1	$\pm (5.4\cos 45^{\circ} - 8.7)$	M1		For attempting to find Δv in i dir'n
		M1		For using $I = m(\Delta v)$ in i direction
	$I\cos\theta = \pm 0.4(5.4\cos 45^\circ - 8.7)$	A1		$(= \pm 1.953)$
	$I\sin\theta = 0.4x5.4\sin45$	B1		(= 1.527)
	$I = \sqrt{(1.527^2 + 1.953^2)}$ or			
	•	M 1		For using Pythagoras or trig.
	$\theta = \tan^{-1}[1.527/(-1.953)]$			
	Magnitude is 2.48 kgms ⁻¹	A1		
	Direction is 142° to original	A1	[7]	Accept $\theta = 38.0^{\circ}$ with θ shown
	dir'n.			appropriately
OR		M1		For using Impulse = mass x Δv
	$1 - 0 + (5 + 1^2) - 0 = 7^2$	M1		For appropriate use of cosine rule
	$I = 0.4 (5.4^2 + 8.7^2 - $	A 1		
	2x5.4x8.7cos45°) ^{1/2}	A1		
	Magnitude is 2.48 kgms ^{-1}	A1		
	Wagintude is 2.46 kgnis	M1		For appropriate use of sine rule
	$\sin \theta / 5.4 = \sin 45^{\circ} / 6.1976$	A1		Tor appropriate use of sine rule
	$\theta = 38.0^{\circ}$	A1		
	0 - 50.0			
2	(i)	M1		For correct use of Newton's 2 nd law
	$0.5 \mathrm{dv}/\mathrm{dt} = 1 + kt^2$	A1		
	$v = 2t + 2kt^3/3$	A1	[3]	
				SR(max 1/3) for omission of mass but
				otherwise correct
				$v = t + kt^3/3$
	,,,			B1
	(ii) $x = t^2 + kt^4/6$	M1		For integration w.r.t. t
	2 = 1 + k/6	M1		For substitution and attempting to solve
	1- 6	A 1		for k
	k = 6	A1 M1		For attempting to solve quadratic in t^2 for
		1111		t
	t = 2	A1	[5]	With no extra solutions
			[0]	
3	(i)	M1		For use of EE formula
	$EE = \lambda x (5-3)^2 / (2 x 3)$	A1		
	$2\lambda/3 = 1.6 \ge 9.8 \ge 5$	M1		For equating EE and PE
	$\lambda = 117.6 \text{ N}$	A1	[4]	AG
	(ii)	M1		For use of conservation of energy
	$0.5 \times 1.6 \text{v}^2 = 1.6 \times 9.8 \times 4.5$	A2,1	,0	-1 each error
	-			
	$117.6x1.5^{2}/(2x3)$ v = 5.75 ms ⁻¹	Λ1	[<i>1</i>]	
1	v = 3.73 IIIS	A1	[4]	

4	Perp. vel. of A after impact = 4	B1		
		M1		For using cons'n of m'm'tum // l.o.c
	[5x0] - 2x4 = 5a + 2b	A1		
		M1		Using N.E.L. // l.o.c.
	0.75 x 4 = b-a	A1		
		M1		For solving sim. equ.
	Speed of B is 1ms ⁻¹ ; direction			
	//l.o.c. and to the right	A1		
	$v_A = \sqrt{(4^2 + (-2)^2)}$	M1		For method of finding the speed of A
	tan(angle) = 4/2	M1		For method of finding the direction of A
	Speed of A is 4.47 ms^{-1} ;			-
	direction is 63.4° to l.o.c. and to	A1	[10	
	the left]	
5	(i)	M1		For any moment equ. that includes F and all other relevant forces
	1.8F = 0.9x40 + 1.4x9	A2,1	.0	-1 each error
	Magnitude is 27 N	A1	[4]	AG
	(ii) Vertical comp. is 22 N			
	downwards	B1		
		M1		For any moment equ. that includes X and all other relevant forces
	1.2X = (40+9-27)x(3.8-1.8) + 64	A2,1	0 ft	-1 each error.
	1.2X = (40+9-27)X(5.8-1.8) + 04 x1 (1.2X = 44 + 64)	A2,1	,0 II	ft wrong vert. comp.
	Horizontal comp. is 90 N to the	A1	[5]	it wrong vert. comp.
	left	111	[9]	
	(iii) $\mu = 27/[90]$	M1		For use of $\mu = F/R$
	Coefficient of friction is 0.3	A1	[2]	ft wrong answer in (ii)
		ft		
6	(i)	M1		For use of conservation of energy
				85
	$0.5x0.3v^2 - 0.5x0.3x2^2 =$			

$0.5x0.3v^2 - 0.5x0.3x2^2 =$			
0.3x9.8x0.5cos60 –			
	A2,1,	0	-1 each error
$0.3x9.8x0.5\cos\theta$			
$v^2 = 8.9 - 9.8\cos\theta$	A1	[4]	AG
(ii)	M1		For using Newton's 2 nd law radially
$T + 0.3x9.8\cos\theta = 0.3v^2/0.5$	A1		
$T + 2.94\cos\theta =$	M1		For correct substitution for v^2
$0.6(8.9 - 9.8\cos\theta)$			
Tension is $(5.34 - 8.82\cos\theta)$ N	A1	[4]	Accept any correct form
(iii)	M1		For using $T = 0$
Basic value $\theta = 52.7^{\circ}$	A1 ft		ft any T of the form a - b $\cos \theta$
Angle = (360-52.7) - 60	M1		
Angle turned through is 247°	A1	[4]	

7	$\langle \cdot \rangle$	3.41		
7	(i)	M1		For using $T = \lambda e/L$ once
	For 180e/1 or 360(0.8-e)/1.2 or			
	$T_A = 180 \ge 0.5/1 \text{ or}$			
	$T_{B} = 360 \text{ x}$	A1		
	0.3/1.2			
	$480e = 240 \text{ or } T_A = 90, T_B = 90$	M1		For using $T_A(e) = T_B(e)$ or attempting to show $T_A = T_B$ when BQ = 1.5
	$BQ = 1 + 0.5 = 1.5 \text{ m or } T_A = T_B$	A1	[4]	AG
	(ii) $T_B = 360(0.3 - x)/1.2$	B1		
	$T_A = 180(0.5 + x)$	B1		
	$1.2d^2x/dt^2 =$	M1		For using Newton's 2 nd
	300(0.3-x) - 180(0.5+x)			law
	$d^2x/dt^2 = -400x$	A1		
	Period is $2\pi / \sqrt{[400]} = 0.314$ s	A1	[5]	AG
	(iii)	M1		For using $T_B = 0$
	Max amplitude = $1.5 - 1.2 = 0.3$	A1		
	m			
	amplitude = $u/\sqrt{400}$ or	M1		For using Amp. = u/ω or 'energy at
	$180 \times 0.5^2 / (2 \times 1) +$			equil. pos'n = energy at max. displ.'
	$360x0.3^{2}/(2x1.2)$			
	$+ \frac{1}{2} 1.2 u_{\text{max}}^2 =$			
	$+ \frac{1}{2} \frac{1.2u_{max}}{1.2u_{max}} = \frac{180 \times 0.8^2}{(2 \times 1)}$			
	Maximum value of u is 6	A1	[4]	٨G
			[4]	AG
	(iv) $-0.2 = 0.3 \sin 20t$	M1		For relevant trig. equation
	20t = 0.7297 + 3.142	M1	[2]	For method of obtaining relevant solution
	Time taken is 0.194s	A1	[3]	

