-2=e(3+1.5) \\ & e=0.2 \end{aligned}$	M1 [2] M1 A1 [2]	Award B1 if no explicit numerical justification May be seen in ia
ii	$\begin{aligned} & 3 m-0.2 \times 1.5=2 m+0.2 \times 2.9 \\ & m=0.88 \end{aligned}$	M1 A1 A1 [3]	Conservation of momentum Accept with g included consistently Do not award if g used
iii	$\begin{aligned} & 0.68=0.2 v+0.2 \times 2.9 \\ & v=0.5 \\ & e=0.5 / 2.9 \\ & e=0.172 \end{aligned}$	M1 A1 M1 A1 [4]	Impulse $=$ change in momentum Separation speed not 2.9 Allow 5/29

5	$\begin{aligned} & x=(7 \cos 30) t \\ & y=(7 \sin 30) t-\mathrm{gt}^{2} / 2 \\ & y=x \tan 30-g x^{2} /\left(2 x 7^{2} \cos ^{2} 30\right) \end{aligned}$	B1 B1 M1 A1 [4]	Attempt to eliminate t $y=x / \sqrt{ } 3-2 x^{2} / 15$ or $y=0.577 x-0.133 x^{2}$ aef
ii	$\begin{aligned} & 2 x^{2} / 15-x / \sqrt{ } 3+0.6=0 \text { or } 9.8 t^{2}-7 t+1.2=0 \\ & x=1.73 \mathrm{~m} \text { or } \sqrt{ } 3 \mathrm{~m} \\ & \quad 2.6(0) \mathrm{m} \text { or } 3 \sqrt{ } 3 / 2 \mathrm{~m} \end{aligned}$	M1 M1 A1 A1 [4]	Create a 3 term Q.E. in x or t with $\mathrm{y}=0.6$ Solve 3 term Q.E. for x or t
iii	$\begin{aligned} & \mathrm{v}^{2}=(7 \sin 30)^{2}-2 \times 9.8 \times 0.6 \\ & \mathrm{v}=0.7 \mathrm{~ms} \mathrm{~s}^{-1} \\ & \tan \theta=0.7 /(7 \cos 30) \\ & \theta=6.59^{\circ} \text { to horizontal or } 83.4^{\circ} \text { to vertical } \\ & \text { Attempt to differentiate equation of trajectory } \\ & \tan 30-\mathrm{gr} /\left(7^{2} \cos ^{2} 30\right) \\ & \text { Substitute } \mathrm{x}=\sqrt{ } 3 \text { and equate to tan } \theta \\ & \theta=6.59^{\circ} \text { to horizontal or } 83.4^{\circ} \text { to vertical } \end{aligned}$	M1 A1 M1 A1 [4] M1 A1 M1 A1 [4]	Using $v^{2}=u^{2}-2 g s$ with u a component of 7 ; can find t first from their x in (i), and then use $v=u+a t$. Use component of 7 Allow $1 / \sqrt{ } 3-4 x / 15$ or $y^{\prime}=0.577-0.267 x$

6	$\begin{aligned} & \text { Rsin30 }=0.3 \mathrm{~g} \\ & \text { Rcos } 30=0.3 \omega^{2} \times 0.12 \\ & \omega=11.9 \text { rads }^{-1} \end{aligned}$	M1 A1 M1 A1 A1 [5]	$\begin{aligned} & \mathrm{R}=5.88 \text { or } 0.6 \mathrm{~g} \\ & \text { accept } \mathrm{v}^{2} / 0.12 \text { for acceleration } \\ & \text { cao } \end{aligned}$
ii	$\begin{aligned} & S+R \cos 30=0.3 \times 2.1^{2} / 0.2 \\ & R=5.88 \\ & S=1.52 \mathrm{~N} \end{aligned}$	M1 A1 B1ft A1 [4]	Resolve and use N2L on sphere Q, 3 terms needed $\mathrm{ft} \mathrm{cv}(\mathrm{R})$ from (i)
iii	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=11.9 \times 0.12 \text { or } \mathrm{h}=0.2 / \tan 30 \text { or } 0.12 / \tan 30 \text { or } 0.08 / \tan 30 \\ & +/-(\mathrm{Q}-\mathrm{P})= \\ & 0.5 \times 0.3\left(2.1^{2}-(11.9 \times 0.12)^{2}\right) \\ & \quad+(0.2 / \tan 30-0.12 / \tan 30) \times 0.3 \mathrm{~g} \\ & \mathrm{Q}-\mathrm{P}=+-0.763 \mathrm{~J} \end{aligned}$	B1 M1 A2ft A1 [5]	$\operatorname{cv}(\omega)$ from (i) Attempt to calculate KE or PE for both particles KE difference (ft on $\mathrm{cv}(\omega)$) or PE difference $\mathrm{Q}-\mathrm{P}=+/-(0.3556+0.4074)$

7	$\begin{aligned} & F \times 0.8= \\ & 0.6 \cos 60 \times 550 \\ & F=206.25 \end{aligned}$	M1 A1 A1 A1 [4]	Attempt at moments Accept 206, cao
ii	$\begin{aligned} & \mathrm{T} \times 2 \times 0.8 / \tan 30 \\ & = \\ & 550 \times(0.8 / \sin 30-0.6 \cos 60) \\ & \mathrm{T}=258 \\ & \mathrm{R}=550-\mathrm{T} \cos 30 \\ & \mathrm{Fr}=\mathrm{Tsin} 30 \\ & \mu=129 / 326.6 \\ & \mu=0.395 \end{aligned}$	M1* A1 M1* A1 A1 M1* A1 B1* M1dep* A1 [10]	Moment of T about P T $\times 2.77$ Moment of weight about P $550 \times(1.6-0.3)$ Accept to 2sf Resolving vertically, 3 terms needed Value for T not required Value for T not required; accept < or \leq For correct use of $F=\mu R, R \neq 550$