1	(i)		M1		For using $I = \Delta$ (mv) in the direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\cos\theta = 0.4x25$	A1		
		Direction at angle 120° to original motion	A1	3	Accept $\theta = 60^{\circ}$ with θ correctly identified.
	(ii)		M1		For using $I = \Delta$ (mv) perp. to direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\sin 60^{\circ} = 0.4v$	A1ft		
		Speed is 43.3 ms ⁻¹	A1	3	
2			M1		For applying Newton's 2 nd Law.
		$2v(dv/dx) = -(2v + 3v^2)$	M1 A1		For using $a = v(dv/dx)$.
			M1		For separating variables and attempting to integrate.
		$2/3\ln(2 + 3v) = -x$ (+C)	A1ft		ft absence of minus sign,
		[2/3ln14 = C]	M1		For using $v(0) = 4$.
		$[2/3\ln 2 = -x + 2/3\ln 14]$	M1		For attempting to solve $v(x) = 0$ for x.
		Comes to rest after travelling 1.30m	A1	8	AG

3 ((i)		M1		For taking moments about C for the whole structure.
		1.4R = 0.35x360 + 1.05x200	A1		
		Magnitude is 240N	A1		AG
			M1		For taking moments about A for the rod AB.
		0.7x240 = 0.35x200 + 1.05T	A1		
		Tension is 93.3N	A1	6	
(OR				
((i)		M1		For taking moments about A for AB and AC.
		$0.7R_B = 70 + 1.05T \text{ and}$ $0.7R_C = 126 +$	A1		
		1.05T			
			M1		For eliminating T or for adding the equations, and then using $R_B + R_C = 560$.
		$0.7(560 - R_B) - 0.7R_B = 126 - 70 \text{ or}$ 0.7x560 = 70 + 126 + 2.1T	A1		For a correct equation in R_B only or T only
		Magnitude is 240N	A1		AG
		Tension is 93.3N	A1	6	-
((ii)	Horizontal component is 93.3 N to the left	B1ft		
		Y = 240 - 200	M1		For resolving forces vertically.
		Vertical component is 40 N downwards	A1	3	-

4	(i)		M1		For using Newton's 2^{nd} Law
		L(m) $\ddot{\theta}$ = -(m)gsin θ or (m) \ddot{s} = -	A1		perp. to string with $a = L\theta$.
		(m)gsin(s/L) $\ddot{\theta} \approx -k\theta$ or $\ddot{s} = -ks$ [and motion is therefore approx. simple harmonic]	B1		
			M1		For using T = $2\pi/n$ and k = w ² or T = $2\pi\sqrt{L/g}$ for
		Period is 3.14s.	A1	5	simple pendulum. AG
	(ii)		M1		For using $\dot{\theta}^2 = n^2 (\theta_0^2 - \theta^2)$ or the principle of conservation of
		$\dot{\theta}^2 = 4(0.1^2 - 0.06^2) \text{ or}$ $\frac{1}{2} \text{ m}(2.45 \dot{\theta})^2 =$ 2.45mg(cos0.06 - cos0.1)	A1		energy
		Angular speed is 0.16 rad s ⁻¹ .	A1	3	(0.1599 from energy method)
	OR	(in the case for which (iii) is attempted before (ii))			
	(ii)	$[\dot{\theta} = -0.2 \sin 2t]$	M1		For using $\dot{\theta} = d(A\cos nt)/dt$
		$\dot{\theta}$ = -0.2sin(2x0.464)	A1ft		
		Angular speed is 0.16 rad s⁻¹.	A1	3	
	(iii)		M1		For using θ = Acos nt or Asin($\pi/2$ – nt) or for using θ = Asin nt and T =t _{0.1} – t _{0.06}
		0.06 = 0.1cos2t or 0.1sin($\pi/2$ – 2t) or 2T = $\pi/2$ –	A1ft		ft angular displacement of 0.04 instead of 0.06
		or $2T = \pi/2 - \sin^{-1}0.6$			
		Time taken is 0.464s	A1	3	

5		M1		Σ mv conserved in i direction.
	$2x12\cos 60^{\circ} - 3x8 = 2a + 3b$	A1		
		M1		For using NEL
	For LHS of equation below	A1		
	0.5(12cos60° + 8) = b - a	A1		Complete equation with signs of a and b consistent with previous equation.
	Speed of B is 0.4ms ⁻¹ in i direction	M1 A1		For eliminating a or b.
	a = -6.6 Component of A's velocity in j	A1 B1		May be shown on diagram
	direction is 12sin60°			or implied in subsequent work.
	Speed of A is 12.3ms ⁻¹	B1ft		
		M1		For using $\theta = \tan^{-1}(\mathbf{j} \operatorname{comp}) \pm \mathbf{i} \operatorname{comp})$
	Direction is at 122.4° to the i direction	A1ft	1 2	Accept $\theta = 57.6^{\circ}$ with θ correctly identified.
6 (i)	T = 1470x/30	B1		-
	[49x = 70x9.8]	M1		For using T = mg
	x = 14	A1		
	Distance fallen is 44m	A1ft	4	
(ii)	PE loss = $70g(30 + 14)$	B1ft		
	EE gain = 1470x14 ² /(2x30) [½ 70v ² = 30184 – 4802]	B1ft M1		For a linear equation with terms representing KE, PE
	Speed is 26.9ms ⁻¹	A1	4	and EE changes. AG
OR				
(ii)	[0.5 v ² = 14g – 68.6 + 30g]	M1		For using Newton's 2^{nd} law (vdv/dx = g - 0.7x), integrating (0.5 v ² = gx - 0.35x ² + k), using v(0) ² = $60g \rightarrow k = 30g$, and substituting x = 14.
	For 14g + 30g	B1ft		-
	For 7 68.6	B1ft		Accept in unsimplified form.
	Speed is 26.9ms ⁻¹	A1	4	AG
(iii)	PE loss = $70g(30 + x)$	B1ft		
	EE gain = $1470x^2/(2x30)$	B1ft		
	$[x^2 - 28x - 840 = 0]$	M1		For using PE loss = KE gain to obtain a 3 term quadratic equation.
	Extension is 46.2m	A1	4	
OR				
(iii)		M1		For identifying SHM with n ² =
				1470/(70x30)
	$A = 26.9 / \sqrt{0.7}$	M1 A1		For using $v_{max} = An$
	Extension is 46.2m	A1	4	
L		734	-7	

7	(i)	$\frac{1}{2}$ 0.3v ² + $\frac{1}{2}$ 0.4v ²	B1		
	(.)	$\pm 0.3g(0.6\sin\theta)$	B1		
		$\pm 0.4g(0.6\theta)$	B1		
		$[0.35v^2 = 2.352\theta - 1.764\sin\theta]$	M1		For using the principle of
					conservation of energy.
		$v^2 = 6.72 \theta - 5.04 \sin \theta$	A1	5	AG
	(ii)		M1		For applying Newton's 2^{nd} Law radially to P and using $a = v^2/r$
		$0.3(v^2/0.6) = 0.3gsin\theta - R$	A1		
		$[\frac{1}{2}(6.72\theta - 5.04\sin\theta) =$	M1		For substituting for v^2 .
		,			-
		0.3gsin θ - R]			
		Magnitude is (5.46sin $ heta$ –	A1		AG
		3.36θ)N			
		$[5.46\cos\theta - 3.36 = 0]$	M1		For using dR/d θ = 0
		Value of θ is 0.908	A1	6	
	(iii)	$[T - 0.3g\cos\theta = 0.3a]$ [0.4g - T = 0.4a]	M1 M1		For applying Newton's 2 nd Law tangentially to P For applying Newton's 2 nd Law to Q
					[If $0.4g - 0.3g\cos\theta = 0.3a$ is seen, assume this derives from $T - 0.3g\cos\theta = 0.3a$ M1
					and T = 0.4g M0]
		Component is 5.6 – 4.2 $\cos\theta$	A1	3	5 1
	OR				
	(iii)	$0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$	B2		
		Component is 5.6 – 4.2 $\cos\theta$	B1	3	
	OR				
	(iii)	$[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$	M1		For differentiating v^2 (from (i)) w.r.t. θ
		2 (0.6a) = 6.72 - 5.04 $\cos \theta$	M1		For using $v(dv/d\theta) = ar$
		Component is 5.6 – 4.2 $\cos\theta$	A1	3	