OR		M1*	Moments about V, 3 terms needed
	$\mathrm{T} \times 0.8 / \tan 30+550 \times 0.6 \cos 60=\mathrm{R} \times 0.8 / \cos 60$	A2	A1 for two terms correct
		M1*	Resolving vertically, 3 terms needed
	$\mathrm{R}=550-\mathrm{T} \cos 30$	A1	
	Solve for T or R	M1	
	$\mathrm{T}=258$ or $\mathrm{R}=326.5625$	A1	Accept to 2sf
	$\mathrm{Fr}=\mathrm{T} \sin 30$	B1*	Value for T not required; accept < or \leq
	$\mu=129 / 326.6$	M1dep*	For correct use of $\mathrm{F}=\mu \mathrm{R}, \mathrm{R} \neq 550$
	$\mu=0.395$	$\begin{aligned} & \mathrm{A} 1 \\ & {[10]} \end{aligned}$	
OR	$\begin{aligned} & \text { Fr } \times 1.6 \cos 30+550 \times(1.6 \sin 30+0.6 \sin 30)= \\ & R \times(1.6+1.6 \sin 30) \end{aligned}$	M1*	Moments about Q, 3 terms needed
		A2	A1 for two terms correct
		M1*	Resolving vertically, 3 terms needed
	$\mathrm{R}=550-\mathrm{T} \cos 30$	A1	
	$\mathrm{Fr}=\mathrm{T} \sin 30$	B1*	accept < or \leq
	Solving for at least one of R, Fr, or T	M1	
	Either $\mathrm{R}=326.5625$, or $\mathrm{Fr}=129(.0017008)$, or $\mathrm{T}=258$	A1	Only one needed. Accept to 2sf.
	$\mu=129 / 326.6$	M1dep*	For correct use of $F=\mu R, R \neq 550$
	$\mu=0.395$	$\begin{aligned} & \mathrm{A} 1 \\ & {[10]} \end{aligned}$	

Question		Answer	Marks	Guidance
1		$\begin{aligned} & v_{x}=40 \cos 35 \\ & v_{y}=40 \sin 35-9.8 \times 3 \\ & v=\sqrt{32.8^{2}+6.46^{2}} \text { or } \tan \theta=6.46 / 32.8 \\ & v=33.4 \mathrm{~ms}^{-1} \\ & \theta=11.1^{\circ} \text { below horizontal } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Expect 32.8, need not be evaluated. Expect -6.46, need not be evaluated. Use of Pythagoras or relevant trig on $\operatorname{cv}\left(v_{x}\right)$ and $\operatorname{cv}\left(v_{y}\right)$ AEF; allow 11.2
2	(i)	$\begin{aligned} & h=r \tan \alpha \\ & x\left(\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h\right)=\frac{1}{3} \pi r^{2} h \times \frac{h}{4}-\frac{2}{3} \pi r^{3} \times \frac{3}{8} r \\ & x=\frac{r\left(\tan ^{2} \alpha-3\right)}{8+4 \tan \alpha} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Seen anywhere and in any form. Table of values idea. AG www
2	(ii)	$\begin{aligned} & x<0 \\ & \text { Solve } \tan ^{2} \alpha-3<0 \\ & \alpha<60 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	```May be implied. Condone = Condone \(\leq\) throughout. SC Use of \(=\) or \(>\) throughout. Max B0 M1 A0```
3	(i)	$\begin{aligned} & P \times 1.6=10 g \cos 60 \times 1.2 \\ & P=36.75 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Moments about A. Allow 36.8
3	(ii)	$\begin{aligned} & R+36.75 \sin 30=10 g \\ & F=36.75 \cos 30 \\ & \mu=31.8 / 79.6 \\ & \mu=0.4(00) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { B1 FT } \\ \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	Attempt at resolving vertically or taking moments. May be implied. $R=79.6(25)$ Expect 31.8. Or second correct equation involving F or R or both. For use of (their) $F=\mu$ (their) $R \quad R$ not $=10 g$ or their P from (i). AWRT www. Allow inequality

Question			Answer	Marks	Guidance
4	(i)	(a)	$\sin \theta=1 / 2 \text { or } \theta=30$ $\begin{aligned} & T \cos \theta=0.2 \times 1.2 \cos \theta \times 2.5^{2} \\ & T=1.5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	θ is angle with horizontal. May have angle with vertical. May be seen later. Attempt at resolving horizontally. $\mathrm{cv}(r)$ but not $r=1.2$ Rounding to 1.5
4	(i)	(b)	$\begin{aligned} & R+T \sin \theta=0.2 g \\ & R=1.21 \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { A1 } \\ {[3]} \end{gathered}$	Attempt at resolving vertically. FT on $\operatorname{cv}(T)$
4	(ii)		$\begin{aligned} & r=\sqrt{1.2^{2}-0.6^{2}}=1.2 \cos \theta \\ & R=0 \\ & T_{1} \sin \theta=0.2 g \\ & T_{1} \cos \theta=0.2 \times v^{2} / r \text { or } 0.2 \times r \omega^{2} \\ & v=4.2 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	May been seen in (i), must be used in here. May be implied. Attempt at resolving.
5	(i)		$\begin{aligned} & 25000 / 10 \\ & 1500 g \sin 5 \\ & 2500-750-1500 g \sin 5=1500 a \\ & a=0.313 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	1281.1 Attempt at N2L with 4 terms. cv(1500gsin5); cv(2500) not 25000. Allow 0.31
5	(ii)		```WD against resistance \(=750 \mathrm{~d}\) WD by engine \(=25000 \times 28\) (\(=700000\)) Change in PE \(=1500 \mathrm{~g} \times d \sin 5\) Change in \(\mathrm{KE}= \pm 1 / 2 \times 1500 \times\left(20^{2}-10^{2}\right)\) \(25000 \times 28=1 / 2 \times 1500 \times\left(20^{2}-10^{2}\right)+750 d+1500 g\) \(\times d\) sin5 \(d=234\)```	B1 B1 B1 B1 M1 A1 A1 [7]	750h/sin5 $1500 \mathrm{~g} \times \mathrm{h}$ Use of correct formula for KE. Use conservation of energy, at least 3 used including WD by engine.