Mark Scheme

1	M1	For using the principle of conservation of energy
$\frac{1}{2} 0.6x5^2 - \frac{1}{2} 0.6v^2 = 0.6g(2x0.4) [v^2 = 9.32]$	A1	
[T + 0.6g = 0.6a]	M1	For using Newton's second law
[a = 9.32/0.4]	M1	For using $a = v^2/r$
T + 0.6g = 0.6x9.32/0.4	A1ft	ft incorrect energy equation
Tension is 8.1N	A1 6	5

2	$28\cos 30^{\circ} - 10\cos 30^{\circ}$ [= $\Delta v_{\rm H}$] =	B1		
	$(I/m)\cos\theta$]			
	$10\sin 30^{\circ} + 28\sin 30^{\circ}$ [= $\Delta v_{\rm V}$] =	B1		
	$(I/m)\sin\theta$]			
	$X = -I\cos\theta = -0.8885, Y = I\sin\theta =$	M1		For using mv change for
	1.083]			component or resultant
	-	M1		For using $I^2 = X^2 + Y^2$
	I = 1.40	A1		-
	$[\tan\theta = 1.083/0.8885 \text{ or } 19/15.588]$	M1		For using $\theta = \tan^{-1}(Y/-X)$ or
				$\tan^{-1}(\Delta v_V / \Delta v_H)$
	$\theta = 50.6$	A1	7	

	ALTERNATIVELY			
2		M1		For using cosine rule in correct triangle
	$(I/m)^2 = 28^2 + 10^2 - 2x28x10\cos 60^\circ \ [=604]$	A1		C C
	$[I = 0.057 \sqrt{604}]$	M1		For using I = mv change
	I = 1.40	A1		
		M1		For using sine rule in correct triangle
	$(I/m)/sin60^{\circ} =$	A1		C
	$10/\sin(\theta - 30^{\circ})$ or $28/\sin(150^{\circ} -$			
	heta)			
	$\theta = 50.6$	A1	7	

3	(i) $160a = 2aY$	M1		For taking moments for AB about B
	Component at B is 80N	A1		about B
	Component at C is 240N	B1ft	3	ft 160 + Y
		M1		
	(ii)	111		For taking moments for BC about B or C (and using X =
				F) or for whole about A F
	$160a \cos 60^{\circ} + 2aF\sin 60^{\circ} = 240x2a \cos 60^{\circ}$	Alft		r) of for whole about A
		AIIt		
	or $80x2a \cos 60^{\circ} + 160a \cos 60^{\circ} = 2aX\sin 60^{\circ}$			
	or			
	$240(2 + 2\cos 60^{\circ})a =$			
	$160a + 160(2 + \cos 60^{\circ})a +$			
	2aFsin60°			
	Frictional force is 92.4N	A1		
	Direction is to the left	B1	4	
	(iii) [92.4/240]	M1		For using $F = \mu R$
		A1ft	2	$1 \text{ of using } 1 = \mu \text{ K}$
	Coefficient is 0.385	AIII	2	
4	(i)	M1		For using $T = mg$ and $T =$
4	(i)	111		$\lambda e/L$
		A 1		λe/L
	3.5e/0/7 = 0.2g [e =	A1		
	0.392] Position is 1.092m below O.	A1	3	AG
	(ii)	M1		For using Newton's second
	(11)	1111		law
	0.2g - 3.5(0.392 + x)/0.7 = 0.2a	A1ft		ft incorrect e
	a = -25x	A1ft		ft incorrect e
	$125A^2 = 1.6^2$ or	M1		For using $A^2n^2 = v_{max}^2$ or
	$\frac{1}{2}(0.2)1.6^2 + 3.5x0.392^2/(2x0.7) +$	1011		Energy at lowest point = $\frac{1}{2}$
	0.2gA			energy at equilibrium point (4
	$= 3.5 \times (0.392 + 10^{-1})$			terms needed including 2 EE
	$A)^{2}/(2x0.7)$			terms)
	Amplitude is 0.32m	A1ft	5	/
	(iii) $[x = 0.32 \sin 2^{c}]$	M1		For using $x = Asin nt or$
	() [········]			Acos($\pi/2$ -
				nt)
	x = 0.291	A1		
	$[v = 0.32x5\cos 2^{\circ} \text{ or } v^2 = 25(0.32^2 - 0.291^2)]$	M1		For using $v = Ancos nt$ or
	or			$v^2 = n^2(A^2 - x^2)$ or
	0.256 + 0.38416 + 0.2g(0.291)			Energy at equilibrium point =
	$= \frac{1}{2} 0.2 v^2 +$			energy at $x = 0.291$
	$2.5(0.683)^2$			
	$v^2 = 0.443$	A1		May be implied
	v = -0.666 (or 0.666 upwards)	A1	5	- I
	v = -0.666 (or 0.666 upwards)	A1	5	