Question			Answer	Marks	Guidance
6	(i)		$\begin{aligned} & v^{2}=2 \times 9.8 \times 3.136 \\ & v=7.84 \\ & \text { Rebound speed }=7.84 e \\ & I= \pm 0.5(7.84+7.84 e)= \pm 3.92(1+e) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \\ \text { A1 } \\ \text { B1 FT } \\ \text { B1 FT } \\ {[4]} \\ \hline \end{gathered}$	Uses $v^{2}=u^{2}+2 a s$ or energy with $u=0$. Signs must be consistent. Ignore -ve. AEF seen. FT on $\operatorname{cv}(v)$.
6	(ii)		$\begin{align*} & -7.84 e=7.84 e-g t \\ & t=1.6 e \tag{AG} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Uses a complete method to find t.
6	(iii)	(a) (b)	$\begin{aligned} & t_{2}=1.6 \mathrm{e}^{2} \\ & \mathrm{t}_{3}=1.6 \mathrm{e}^{3} \end{aligned}$	B1 B1 [2]	
6	(iv)		Time to first bounce is 0.8 s Identify total time is sum of a GP in e $\begin{aligned} & \frac{1.6 e}{1-e}=4.2 \\ & e=0.724 \end{aligned}$	B1 B1 M1 A1 A1 [5]	Indication of the sum of at least to term in e^{4} Equate 3.4 or 4.2 or 5 or 5.8 with attempt at use of formula for sum to infinity of a GP. Allow 21/29
7	(i)		$\begin{aligned} & \text { For } P 4.9 t^{2}=60 \\ & t=3.5(0) \\ & \text { For } Q 0=25 \sin \theta \times t-1 / 2 \times 9.8 \times t^{2} \\ & \theta=43.3 \\ & P Q=(25 \cos \theta-15) \times t_{c} \\ & \quad=11.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [6] } \end{aligned}$	Signs must be consistent. aef

	uest	Answer	Marks	Guidance
7	(ii)	$25 \cos \theta(t)=15(t)$ and solving for θ $\theta=53.1$ For $Q s_{y 1}=25 \sin \theta \times t-1 / 2 \times 9.8 \times t^{2}$ For $P s_{y 2}= \pm 1 / 2 \times 9.8 \times t^{2}$ Using $s_{y 1}+s_{y 2}=60$ Solving for t $\begin{aligned} & t=3 \\ & v=25 \sin \theta-9.8 \times 3 \end{aligned}$ $v=-9.4$ therefore falling.	M1 A1 B1 B1 *M1 M1dep* A1 M1 A1 [9]	Equating horizontal components of velocity (or displacement) and solving for θ. Other methods include finding time to max height for Q .
OR	(ii)	$25 \cos \theta(t)=15(t)$ and solving for θ $\theta=53.1$ For $Q y=x \tan \theta-\frac{g x^{2}}{2 \times(25)^{2} \cos ^{2} \theta}$ For $P \quad y=(60-) \frac{g x^{2}}{2 \times(15)^{2}}$ Equate y and solve for x Use $x=u \cos \theta t$ to find t $t=3$ $v=25 \sin \theta-9.8 \times 3$ $v=-9.4$ therefore falling.	M1 A1 B1 B1 *M1 M1dep* A1 M1 A1 [9]	Equating horizontal components of velocity (or displacement) and solving for θ. Must include 60. Other methods include finding time to max height for Q .

Question		Answer	Marks	Guidance
1	(i)	$\begin{aligned} & \text { Speed }=1.2 \mathrm{~ms}^{-1} \\ & \text { Impulse }=0.8 \times \pm(4--1.2) \\ & \pm 4.16 \mathrm{Ns} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	May be seen anywhere, even in (ii); allow -1.2 Difference between momenta, allow $0.8 \times \pm(4-1.2)$
1	(ii)	$\begin{aligned} & \text { KE lost }=1 / 2 \times 0.8 \times\left(4^{2}-(\pm 1.2)^{2}\right) \\ & 5.82(4) \mathrm{J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	Allow -5.82(4)
2	(i)	Driving Force $=20000 / 20(=1000)$ $\begin{aligned} & 20000 / 20-800=1600 a \\ & a=0.125 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \\ & \hline \end{aligned}$	Attempt at N2L with 3 terms. Signs may not be correct at this stage. Using their 20000/20, but not 20000 Allow $\frac{1}{8}$
2	(ii)	$\begin{aligned} & \text { 20000/v } \\ & \text { DF }-800-1600 g \sin 4=0 \\ & v=10.6 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	3 terms with attempt at resolving weight; g can be omitted at this stage; if $\mathrm{F}=\ldots$. . then $\mathrm{F}=0$ somewhere to award M aef
3	(i)	$\begin{aligned} & T \cos 30 \times 1.5 \sin 30=15 g \times 2 \\ & T=453 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Attempt at moments about A, g can be omitted at this stage
3	(ii)	$\begin{aligned} & X=T_{c} \sin 30(=226) \\ & Y+T_{c} \cos 30=15 g \\ & R=\sqrt{ }\left(226^{2}+245^{2}\right) \text { or } \tan \theta=245 / 226 \\ & R=334 \\ & \theta=47.3 \text { below horizontal (to the left) } \end{aligned}$	$\begin{gathered} \hline \text { B1ft } \\ \text { M1 } \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [6] } \end{gathered}$	Using their value T or taking moments about P Attempt to resolve vertically or taking appropriate moments Using their value T; expect $Y=-245$ or better Either or both of these equations can be replaced with moments about an appropriate point eg P, Q, B, c of m of beam. Any relevant angle Allow 333 Allow 47.2, 42.7 to the downward vertical SC: If 392 in (i) leading to $Y= \pm 245$ only in (ii) max M1A1

Question			Answer	Marks	Guidance
4	(i)		$\begin{aligned} & 1 / 2 \times 9.8 \times t^{2}=0.2 \\ & t=0.2(02) \\ & s=14.4 \times t_{c} \\ & s=2.91 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Using SUVAT to find t , consistent signs for g and 0.2 aef Using their value of t
		OR	Use equation of trajectory $-0.2=x \tan 0-g x^{2} \sec ^{2} 0 /\left(2 \times 14.4^{2}\right)$ Solve quadratic for x $x=2.91$	M1 A1 M1 A1 [4]	B1 for correct equation of the trajectory seen anywhere but award in part (ii) unless different method seen; consistent signs for g and 0.2
4	(ii)		$U \sin 15 \times t-1 / 2 \times 9.8 \times t^{2}=-0.2$ $U \cos 15 \times t=6$ Eliminate t Attempt to solve to find U $U=10.2 \mathrm{~ms}^{-1}$	*M1 A1 B1 Dep*M1 Dep*M1 A1 $[6]$	Using $s=u t+1 / 2 a t^{2}$ with $s= \pm 0.2$ and $a= \pm g$ Eliminate U Attempt to solve to find $t(=0.607)$
		OR	$y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 U^{2}$ Substitute values for y, x, θ $-0.2=6 \tan 15-g .6^{2} \sec ^{2} 15 / 2 U^{2}$ Attempt to solve for U $U=10.2 \mathrm{~ms}^{-1}$	*B1 Dep*M1 A1 Dep*M2 A1 [6]	

Question		Answer	Marks	Guidance
5	(i)	$\sin \theta=0.8 \text { or } \cos \theta=0.6 \text { or } \tan \theta=4 / 3 \text { or } \theta=53.1$ $T_{A} \cos \theta+T_{B} \cos \theta=2 \times 1.2 \times 4^{2}$ $T_{A} \sin \theta=T_{B} \sin \theta+2 g$ Solve simultaneously to get at least T_{A} or T_{B} $T_{A}=44.25 \text { and } T_{B}=19.75$	B1 *M1 A1 *M1 A1 Dep*M1 A1 $[7]$	θ is angle AP makes with horizontal Attempt to resolve horizontally and use N2L with a version of acceleration, not just a. Allow $T_{A}=T_{B}$ for M1 only. Use their θ Attempt to resolve vertically Use their θ For both. Allow 44.2, 44.3, 19.7, 19.8
5	(ii)	$T_{B}=0$ $\begin{aligned} & T_{A} \cos \theta=2 v^{2} / 1.2 \\ & T_{A} \sin \theta=2 g \end{aligned}$ Solve for v or ω $v=2.97$	B1 *M1 A1 B1 Dep*M1 A1 $[6]$	May be implied Attempt to resolve horizontally and use N2L with a version of acceleration, not just a Use their θ Use their θ
6	(i)	$\begin{aligned} & 0.2 \times 1.8=0.2 v_{\mathrm{A}}+0.4 v_{\mathrm{B}} \\ & v_{\mathrm{B}}-v_{\mathrm{A}}=1 / 3 \times 1.8 \end{aligned}$ Solve for v_{A} or v_{B} $v_{B}=0.8 \mathrm{~m} \mathrm{~s}^{-1} \text { and } v_{A}=0.2 \mathrm{~m} \mathrm{~s}^{-1} \quad \mathbf{A G}$	*M1 A1 *M1 A1 Dep*M1 A1 $[6]$	Attempt at conservation of momentum Attempt at restitution aef

Question			Answer	Marks	Guidance
6	(ii)		$\begin{aligned} & 0.4 \times 0.8+0.6 \times 0.2=0.4 v_{B^{\prime}}+0.6 v_{C} \\ & v_{C}-v_{B^{\prime}}=e(0.8-0.2) \end{aligned}$ Use two relevant equations to eliminate v_{C} State $v_{B} \geq 0.2$ Set up (in)equality in e and their v_{A} $0.44-0.36 e \geq 0.2$ or $0.44-0.36 e=0.2$ $e \leq 2 / 3$ or 0.667	B1 B1 *M1 B1 dep*M1 A1 A1 [7]	aef soi, Allow $v_{B},>0.2$ Condone incorrect inequality sign for M1 only Allow $0.44-0.36 e>0.2$
		OR	$\begin{aligned} & 0.4 \times 0.8+0.6 \times 0.2=0.4 v_{B^{\prime}}+0.6 v_{C} \\ & v_{C}-v_{B^{\prime}}=e(0.8-0.2) \end{aligned}$ State $v_{B^{\prime}} \geq 0.2$ Sub v_{B}, in momentum equation \& solve for v_{C} $\left(v_{C}=0.6\right.$ Set up (in)equality in e and their v_{A} $e \leq 2 / 3 \text { or } 0.667$	B1 B1 B1 *M1 A1 dep*M1 A1 $[7]$	aef soi, Allow $v_{B^{\prime}}>0.2$ eg $0.6-e(0.8-0.2) \geq 0.2$, Condone incorrect inequality sign for M1 only

Question		Answer	Marks	Guidance
7	(i)	$\begin{aligned} & 1 / 3 a \\ & (25+2.5 a) x_{G}=25 \times 2.5+2.5 a \times(5+1 / 3 a) \\ & x_{\mathrm{G}}=\frac{a^{2}+15 a+75}{3(a+10)} \quad \text { AG } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Centre of mass of triangle Table of values idea, using any fixed axis Relative to the axis they are using
7	(ii)	$\frac{a^{2}+15 a+75}{3(a+10)}=5$ Solving for a $a=8.66$ or $5 \sqrt{ } 3$	$\begin{gathered} \text { *M1 } \\ \\ \text { dep*M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Substitute x_{G} as 5 $a \leq 8.66$
7	(iii)	$\begin{aligned} & (25+2.5 a) y_{\mathrm{G}}=25 \times 2.5+2.5 a \times(2 / 3 \times 5) \\ & y_{\mathrm{G}}=\frac{10 a+75}{3(a+10)} \text { or } 2.89 \\ & \tan \theta=x_{\mathrm{G}} / y_{\mathrm{G}} \\ & \quad=5 / y_{\mathrm{G}} \\ & \theta=60 \end{aligned}$	*M1 A1ft A1ft dep*M1 A1ft A1 $[6]$	Method to find centre of mass from $A B$ (or $C D$) with or without a substituted. ft their a from (ii), from $C D y_{G}=2.11$ Using trig to find an appropriate angle, eg complement of θ. ft their a from (ii), but not an incorrect y_{G} $\theta \leq 60$ (anything that rounds to 60)