Mark Scheme

5	(i) $[ma, mlm^2, ma]$	N/1		Fermine Newton's second
5	(i) $[mg - mkv^2 = ma]$	M1		For using Newton's second
	(1,1) $(1,2)$ $(1,2)$	A 1	2	law
	$(v dv/dx)/(g - kv^2) = 1$	A1		AG
	(ii) $[-\frac{1}{2} [\ln(g - kv^2)]/k = x (+C)]$	M1		For separating variables and
				attempting to integrate
	$[-(\ln g)/2k = C]$	M1		For using $v(0) = 0$ to find C
	$x = [-\frac{1}{2} [\ln\{(g - kv^2)/g\}]/k$	A1		Any equivalent expression for
	2			Х
	$[\ln\{(g - kv^2)/g\} = \ln(e^{-2kx})]$	M1		For expressing in the form
				$\ln f(v^2) = \ln g(x)$ or equivalent
	$v^2 = (1 - e^{-2kx})g/k$	A1		
		M1		For using $e^{-Ax} \rightarrow 0$ for +ve A
	Limiting value is $\sqrt{g/k}$	A1ft	7	AG
				$\Sigma = \frac{2}{2} \frac{2}{200} = 0.02 \frac{1}{10}$
	(iii) $[1 - e^{-600k} = 0.81]$	M1		For using $v^2(300) = 0.9^2 g/k$
	$[-600k = \ln(0.19)]$	M1		For using logarithms to solve
	1 0.00077		~	for k
	k = 0.00277	A1	3	
	() 5 1 200 23	1/1		
6	(i) $[u \sin 30^\circ = 3]$	M1		For momentum equation for
	-	, .	-	B, normal to line of centres
	u = 6	A1		
	(ii) $[4\sin 88.1^\circ = v \sin 45^\circ]$	M1		For momentum equation for
				A, normal to line of centres
	v = 5.65	A1		
		M1		For momentum equation along
				line of centres
	$0.4(4\cos 88.1^{\circ}) - mu\cos 30^{\circ} = -0.4v\cos 45^{\circ}$	A1		
	m = 0.318	A1	5	
	(iii)	M1		For using NEL
	$0.75(4\cos\theta + u\cos 30^\circ) = v\cos 45^\circ$	A1		
	$4\sin\theta = v \sin 45^{\circ}$	B1		
	$[3\cos\theta + 4.5\cos 30^\circ = 4\sin\theta]$	M1		For eliminating v
	$8\sin\theta - 6\cos\theta = 9\cos^2\theta$	A1	5	AG
7	(i)(a) Extension = $1.2 \alpha - 0.6$	B1	5	
/	$[T = mgsin \alpha]$	M1		For resolving forces
	$[1 - \lim_{\alpha \to 0} \sin \alpha]$	1111		0
	$0.5 \times 9.8 \sin \alpha = 6.86 (1.2 \alpha - 0.6)/0./6$	A1ft		tangentially
			Л	
	$\sin \alpha = 2.8 \alpha - 1.4$	A1	4	AG
	(i)(b) [0.8, 0.756, 0.745, 0.742,	M1		For attempting to find α_2 and
	0.741, 0.741,]		r.	α_3
	$\alpha = 0.74$	A1	2	
	(ii) $\Delta h = 1.2(\cos 0.5 - \cos 0.8)$	B1		
	[0.217]			
	[0.5x9.8x0.217 = 1.06355]	M1		For using Δ (PE) = mg Δ h
	$[6.86(1.2x0.8 - 0.6)^2/(2x0.6) = 0.74088]$	M1		For using $EE = \lambda x^2/2L$
		M1		For using the principle of
				conservation of energy
	$\frac{1}{2} 0.5 v^2 = 1.063550.74088$	A1		Any correct equation for v^2
	Speed is 1.14ms^{-1}	A1		ing concer equation for t
	Speed is decreasing	B1ft	7	
L	speed is decreasing	DIII	1	

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using T = $2\pi/\omega$
		M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	6 max
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$
				or for using $v = A \omega \cos \omega t$ and x
				$= A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect ω
	or $x = 3\sin(1.03x0.60996)$			
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes
				shown
	For magnitudes of 2 sides correctly marked	A1		
	For magnitudes of all 3 sides correctly marked	A1		
		M1		For attempting to find angle (α)
				opposite to the side of magnitude
		N / 1		0.057 x 7
		M1		For correct use of the cosine rule
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \ge 0.57 \ge 0.6\cos \alpha$	A1ft		or equivalent
	$0.599 = 0.57 + 0.6 - 2 \times 0.57 \times 0.0008 \alpha$ Angle is 140°	Alt Al	7	$(180 - 39.8)^{\circ}$
	Aligie is 140	AI	/	(160 - 59.6)
2	ALTERNATIVE METHOD			
-		M1		For using I= Δ mv parallel to the
				initial direction of motion
				or parallel to the impulse
	$-0.6\cos \alpha = 0.057 \text{ x } 7\cos \beta - 0.057 \text{ x } 10$	A1		r
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
	01 0.0 - 0.05 / X10 005 W + 0.05 / X10 05 /	M1		Ean using L A my norman disular
		111		For using I= Δ mv perpendicular to the initial direction of motion
				or perpendicular to the impulse
	$0.6\sin \alpha = 0.057 \text{ x } 7\sin \beta$	A1		or perpendicular to the impulse
		411		
	or $0.057 \times 10 \sin \alpha = 0.057 \times 7 \sin \gamma$	N/1		
		M1		For eliminating β *or γ
	$0.399^2 = (0.57 - 0.6\cos\alpha)^2 + (0.6\sin\alpha)^2$	A1ft		
	or $0.399^2 = (0.6 - 0.57\cos\alpha)^2 + (0.057\sin\alpha)^2$			â
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$

3	(i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law
	$(1/\omega) d\omega/d\omega = 2$	A 1	n	with $a = v dv/dx$
	$(1/v) \frac{dv}{dx} = -2$ (ii) $\int \int (1/v) dv - \int -2 dx J$	<u>A1</u> M1	2	AG For separating variables and
	(ii) $\left[\int (1/v)dv = \int -2dx\right]$	1411		attempting to integrate
	$\ln v = -2x (+C)$	A1		
	$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
	$v = ue^{-2x}$	A1	4	AG
	(iii) $\left[\int e^{2x} dx = \int u dt\right]$	M1		For using $v = dx/dt$ and
		A 1		separating variables
	$e^{2x}/2 = ut$ (+C) [$e^{2x}/2 = ut + \frac{1}{2}$]	A1 M1		For using $\mathbf{x}(0) = 0$
	$[e^{-72} = ut + 72]$ u = 6.70	A1	4	For using $x(0) = 0$ Accept $(e^4 - 1)/8$
	u - 0.70	711	- T	
	ALTERNATIVE METHOD FOR PART (iii)			
	$\int \frac{1}{v^2} dv = -2 \int dt \Rightarrow -1/v = -2t + A$, and	M1		For using $a = dv/dt$, separating variables, attempting to integrate
	V A = -1/u]			and using $v(0) = u$
		M1		For substituting $v = ue^{-2x}$
	$-e^{2x}/u = -2t - 1/u$	A1		8
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
4	$y=15\sin\alpha$ (=12)	B1		
	$[4(15\cos\alpha) - 3 \ge 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the
				direction of loc
	Equation complete with not more than one error	A1		direction of l.o.c.
	Equation complete with not more than one error $4a + 3b = 0$	A1 A1		direction of l.o.c.
	Equation complete with not more than one error $4a + 3b = 0$	A1 A1 M1		For using NEL in the direction of
	4a + 3b = 0	A1 M1		
	4a + 3b = 0 0.5(15cos α + 12) = b - a	A1 M1 A1		For using NEL in the direction of l.o.c.
	4a + 3b = 0 $0.5(15\cos \alpha + 12) = b - a$ [a = -4.5, b = 6]	A1 M1		For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or
	4a + 3b = 0 $0.5(15\cos \alpha + 12) = b - a$ [a = -4.5, b = 6] $[Speed = \sqrt{(-4.5)^2 + 12^2},$	A1 M1 A1 M1		For using NEL in the direction of l.o.c. For solving for a and b
	4a + 3b = 0 $0.5(15\cos \alpha + 12) = b - a$ [a = -4.5, b = 6] $[Speed = \sqrt{(-4.5)^2 + 12^2},$ Direction $\tan^{-1}(12/(-4.50))$	A1 M1 A1 M1 M1		For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A
	4a + 3b = 0 $0.5(15\cos \alpha + 12) = b - a$ [a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111°	A1 M1 A1 M1		For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any
	4a + 3b = 0 $0.5(15\cos \alpha + 12) = b - a$ [a = -4.5, b = 6] $[Speed = \sqrt{(-4.5)^2 + 12^2},$ Direction $\tan^{-1}(12/(-4.50))$	A1 M1 A1 M1 M1		For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form , including $\theta = 69^{\circ}$ with θ clearly and appropriately
	4a + 3b = 0 $0.5(15\cos \alpha + 12) = b - a$ [a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111°	A1 M1 A1 M1 M1	10	For using NEL in the direction of l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form , including $\theta = 69^{\circ}$ with