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & 18 \cos 15 \times 6 \\ & 104 \mathrm{~J} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Force component x distance	
1	(ii)	$\begin{aligned} & 18 \cos 15 \times 6 / 5 \text { or ans(i)/5 } \\ & 20.9 \mathrm{~W} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { [2] } \end{gathered}$	Force component x distance/5 Allow 20.8	
2	(i)	$\begin{aligned} & \mathrm{DF}=15000 / 15 \\ & \mathrm{DF}-k \times 15^{1 / 2}=1500 \times 0.4 \\ & k=103 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	N2L, 3 terms and attempt at DF. Numerical DF $\text { Allow } 80 / 15 / 3$	
2	(ii)	$\begin{aligned} & \mathrm{P} / 30=k 30^{1 / 2} \\ & \mathrm{P}=17000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Using cv(k) Allow 17(.0)kW, 16900W, $16.9 \mathrm{~kW}, 12000 \sqrt{ } 2 \mathrm{~W}$	
3	(i)	$\begin{aligned} & \mathrm{a}=\mathrm{g} \sin 30 \\ & 1+u=0.4(2+2 \mathrm{~g} \sin 30) \\ & u=3.72 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Using NEL with u_{A} from $\mathrm{cv}(\mathrm{a}), \mathrm{u}_{\mathrm{A}}$ $\neq 0$ cwo	
3	(ii)	$\begin{aligned} & \text { Use } v^{2}=u^{2}-2(g \sin 30) s \\ & s=1.41 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { [2] } \end{gathered}$	Using $\mathrm{v}=0, \mathrm{cv}(\mathrm{a})$ from (i) or correct a SC If a not found in (i), allow a=g for M1A0.	
3	(iii)	Use of conservation of momentum $\begin{aligned} & 0.5 \times 2 g \sin 30-2 m=m-0.5 \times 3.72 \\ & m=2.25 \end{aligned}$	M1 A1ft A1 [3]	```Using cv(a) \(\mathrm{ft} \mathrm{cv}(\mathrm{u})\) from (i) Aef(raction) eg \(2^{19} / 75\) or \({ }^{169} / 75\)```	

Question		Answer	Marks	Guidance	
4	(i)	$(2 \times 3 \sin (\pi / 2)) /(3 \pi / 2)$ or equivalent $\begin{aligned} & 3 \times 6^{2} \\ & -\left(\pi \times 3^{2} / 2\right) \times(6-4 / \pi) \\ & =\left(6^{2}-\pi \times 3^{2} / 2\right) x_{G} \\ & x_{G}=1.88 \mathrm{~cm} \end{aligned}$	B1 M1 A1 A1 A1 A1 [6]	Centre of mass of semicircle; $4 / \pi$ Table of moments idea about any axis.	
4	(ii)	$\begin{aligned} & \tan \theta=1.88 / 3 \\ & \theta=32.1^{\circ} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { [2] } \end{gathered}$	Attempt at a relevant angle allow $180-\theta$ \& radians (0.561 or 0.560)	
5	(i)	$\begin{aligned} & \text { Use of moments } \\ & 2.5 \mathrm{R}=3 \mathrm{~g} \cos 60 \mathrm{x} 2 \\ & \mathrm{R}=11.76 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Trig with 3g, no trig with R unless using 2 components. Allow 11.8	
5	(ii)	$\begin{aligned} & R^{\prime}+R \cos 60=3 g \\ & F=R \cos 30 \\ & \text { Use } F=\mu R^{\prime} \\ & \mu=0.433 \end{aligned}$	M1 A1ft B1ft M1 A1 [5]	Resolve vertically, 3 terms, comp (R). Using cv(R) Using cv(R) Not R' = 3g for method Allow 0.435 from use of $\mathrm{R}=11.8$	
6	(i)	$\begin{aligned} & \text { Use I = mv } \\ & 3.6 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { [2] } \end{gathered}$	-3.6 gets A0	
6	(ii)	$\begin{aligned} & \pm\left(1 / 2 \times 0.5 \times 3.6^{2}-1 / 2 \times 0.5 \times \mathrm{v}^{2}\right) \\ & 0.5 \times \mathrm{g} \mathrm{x} 0.3 \\ & \text { Use of conservation of energy } \\ & \mathrm{v}=2.66 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Three terms	

Question		Answer	Marks	Guidance	
	OR	$\begin{aligned} & \mathrm{a}=-\mathrm{g} \sin \theta \\ & \mathrm{~s}=0.3 / \sin \theta \\ & \text { Use }^{2}=\mathrm{u}^{2}+2 \text { as } \\ & \mathrm{v}=2.66 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	θ angle of plane to horizontal $\mathrm{a} \neq-\mathrm{g}, \mathrm{~s} \neq 0.3 .$	
6	(iii) OR	$\begin{aligned} & \text { Change in energy }= \pm\left(1 / 2 \times 0.5 \times 3^{2}-0.5 \times \mathrm{x} \mathrm{x}\right. \\ & 0.2) \\ & \text { Equate to force } \mathrm{x} \text { distance } \\ & 3.175 \mathrm{~N} \\ & \\ & \text { Using } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \text { as to find a } \\ & \text { Resolve parallel to plane } \\ & 0.5 \mathrm{gcos} 60+\mathrm{F}=0.5 \mathrm{x} \text { cv(11.25) } \\ & \mathrm{F}=3.175 \end{aligned}$	M1 A1 M1 A1 [4] M1 M1 A1 A1	Difference of KE and PE Attempt at $0.2 / \sin 30$ for dist, 3 terms Allow 3.18 Use $v=0$, attempt at $s=0.2 / \sin 30$ N2L used with $\operatorname{cv}(11.25), 3$ terms Consistent signs Allow 3.18	
7	(i)	$\begin{aligned} & \mathrm{x}=\mathrm{u} \cos \theta \mathrm{t} \\ & \mathrm{y}=\mathrm{usin} \theta \mathrm{t}-1 / 2 \mathrm{gt}^{2} \\ & \text { Eliminate } \mathrm{t} \\ & \text { Get } \mathrm{y}=\mathrm{xtan} \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 \mathrm{u}^{2} \text { [AG] } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	www	
7	(ii)	Substitute $\mathrm{x}=22, \mathrm{y}=-2.1$ and $\mathrm{u}=14$ Use $\sec ^{2} \theta=1+\tan ^{2} \theta$ Tidy to $12.1 \tan ^{2} \theta-22 \tan \theta+10=0[$ AG] Solve QE for $\tan \theta$ $\theta=42.3$	M1 B1 A1 M1 A1 [5]	May start again of course www allow in radians (0.738)	
7	(iii)	$\begin{aligned} & t=22 / 14 \cos \theta \\ & t=2.12 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	May work vertically, but must solve for to get M1	

Question			Answer	Marks	Guidance	
8	(i)	(a)	$\begin{gathered} 0.8 \mathrm{~F}+0.6 \mathrm{R}=0.4 \mathrm{~g} \\ 4 \mathrm{~F}+3 \mathrm{R}=19.6[\mathrm{AG}] \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Attempt to resolve vertically www	
8	(i)	(b)	$0.8 \mathrm{R}-0.6 \mathrm{~F}=0.4 \times 4.5^{2} / 3$ Solve for R or F $\begin{aligned} & \mathrm{F}=1.516 \\ & \mathrm{R}=4.512 \end{aligned}$ Use $\mu=\mathrm{F} / \mathrm{R}$ to get $\mu=0.336$ [AG]	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[6]} \end{aligned}$	Attempt with three terms. aef including cos, sin correct angle Use 2 relevant resolutions.	
8	(ii)		$\begin{aligned} & 0.6 \mathrm{R}-0.8 \mathrm{~F}=0.4 \mathrm{~g} \\ & \mathrm{R}=11.8 \text { or } \mathrm{F}=3.98 \\ & 0.8 \mathrm{R}+0.6 \mathrm{~F}=0.4 \times 3 \times \omega^{2} \\ & \omega=3.14 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Resolve vertically, three terms N2L, resolve horizontally, three terms	

Question			Answer	Marks	Guidance
1		(i)	$\begin{aligned} & 0.75 \times g \times 8 \\ & 58.8 \mathrm{~J} \end{aligned}$	M1 A1 [2]	Weight \times distance Allow -58.8
1		(ii)	$\begin{aligned} & +/-\left(1 / 2 \times 0.75 \times v^{2}-1 / 2 \times 0.75 \times 2^{2}\right) \\ & 1 / 2 \times 0.75 \times v^{2}-1 / 2 \times 0.75 \times 2^{2}=58.8 \\ & v=12.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Attempt at change in KE Equate their change in KE to their PE from (i)
	OR	(ii)	$\begin{aligned} & a=g \sin \theta \\ & s=8 / \sin \theta \\ & v^{2}=2^{2}+2 \times g \sin \theta \times \frac{8}{\sin \theta} \\ & v=12.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	θ is angle of slope to horizontal. Not $a=g$, not $s=8$
2		(i)	$\begin{aligned} & 20000 / 32 \\ & R=20000 / 32 \\ & R=625 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	cao
2		(ii)	$\begin{aligned} & F+1500 g \sin 2-625=1500 \times 0.1 \\ & \text { Power }=32 \times F \\ & \text { Power }=8380 \mathrm{~W} \text { or } 8.38 \mathrm{~kW} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \\ \hline \end{gathered}$	Using Newton 2, all forces used. ft their R from (i) SC $F-1500 g \sin 2-625=1500 \times 0.1$ Using their F. 8383.27.... SC 41200 W or 41.2 kW (41216.7...)
3		(i)	$x_{\mathrm{G}}=(2 \times 2) / \pi$ $\begin{aligned} & P(\text { or } X) \times 4=0.3 g \times x_{\mathrm{G}} \\ & Y=0.3 g \end{aligned}$ Use $R^{2}=X^{2}+Y^{2}$ to find R $R=3.09 \mathrm{~N}$	$\begin{gathered} \hline \text { B1 } \\ \text { *M1 } \\ \text { A1ft } \\ \text { B1 } \\ \text { dep*M1 } \\ \text { A1 } \\ \text { [6] } \\ \hline \end{gathered}$	$x_{\mathrm{G}}=1.2732 \ldots$ May be seen in (ii), mark only once. Take moments about A or B $P=0.9358 \ldots$. ft their x_{G} for this mark.

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & P \times 4= \\ & 0.3 g \times\left(2 \sin 30+x_{\mathrm{G}} \sin 60\right) \\ & P=1.55 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Attempt at moments, force \times distance $=0.3 g \times$ distance $\begin{aligned} & 0.3 g \times 2.1026 \ldots . . . \\ & 1.545453 \ldots . . . \end{aligned}$
4	(i)	$\begin{aligned} 4.4 x_{\mathrm{G}} & =4 \times 1 / 4 \times 8 \\ & -0.4 \times 1 / 3 \times 10 \\ x_{\mathrm{G}}= & 1.52 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Table of moments idea. Moments about other axes acceptable Allow ${ }^{50} / 33$
4	(ii)	$\begin{aligned} & T_{\text {shell }} \times 18=4.4 \mathrm{~g} \times(8-1.52) \text { or } T_{\text {cone }} \times 18=4.4 \mathrm{~g} \times(10+1.52) \\ & T_{\text {shell }}+T_{\text {cone }}=4.4 \mathrm{~g} \\ & T_{\text {shell }}=15.5 \text { and } T_{\text {cone }}=27.6 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Or any other correct moment equation. ft on x_{G} from (i) May use a second moments equation For both
5	(i)	Vertical force $=m g$ Horizontal force $=m \times 0.4 \times 7^{2}$ Uses vertical force $=\mu \times$ horizontal force $\mu=0.5$	*B1 *M1A1 dep*M1 A1 [5]	Dependent on B1 and M1 If a value for m used B0M1A0M1A0 max.
5	(ii)	$m g=T \times 0.3 / 0.5$ $m \times 0.4 \omega^{2}=T \times 0.4 / 0.5$ Solve for ω or v $\omega=5.72 \mathrm{rad} \mathrm{~s}^{-1}$	B1 *M1 A1 dep*M1 A1 [5]	Resolve T and equate to mass $\times\left(r \omega^{2}\right.$ or $\left.v^{2} / r\right)$ allow $7 \sqrt{ } 6 / 3$ If a value for m and/or T used B0M1A0M1A0 max.