5	(i)	M1		For taking moments of forces on BC about B
	$80 \ge 0.7\cos 60^\circ = 1.4 \mathrm{T}$	A1		
	Tension is 20N	A1		
	$[X = 20\cos 30^{\circ}]$	M 1		For resolving forces horizontally
	Horizontal component is 17.3N	A1ft		ft $X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin 30^{\circ}]$	M 1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	ft $Y = 80 - T\sin 30^\circ$
	(ii)	M1		For taking moments of forces on AB, or on ABC, about A
	17.3 x 1.4sin α = (80 x 0.7 + 70 x1.4)cos α or 80x0.7cos α + 80(1.4cos α + 0.7cos60°) = 20cos60°(1.4cos α + 1.4cos60°) +	A1ft		
	$20\sin 60^{\circ}(1.4\sin \alpha + 14\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{2} 80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical expression for tan α
	$\alpha = 81.1^{\circ}$	A1	4	
	ALTERNATIVE METHOD FOR PART (i)	2.61		
		M1		For taking moments of forces on BC about B
	$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1		Where H and V are components of T
		M1		For using $H = V\sqrt{3}$ and solving
				simultaneous equations
	Tension is 20N	A1		
	Horizontal component is 17.3N	B1ft		ft value of H used to find T
	[Y = 80 - V]	M1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	ft value of V used to find T

6	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
Ŭ	$\frac{(1)}{2058x/5.25} = 80 \times 9.8 \qquad (x = 2)$	A1		Tor using $I = \lambda X/L$
	OP = 7.25m (X = 2)	A1	3	AG From 5.25 + 2
	(ii) Initial $PE = (80 + 80)g(5) (= 7840)$	B1		A0110III 5.25 + 2
	or $(80 + 80)$ gX used in energy equation	DI		
	Initial KE = $\frac{1}{2}$ (80 + 80)3.5 ² (= 980)	B1		
	[Initial EE = $2058x2^2/(2x5.25)$ (= 784), Eincl EE = $2058x7^2/(2x5.25)$ (= 0.004) or	M1		For using $EE = \lambda x^2/2L$
	Final $EE = 2058x7^2/(2x5.25)$ (= 9604), or 2058(X + 2) ² /(2x5.25)]			
		MI		
	[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
	final energy = 9604			compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4) \rightarrow$			principle of conservation of
	$196X^2 - 784X - 980 = 0]$			energy, or using the principle
			_	and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach	A1	5	AG
	the net			
	(iii) $[PE gain = 80g(7.25 + 5)]$	M1		For finding PE gain from net
				level to O
	PE gain = 9604	A1	-	
	PE gain = EE at net level \rightarrow P just reaches O	A1	3	AG
	(iv) For any one of 'light rope', 'no air	B1		
	resistance', 'no energy lost in rope'			
	For any other of the above	B1	2	
	EIDCT ALTEDNATIVE METHOD FOD			
	FIRST ALTERNATIVE METHOD FOR			
	PART (ii)	N/1		
	[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second
				law with $a = v dv/dx$,
				separating the variables and
	$-\frac{2}{2}$ = 1.225 $-\frac{2}{2}$ (+ C)	A 1		attempting to integrate
	$v^2/2 = gx - 1.225x^2 (+C)$	A1		Any correct form
	C 9.575	M1		For using $v(2) = 3.5$
	C = -8.575	A1	~	
	$[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P \& Q \text{ just}$	A1	5	AG
	reach the net			
	SECOND AT TEDNATIVE METHOD FOR DADT			
	SECOND ALTERNATIVE METHOD FOR PART			
	(ii) $\ddot{x} = c + 2.45 x + (-2.45(x + 4))$	D 1		
	$\ddot{x} = g - 2.45x$ (= -2.45(x - 4))	B1		2
		M1		For using $n^2 = 2.45$ and
				$v^2 = n^2(A^2 - (x - 4)^2)$
	$3.5^2 = 2.45(A^2 - (-2)^2) \qquad (A = 3)$	A1		
	[(4-2)+3]	M1		For using 'distance travelled
				downwards by P and $Q =$
				distance to new equilibrium
				position + A
	distance travelled downwards by P and $Q = 5 \Rightarrow P \& Q$	A1	5	AG
	just reach the net			

7	(i) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
/				For using $a = v/r$
	For not more than one error in $T_{1} = 0.0 = -0.0 = 0.07^{2}/0.4$	A1		
	$T - 0.8gcos60^{\circ} = 0.8x0.7^{2}/0.4$			
	Above equation complete and correct	A1		
	Tension is 4.9N	A1	4	
	(ii)	M1		For using the principle of
	_			conservation of energy
	$\frac{1}{2} 0.8 v^2 =$	A1		(v = 2.1)
	$\frac{1}{2} 0.8(0.7)^2 + 0.8 g 0.4 - 0.8 g 0.4 \cos 60^\circ$			
	(2.1 - 0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms ⁻¹	A1	4	AG
	(iii)	M1		For using Newton's second
				law transversely
	$(m)0.4\ddot{\theta} = -(m)g\sin\theta$	A1		*Allow $m = 0.8$ (or any other
	$(m)0.+0 = (m)g \sin \theta$			numerical value)
	$[0.4\ddot{\theta} \approx -g\theta]$	M1		For using $\sin \theta \approx \theta$
	$[\frac{1}{2} \text{ m0.15}^2 = \text{mg0.4}(1 - \cos\theta_{\text{max}})$	M1		For using the principle of
	$\rightarrow \theta_{\text{max}} = 4.34^{\circ} (0.0758 \text{rad})$			conservation of energy to
				find
				$ heta_{ m max}$
	θ_{max} small justifies 0.4 $\ddot{\theta} \approx -g \theta$, and this implies	A1	5	
			e	
	$\frac{\text{SHM}}{(\text{in})} = \frac{1260}{1260}$	M1		Equation $T = 2 \sigma / r$
	(iv) $[T = 2\pi / \sqrt{24.5} = 1.269]$	M1		For using $T = 2\pi/n$
	$[\sqrt{24.5} t = \pi]$			or
				for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
				(considering velocity)
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2}T$