Question		Answer	Marks	Guidance
6	(i)	$\begin{aligned} & 4-4\left(1-e+e^{2}\right)=-e(u-4) \\ & u=4 e \\ & m u+0.2 \times 4=0.2 \times 4\left(1-e+e^{2}\right)+4 m \\ & m=0.2 e \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Use of restitution, may have sign errors, must be correct ratio (v / u) oe Use of conservation of momentum oe
6	(ii)	Valid method to find e that gives the least speed Get $e=1 / 2$ $\begin{aligned} & 1 / 2 \times 0.2 \times 4^{2}+1 / 2 \times 0.1 \times 2^{2}-\left(1 / 2 \times 0.2 \times 3^{2}+1 / 2 \times 0.1 \times 4^{2}\right) \\ & (+/-) 0.1 \mathrm{~J} \end{aligned}$	M1 A1 M1 A1 A1 [5]	Differentiate v_{A} and equate to 0 or complete the square on v_{A} www Difference of KE with 4 terms Must have found the value of e from a legitimate method. WWW SCM1A1 Loss of KE $=8 e(1-e)^{3} / 5$ or $8 e\left(1-3 e+3 e^{2}-e^{3}\right) / 5$ or $8 e / 5-24 e^{2} / 5+24 e^{3} / 5-8 e^{4} / 5$
6	(iii)	$0.2 e(4-4 e)=0.192 \text { or } 0.2\left(4-\left(4-4 e+4 e^{2}\right)\right)=0.192$ Solve three term QE in e $e=0.4 \text { or } 0.6$	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	```Attempt to use impulse = change in momentum on one particle method should lead to 2 real values for } For both```
7	(i)	$\begin{aligned} & u \cos \theta=14 \cos 20 \\ & -14 \sin 20=u \sin \theta-1.4 g \\ & u^{2}=(1.4 g-14 \sin 20)^{2}+(14 \cos 20)^{2} \\ & u=15.9 \quad \text { AG } \\ & \tan \theta=(1.4 g-14 \sin 20) / 14 \cos 20 \\ & \theta=34.2 \end{aligned}$	B1 M1 A1 M1 A1 M1 A1 [7]	$U_{x}=13.15 \ldots$ Horizontal component of initial velocity, could use U_{x} Complete method to find vertical component of initial velocity, could use U_{y} $U_{y}=8.9317 \ldots \ldots$ Method to find u cwo Method to find θ or a relevant angle SC M1A1 for $-\tan 20=(u \sin \theta-1.4 g) / u \cos \theta$ OR $14^{2}=(u \sin \theta-1.4 g)^{2}+(u \cos \theta)^{2}$ B1M1A1 for both.

Question			Answer	Marks	Guidance
7		(ii)	$\begin{aligned} & 1 / 2 m\left(15.9^{2}-14^{2}\right)=m g y \\ & y=2.9 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Method to find Level of P above A
	OR	(ii)	$\begin{aligned} & (14 \sin 20)^{2}=(15.9 \sin \theta)^{2}-2 g s \text { or } s=15.9 \sin \theta \times 1.4-1 / 2 g \times 1.4^{2} \\ & s=2.9 \mathrm{~m} \end{aligned}$	M1 A1ft A1 [3]	Use constant acc formulae, a complete method needed. ft their θ from (i). no θ value used then M1A0.
7		(iii)	$\begin{aligned} & -2.9=v \sin 20 . t-9.8 t^{2} / 2 \\ & 2.9 \tan 20=v \cos 20 . t \end{aligned}$ Eliminate t to obtain equation in v only Solve for v $v=1.37$	B1ft B1ft M1 M1 A1 [5]	ft their 2.9 ft their 2.9 Eliminate v to obtain equation in t only and solve for t Substitute t to find v
	OR	(iii)	$-2.9=(2.9 \tan 20) \times \tan 20-g(2.9 \tan 20)^{2} / 2 v^{2} \cos ^{2} 20$ Solve for v $v=1.37$	M2 A1ft M1 A1 [5]	Using equation of trajectory method.
	OR	(iii)	$\begin{aligned} & 2.9 / \cos 20=1 / 2 g \cos 20 \times t^{2} \\ & 0=v t-1 / 2 g \sin 20 \times t^{2} \end{aligned}$ Eliminate t Solve for v $v=1.37$	B1ft B1 M1 M1 A1 [5]	$t=0.817$
7		(iv)	$e=0.098$	$\begin{gathered} \mathrm{B} 1 \mathrm{ft} \\ \text { [1] } \\ \hline \end{gathered}$	ft their v from (iii), must be $v / 14$.

Question			Answer	Marks	Guidance
1	(i)		$\begin{aligned} & (20 \sin \theta)^{2}-2 g(2.44)=0 \\ & \theta=20.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Use $v^{2}=u^{2}+2 a s$ vertically with $v=0$ $\theta=20.22908 \ldots$
	(ii)		$\begin{aligned} & 20 \sin \operatorname{cv}(\theta) t-1 / 2 g t^{2}=0 \\ & \text { AND range }=20 \operatorname{cv}(t) \cos \operatorname{cv}(\theta) \\ & \text { Range }=26.5 \mathrm{~m} \end{aligned}$	M1 A1 [2]	Use $s=u t+1 / 2 a t^{2}$ vertically with $s=0$ OR use $v=u+a t$ and doubles t AND horizontally with time found from vertical. ($\mathrm{t}=1.4113 \ldots \mathrm{~s}$ or $1.4093 \ldots \mathrm{~s}$ (from 20.2)) $\text { Range }=26.48541 \ldots \text { m or } 26.45387 \ldots . . \mathrm{m} \text { (from 20.2) }$
		OR	$\begin{aligned} & \frac{20^{2} \sin (2 \times \operatorname{cv}(\theta))}{g} \\ & \text { Range }=26.5 \mathrm{~m} \end{aligned}$	M1 A1 [2]	Use of range formula Range $=26.48541 \ldots \mathrm{~m}$ or $26.45387 \ldots . \mathrm{m}$ (from 20.2)
2	(i)		$\begin{aligned} & r / 6=\tan 21 \\ & r=2.3(0) \end{aligned}$	M1 A1 A1 [3]	Attempt to use trigonometry to form equation for r $r=2.30318 \ldots$
	(ii)		$\begin{aligned} & \mu<\mathrm{cv}(r) / 6 \text { or } \mu m g \cos 21<m g \sin 21 \\ & \mu<0.384 \text { or tan } 21 \end{aligned}$	M1 A1 [2]	Attempt comparison between weight comp and max friction. $\mu<0.38386 \ldots$ or $0.38333 \ldots$ (from 2.3); allow \leq
3	(i)		CoM of triangle $=1 / 3 \times \operatorname{cv}(12)$ from $B D$ $\begin{aligned} & (80+60) x_{\mathrm{G}} \\ & x_{\mathrm{G}}=7.43 \mathrm{~cm} \end{aligned}=4(80)+12(60)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [5] } \\ & \hline \end{aligned}$	$\mathrm{OR}^{2} / 3 \mathrm{x} \operatorname{cv}(12)$ from C . CoM of triangle Table of values idea $7.42857 \ldots \text { or }^{52} / 7 \mathrm{~cm}$
	(ii)		$\begin{aligned} & \tan \theta=\left(8-x_{\mathrm{G}}\right) / 5 \\ & \tan \theta=0.5714 \ldots / 5 \\ & \theta=6.52^{\circ} \end{aligned}$	M1 A1ft A1 [3]	Using tan to find a relevant angle ft their x_{G} to target angle with the vertical 6.5198... Allow 6.5(0) from $x_{G}=7.43$