1	(i) $[0.5(v_x - 5) = -3.5, 0.5(v_y - 0) = 2.4]$	M1		For using $I = m(v - u)$ in x or y direction
1	Component of velocity in x-direction is $-2ms^{-1}$	A1		$1 \text{ or using } 1 = \min(v - u) \min x \text{ or } y \text{ uncertain}$
	Component of velocity in y-direction is 4.8ms ⁻¹	A1		
	Speed is 5.2ms ⁻¹	A1	4	AG
SR For	candidates who obtain the speed without finding the required	component	ts of v	elocity (max 2/4)
	Components of momentum after impact are -1 and 2.4 Ns	B1		
	Hence magnitude of momentum is 2.6 Ns and required	B1		
	speed is $2.6/0.5 = 5.2 \text{ms}^{-1}$			
	(ii)	M1		For using $I_y = m(0 - v_y)$ or
				$I_y = -y$ -component of 1^{st} impulse
	Component is -2.4Ns	A1	2	
2	(i)	M1		For 2 term equation each term
4		1011		For 2 term equation, each term representing a relevant moment
	$50 \times 10^{10} \beta = 75 \times 2000 \beta$	A1		representing a relevant moment
	$50x1\sin\beta = 75x2\cos\beta$		2	
	$\tan\beta = 3$	A1	3	AG
	(ii) Horizontal force is 75N	B1		
	Vertical force is 50N	B1	2	
	(iii)	M1		For taking moments about A for the
				whole or for AB only
	For not more than one error in	A1		Where $\tan \alpha = 0.75$
	$Wx1\sin\alpha + 50(2\sin\alpha + 1\sin\beta) =$			
	$75(2\cos\alpha + 2\cos\beta)$ or Wx1sin α +			
	$50x2\sin\alpha = 75x2\cos\alpha$			
	0.6W + 107.4 = 167.4 or 0.6W + 60 = 120	A1		
	W = 100	A1 A1	4	
	W = 100	711	-	<u> </u>
3	(i)	M1		For using the principle of conservation
				of momentum in the i direction
	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1		
		M1		For using NEL
	(4+8)e = b - a $(12e = b - a)$	A1		
	Component is 4e ms ⁻¹ to the left	A1	5	'to the left' may be implied by
		DIG		a = -4e and arrow in diagram
	(ii) $b = 8e ms^{-1}$	B1ft		ft b = $-2a$ or b = $a + 12e$
		M1		For using ' j component of A's velocity
	$(8e)^2 = (4e)^2 + v^2$	A1ft		remains unchanged' ft $b^2 = a^2 + v^2$
	(8e) = (4e) + v v = 4	All Al	4	$n \cup -a + v$
L		111	1 -7	l]
4	(i) $[mg - 0.49mv = ma]$	M1		For using Newton's second law
		A1		
1	$mv \ \frac{dv}{dx} = mg \ -0.49 \ mv$	A1		
	$mv \ \frac{dv}{dx} = mg \ -0.49 \ mv$	A1 M1		For relevant manipulation
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$	M1		_
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$			For synthetic division of v by
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$	M1 M1		For synthetic division of v by g - 0.49v, or equivalent
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$	M1	5	For synthetic division of v by
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$	M1 M1 A1	5	For synthetic division of v by g - 0.49v, or equivalent AG
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$	M1 M1	5	For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} \equiv \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii)	M1 M1 A1 M1	5	For synthetic division of v by g - 0.49v, or equivalent AG
	$mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 v} \equiv \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii)	M1 M1 A1	5	For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
	$mv \frac{dv}{dx} = mg - 0.49 \ mv$ $\left[\frac{v (dv / dx)}{g - 0.49 \ v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 \ v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 \ v) - 9.8}{9.8 - 0.49 \ v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii) $\int \frac{20}{20 - v} dv = -20 \ \ln(20 - v)$	M1 M1 A1 M1 B1	5	For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
	$mv \frac{dv}{dx} = mg - 0.49 \ mv$ $\left[\frac{v (dv / dx)}{g - 0.49 \ v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 \ v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 \ v) - 9.8}{9.8 - 0.49 \ v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii) $\int \frac{20}{20 - v} dv = -20 \ \ln(20 - v)$ $-20 \ \ln(20 - v) - v = 0.49x (+C)$	M1 M1 A1 M1	5	For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and integrating
	$mv \frac{dv}{dx} = mg - 0.49 \ mv$ $\left[\frac{v (dv / dx)}{g - 0.49 \ v} = 1\right]$ $\left[\frac{v}{9.8 - 0.49 \ v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 \ v) - 9.8}{9.8 - 0.49 \ v}\right)\right]$ $\left(\frac{20}{20 - v} - 1\right) \frac{dv}{dx} = 0.49$ (ii) $\int \frac{20}{20 - v} dv = -20 \ \ln(20 - v)$	M1 M1 A1 M1 B1 A1ft	5	For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and

5	(i)	M1		For using Newton's second law with a =
5	(1)	1011		For using Newton's second law with $a = 0$
	$mgsin30^{\circ} = 0.75mgx/1.2$	A1		V
	Extension is 0.8m	A1	3	AG
	(ii) PE loss = mg(1.2 + 0.8)sin 30°	B1		
	(mg)			
	EE gain = $0.75 \text{mg}(0.8)^2 / (2 \text{x} 1.2)$ (0.2mg)	B1		
	$[\frac{1}{2} \text{ mv}^2 = \text{mg} - 0.2\text{mg}]$	M1		For an equation with terms representing
				PE, KE and EE in linear combination
	Maximum speed is 3.96ms ⁻¹	A1	4	
	(iii) $PE loss = mg(1.2 + x)sin30^{\circ}$ or	B1ft		ft with x or $d - 1.2$ replacing 0.8 in (ii)
	mgdsin30°			
	EE gain = $0.75 \text{mgx}^2/(2x1.2)$ or	B1ft		ft with x or $d - 1.2$ replacing 0.8 in (ii)
	$0.75 \text{ mg}(d - 1.2)^2/(2 \times 1.2)$			
	$[x^2 - 1.6x - 1.92 = 0, d^2 - 4d + 1.44 = 0]$	M1		For using PE loss = EE gain to obtain a
	Displacement is 2 (m	A 1	4	3 term quadratic in x or d
A 14 a ma a 4	Displacement is 3.6m	A1	4	
	ive for parts (ii) and (iii) for candidates who use Newton's see			
In the 10	llowing x, y and z represent displacement from equil. pos^n , ex $[mv dv/dx = mgsin30^\circ - 0.75mg(0.8 + x)/1.2,$	M1		For using N2 with $a = v dv/dx$
	$mv dv/dx = mgsin30^{\circ} = 0.75 mg(0.8 + x)/1.2,$ $mv dv/dy = mgsin30^{\circ} = 0.75 mgy/1.2,$	1011		For using $1\sqrt{2}$ with $a = \sqrt{d}\sqrt{dx}$
	$mv dv/dy = mgsm30^{\circ} - 0.75mg(z - 1.2)/1.2]$			
	$v^2/2 = -5gx^2/16 + C \text{ or}$	A1		
	$v^2/2 = gy/2 - 5gy^2/16 + C$ or			
	$v^2/2 = 5gz/4 - 5gz^2/16 + C$			
	$[C = 0.6g + 5g(-0.8)^2/16 \text{ or } C = 0.6g \text{ or}$	M1		For using $v^2(-0.8)$ or $v^2(0)$ or $v^2(1.2) =$
	$C = 0.6g - 5g(1.2/4) + 5g(1.2)^2/16$			2(g sin30°)1.2 as appropriate
	$v^2 = (-5x^2/8 + 1.6)g \text{ or } v^2 = (y - 5y^2/8 + 1.2)g \text{ or } v^2 = (5z/2)$	A1		
	$-5z^2/8 - 0.9)g$			
	(ii) $[v_{max}^2 = 1.6g \text{ or } 0.8g - 0.4g + 1.2g \text{ or } 5g - 2.5g$	M1		For using $v_{max}^2 = v^2(0)$ or $v^2(0.8)$ or
	- 0.9g]			$v^2(2)$ as appropriate
	Maximum speed is 3.96ms^{-1}	A1		
	(iii) $[5x^2 - 12.8 = 0 \rightarrow x = 1.6,$	M1		For solving $v = 0$
	$5y^2 - 8y - 9.6 = 0 \Rightarrow y = 2.4,$ $5z^2 - 20z + 7.2 = 0 \Rightarrow z = 3.6$]			
	52 - 202 + 7.2 = 0 7 $2 = 3.0$ Displacement is 3.6m	A1	8	
Alternati	ive for parts (ii) and (iii) for candidates who use Newton's sec			M analysis
Anomali	$[m\ddot{x} = mgsin30^\circ - 0.75mg(0.8 + x)/1.2 \rightarrow$	M1		For using N2 with
	$\begin{bmatrix} \ln x &= \ln g \sin 50 &- 0.75 \ln g (0.8 + x)/1.2 \\ \ddot{x} &= -\omega^2 x; v^2 &= \omega^2 (a^2 - x^2) \end{bmatrix}$			$v^2 = \omega^2 (a^2 - x^2)$
	$x = -\omega x; v = \omega (a - x)$	A 1		
	$v^2 = 5g(a^2 - x^2)/8$	A1 M1		For using $v^2(-0.8) =$
		M1		For using V $(-0.8) = 2(gsin30^{\circ})1.2$
	$v^2 = 5g(2.56 - x^2)/8$	A1		2(gsiii50)1.2
	(ii) $[v_{max}^2 = 5g \times 2.56 \div 8]$	M1		For using $v_{max}^2 = v^2(0)$
	Maximum speed is 3.96ms^{-1}	A1		r = r = r = r = r = r = r = r = r
	(iii) $[2.56 - x^2 = 0 \rightarrow x = 1.6]$	M1		For solving $v = 0$
	Displacement is 3.6m	A1		i or solving v = 0
		111	1	

6	(i) $[\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + 2mg]$	M1		For using the principle of conservation
-				of energy
	Speed is 3.13 ms ⁻¹	A1		
	$[T = mv^2/r]$	M1		For using Newton's second law horizontally and $a = v^2/r$
	Tension is 1.96N	A1ft	4	nonzontany and $a = \sqrt{n}$
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using $T = 0$ (may be implied)
	$v^2 = -2g\cos\theta$	A1		
		M1		For using the principle of conservation
	$1/(7^2) 1/(7^2) (2 - 2 - 6)$	A1		of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	M1		For eliminating v^2
	$[-2g\cos\theta = 49 - 4g + 4g\cos\theta]$	A1		May be implied by answer
	$6g\cos\theta = -9.8$ $\theta = 99.6$	A1 A1	8	May be implied by answer
Alternat	$\theta = 99.6$ tive for candidates who eliminate v ² before using T = 0.	AI	0	
Anoma	(ii) $[T - mgcos \theta = mv^2/r]$	M1	1	For using Newton's second law radially
		M1		For using the principle of conservation
				of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[T - mg\cos\theta = m(49 - 4g + 4g\cos\theta)2]$	M1		For eliminating v^2
		M1		For using $T = 0$ (may be implied)
	$-2g\cos\theta = 49 - 4g + 4g\cos\theta$	A1ft		ft error in energy equation
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	
7	(i) $T = 4\pi r_{0}(4 + r_{0} + 2)/2$	D1		1
7	(i) $T = 4mg(4 + x - 3.2)/3.2$ [ma = mg - 4mg(0.8 + x)/3.2]	B1 M1		For using Newton's second law
7	[ma = mg - 4mg(0.8 + x)/3.2]	B1 M1 A1	3	For using Newton's second law AG
7	[ma = mg - 4mg(0.8 + x)/3.2] 4 $\ddot{x} = -49x$	M1	3	AG
7	[ma = mg - 4mg($\overline{0.8}$ + x)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m	M1 A1	3	-
7	[ma = mg - 4mg(0.8 + x)/3.2] 4 $\ddot{x} = -49x$	M1 A1 B1	3	AG
7	[ma = mg - 4mg($\overline{0.8}$ + x)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m	M1 A1 B1 B1	3	AG (from $4 + A = 4.8$) String is instantaneously slack when shortest (4 - A = $3.2 = L$). Thus required
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4	M1 A1 B1 B1 M1		AG (from $4 + A = 4.8$) String is instantaneously slack when shortest (4 - A = $3.2 = L$). Thus required interval length = period.
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s	M1 A1 B1 B1 M1 A1	3	AG (from $4 + A = 4.8$) String is instantaneously slack when shortest ($4 - A = 3.2 = L$). Thus required interval length = period. AG
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4	M1 A1 B1 B1 M1		AG (from $4 + A = 4.8$) String is instantaneously slack when shortest (4 - A = $3.2 = L$). Thus required interval length = period.
7	[ma = mg - 4mg($\overline{0.8}$ + x)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ]	M1 A1 B1 B1 M1 A1		AG (from $4 + A = 4.8$) String is instantaneously slack when shortest ($4 - A = 3.2 = L$). Thus required interval length = period. AG For using Newton's second law
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ	M1 A1 B1 B1 M1 A1 M1		AG (from $4 + A = 4.8$) String is instantaneously slack when shortest ($4 - A = 3.2 = L$). Thus required interval length = period. AG For using Newton's second law
7	[ma = mg - 4mg($\overline{0.8} + x$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	M1 A1 B1 B1 M1 A1 A1	4	AG (from $4 + A = 4.8$) String is instantaneously slack when shortest ($4 - A = 3.2 = L$). Thus required interval length = period. AG For using Newton's second law tangentially
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ	M1 A1 B1 B1 M1 A1 A1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG
7	[ma = mg - 4mg($\overline{0.8} + x$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	M1 A1 B1 B1 M1 A1 A1 A1	4	AG (from $4 + A = 4.8$) String is instantaneously slack when shortest ($4 - A = 3.2 = L$). Thus required interval length = period. AG For using Newton's second law tangentially AG For using = $_{0}cos\omega t$ where $\omega^{2}=12.25$
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ (iv) [θ = 0.08cos(3.5x0.25)] (= 0.05127)	M1 A1 B1 B1 M1 A1 A1 A1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ (iv) [θ = 0.08cos(3.5x0.25)] (= 0.05127) [$\dot{\theta}$ = -3.5(0.08)sin(3.5x0.25),	M1 A1 B1 B1 M1 A1 A1 A1 A1 M1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG For using = $_{0}cos\omega t$ where $\omega^{2}=12.25$ (may be implied by $\dot{\mathcal{Y}} = -\omega_{0}sin\omega t$) For differentiating = $_{0}cos\omega t$ and
7	[ma = mg - 4mg($\overline{0.8 + x}$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ (iv) [θ = 0.08cos(3.5x0.25)] (= 0.05127)	M1 A1 B1 B1 M1 A1 A1 A1 A1 M1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG For using = $_{0}cos\omega t$ where $\omega^{2}=12.25$ (may be implied by $\dot{\mathcal{G}} = -\omega_{0}sin\omega t$) For differentiating = $_{0}cos\omega t$ and using $\dot{\mathcal{G}}$ or for using
7	[ma = mg - 4mg($\overline{0.8} + x$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ (iv) [θ = 0.08cos(3.5x0.25)] (= 0.05127) [$\dot{\theta}$ = -3.5(0.08)sin(3.5x0.25), $\dot{\theta}^2$ = 12.25(0.08 ² - 0.05127 ²)]	M1 A1 B1 B1 M1 A1 A1 A1 A1 M1 M1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG For using = $_{o}cos\omega t$ where $\omega^{2}=12.25$ (may be implied by $\dot{\mathcal{G}} = -\omega_{o}sin\omega t$) For differentiating = $_{o}cos\omega t$ and using $\dot{\mathcal{G}}$ or for using $\dot{\theta}^{2} = \omega^{2} (\theta_{o}^{2} - \theta^{2})$ where $\omega^{2}=12.25$
7	[ma = mg - 4mg($\overline{0.8} + x$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ (iv) [θ = 0.08cos(3.5x0.25)] (= 0.05127) [$\dot{\theta}$ = -3.5(0.08)sin(3.5x0.25), $\dot{\theta}^2$ = 12.25(0.08 ² - 0.05127 ²)] $\dot{\theta}$ = \mp 0.215	M1 A1 B1 B1 M1 A1 A1 A1 M1 M1 M1 A1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG For using = $_{o}cos\omega t$ where $\omega^{2}=12.25$ (may be implied by $\dot{\mathcal{Y}} = -\omega_{o}sin\omega t$) For differentiating = $_{o}cos\omega t$ and using $\dot{\mathcal{Y}}$ or for using $\dot{\theta}^{2} = \omega^{2}(\theta_{o}^{2} - \theta^{2})$ where $\omega^{2}=12.25$ May be implied by final answer
7	[ma = mg - 4mg($\overline{0.8} + x$)/3.2] 4 \ddot{x} = -49x (ii) Amplitude is 0.8m Period is $2\pi / \omega$ s where ω^2 = 49/4 Slack at intervals of 1.8s (iii) [ma = -mgsin θ] mL $\ddot{\theta}$ = -mgsin θ For using sin $\theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ -(g/L) θ (iv) [θ = 0.08cos(3.5x0.25)] (= 0.05127) [$\dot{\theta}$ = -3.5(0.08)sin(3.5x0.25), $\dot{\theta}^2$ = 12.25(0.08 ² - 0.05127 ²)]	M1 A1 B1 B1 M1 A1 A1 A1 A1 M1 M1	4	AG (from 4 + A = 4.8) String is instantaneously slack when shortest (4 - A = 3.2 = L). Thus required interval length = period. AG For using Newton's second law tangentially AG For using = $_{o}cos\omega t$ where $\omega^{2}=12.25$ (may be implied by $\dot{\mathcal{G}} = -\omega_{o}sin\omega t$) For differentiating = $_{o}cos\omega t$ and using $\dot{\mathcal{G}}$ or for using $\dot{\theta}^{2} = \omega^{2} (\theta_{o}^{2} - \theta^{2})$ where $\omega^{2}=12.25$