Question		Answer	Marks	Guidance
4	(i)	$\begin{aligned} & 18(10)-T(20 \sin \theta)+3(6)=0 \\ & T=16.5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Moments about P Need a value for $\sin \theta$ or θ Exact
	(ii)	$X=T \cos \theta$ $\begin{aligned} & Y+T \sin \theta-18-3=0 \\ & R=\sqrt{ }\left(13.2^{2}+11.1^{2}\right)=17.2 \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { B1ft } \\ \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ \text { [4] } \\ \hline \end{gathered}$	ft candidates value of T. Resolve horizontally ($X=13.2 \mathrm{~N}$) or moments; Need a value for $\cos \theta$ or θ Resolve vertically or moments ft candidates value of $T . Y=11.1 \mathrm{~N}$; Need a value for $\sin \theta$ or θ $R=17.2467 \ldots$
	(iii)	$\begin{aligned} & \mu=\operatorname{cv}(\|Y\|) / \operatorname{cv}(\|X\|)=11.1 / 13.2 \\ & \mu=0.841 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	$\begin{aligned} & \text { Use of } F r=\mu R \\ & \mu=0.8409 \ldots \text {; } \text { allow }^{37} / 44 \end{aligned}$
5	(i)	$\begin{aligned} & \text { Driving Force }=10000 / 20(=500) \\ & \operatorname{cv}(10000 / 20)-1300+800 g \sin \alpha=0 \\ & \sin \alpha=5 / 49 \end{aligned}$	B1 M1 A1 A1 [4]	Attempt at N2L with 3 terms AG at least one more line of correct working (at least e.g. $-800+800 g \sin \alpha=0$); allow verification (e.g. $500-1300+800=0$)
	(ii)	$\begin{aligned} & 800(22.1) g \sin \alpha \\ & 800(22.1) g \sin \alpha+1300(22.1)+1 / 2(800)\left(8^{2}\right) \\ & t=3.6(0) \mathrm{s} \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [5] } \\ \hline \end{gathered}$	Work done against weight; Need a value for $\sin \alpha$ or α Total work done, 3 terms needed Need a value for $\sin \alpha$ or α; (72010 J) Time = work done(from at least one correct energy term)/power 'Exact' is 3.6005
6	(i)	$\begin{aligned} & (2 m)(4)-(3 m)(2)=2 m v_{A}+3 m v_{B} \\ & \left(v_{B}-v_{A}\right) /(4--2)=0.4 \end{aligned}$ Speed $A=1.04 \mathrm{~m} \mathrm{~s}^{-1}$, Speed $B=1.36 \mathrm{~m} \mathrm{~s}^{-1}$	*M1 A1 *M1 A1 Dep**M1 A1 $[6]$	Attempt at use of conservation of momentum Attempt at use of coefficient of restitution Solving for v_{A} and v_{B} Final answers must be positive

Question			Answer	Marks	Guidance
	(iv)		$\begin{aligned} & 2 T \sin \theta=0.4(0.854 \sin \theta)\left(3.46^{2}\right) \\ & T=2.04 \mathrm{~N} \\ & 2 T \cos \theta=0.4 g \\ & \theta=16.5^{\circ} \text { or } 16.6^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	θ angle with vertical. Resolve horizontally. Allow with T only. $r=$ component of 0.854 $T=2.04474 \ldots \mathrm{~N}$ using $A P=0.854 \mathrm{~m}, T=2.04367 \ldots \mathrm{~N}$ using exact $A P$ θ angle with vertical. Resolve vertically. Allow with T only $\theta=16.55377 \ldots{ }^{\circ}$ using $A P=0.854 \mathrm{~m}, \theta=16.4526 \ldots{ }^{\circ}$ using exact $A P$ SC M1A0M1A1 for use of T instead of 2T throughout
8	(i)		$\begin{aligned} & \hline v_{x}=12 \cos 20 \\ & 8=12 t \cos 20 \\ & \\ & v_{y}=12 \sin 20-g \operatorname{cv}(t) \\ & \tan \theta=v_{y} / v_{x} \\ & 14.2^{\circ} \text { below horizontal } \end{aligned}$	*B1 B1 *M1 A1 Dep**M1 A1 $[6]$	11.27631..... Using suvat to find expression in t only. ($t=0.70945 \ldots$...) Attempt at use of $v=u+a t$ $-2.84838 \ldots \ldots$ Use trig to find a relevant angle 14.1763... (75.8° downward vertical)
	(ii)		$\begin{aligned} & 8=V t \cos 20 \\ & 1.5=V t \sin 20-g t^{2} / 2 \end{aligned}$ Eliminate t Attempt to solve a quadratic for V $V=15.9$	$\begin{gathered} \text { B1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	Attempt at use of $s=u t+1 / 2 a t^{2}$ OR Eliminate V and solve for t AND Sub value for t and solve for V $V=15.8606 \ldots$
		OR	$y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 u^{2}$ Substitute values for y, x, θ $1.5=8 \tan 20-g 8^{2} \sec ^{2} 20 / 2 V^{2}$ Attempt to solve a quadratic for V $V=15.9$	$\begin{gathered} \text { *B1 } \\ \text { dep*M1 } \\ \text { A1 } \\ \text { dep*M2 } \\ \text { A1 } \\ \text { [6] } \\ \hline \end{gathered}$	Use equation of trajectory SC M1 for solving for V^{2} $V=15.8606 \ldots$