1	(i) $T = (1.35mg)(3 - 1.8) \div 1.8$	B1		
1	[0.9 mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82 ms^{-2}	A1	3	For using 1 – Ina
		AI		
	(ii) Initial EE = $(1.25 \text{ mm})(2 - 1.8)^2 + (2 - 1.8)$	D1		
	$(1.35 \text{ mg})(3 - 1.8)^2 \div (2 \times 1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1	•	For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	
		1.41		
2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft $8\sin 27^\circ$ + candidate's ans. in (i)
				For using $ I = m x$ change in
	$ \mathbf{I} = 0.2 \ge 5.81$	M1		velocity
				ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms ⁻¹	A1ft	3	both M marks are scored.
3				For using the principle of
				conservation of momentum in the
		M1		i direction
	$0.8x12\cos 60^\circ = 0.8a + 2b$	A1		
		M1		For using NEL
	$0.75 \times 12 \cos 60^\circ = b - a$	A1		C
				For eliminating b; depends on at
	[4.8 = 0.8a + 2(a + 4.5)]	DM1		least one previous M mark
	a = -1.5	A1		······································
	Comp. of vel. perp. to l.o.c. after impact is			
	12sin60°	B1		
	1251100	DI		For correct method for speed or
		M1		direction
	The speed of A is 10.5ms^{-1}	Alft		ft $v^2 = a^2 + 108$
	The speed of A is 10.5115	AIII		
				Accept $\theta = 81.8^{\circ}$ if θ is clearly
1	Direction of A is at 98.2° to l.o.c.	A1ft	10	and appropriately indicated;
		ATT		ft tan ⁻¹ θ = (12sin60°)/ a)

4	(i) $[mgsin \alpha - 0.2mv = ma]$	M1		For using Newton's second law
	$5 \frac{dv}{dt} = 28 - v$			e
	$\frac{dt}{dt} = 20$	A1		AG
	$\left[\int \frac{5}{28-v} dv = \int dt\right]$			For separating variables and
	20 1	M1		integrating
	(C) - $5\ln(28 - v) = t$	A1		
		M1		For using $v = 0$ when $t = 0$
	$\ln[(28 - v)/28] = -t/5$	A1ft		ft for $\ln[(28 - v)/28] = t/A$ from C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t
				ft for v = $28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	Alft	8	$\ln[(28 - v)/28] = t/A$ previously
	(ii)			For using $a = (28 - v(t))/5$ or $a =$
	5 - 20 - ² /51			$d(28 - 28e^{-t/5})dt$ and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
	Acceleration is 0.758ms ⁻²	A1ft	2	ft from incorrect v in the form a + be ^{ct} (b \neq 0); Accept 5.6/e ²
		AIIt	2	$a + bc (b \neq 0), \text{ Accept 5.6/c}$
5	(i)			For taking moments about B or
				about A for the whole or
				For taking moments about X for
		N/1		the whole and using $R_A + R_B =$
	$1.4R_{A} = 150x0.95 + 130x0.25$ or	M1		280 and $F_A = F_B$
	$1.4R_{\rm A} = 13000.55 + 13000.25$ or $1.4R_{\rm B} = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	0.5R _B	A1		
	$-0.25 \times 130 = 0$			
	$R_A = 125N$	A1		AG
	$R_{\rm B} = 155N$	B1	4	Easteling and start V C
	(ii)	M1		For taking moments about X for XA or XB
	$1.2F_{\rm A} = -150 \times 0.45 + 0.9R_{\rm A}$ or	111		
	$1.2F_{\rm B} = 0.5R_{\rm B} - 130x0.25$	A1		
	$F_A \text{ or } F_B = 37.5 \text{ N}$	Alft		$F_{\rm B} = (1.25R_{\rm B} - 81.25)/3$
	$F_B \text{ or } F_A = 37.5 \text{ N}$	B1ft	4	
	(iii) Horizontal component is 37.5N to the	540		ft H = F or H = $56.25 - 0.75$ V or
	left	B1ft		12H = 325 + 5V
	[V + P - 150]	M1		For resolving forces on XA
	$[Y + R_A = 150]$ Vertical component is 25N upwards	Alft	3	vertically ft $3V = 225 - 4H$ or $V = 2.4H$ -65
1	, enteur component is 2510 upwards	11111	5	10 7 220 TILOL V 2.TIL-00

(F 1 . M () 11
6	(i)	N / 1		For applying Newton's second law
	[0.36 - 0.144x = 0.1a]	M1		
	$\ddot{x} = 3.6 - 1.44x$	A1		
	$\ddot{y} = -1.44 y \rightarrow \text{SHM}$ or			
	$d^{2}(x-2.5)/dt^{2} = -1.44(x-2.5) \Rightarrow$ SHM	B1		
	u (x-2.5)/u = -1.44(x-2.5) 7 SHM			
		M1		For using $T = 2\pi / n$
	Of period 5.24s	A1	5	AG
	(ii) Amplitude is 0.5m	B1		
		M1		For using $v^2 = n^2(a^2 - y^2)$
	$0.48^2 = 1.2^2 (0.5^2 - y^2)$	A1ft		
	Possible values are 2.2 and 2.8	A1	4	
	(iii) $[t_0 = (\sin^{-1}0.6)/1.2; t_1 = (\cos^{-1}0.6)/1.2]$	M1		For using $y = 0.5 \sin 1.2t$ to find t_0 or y
				$= 0.5\cos 1.2t$ to find t_1
	$t_0 = 0.53625 \dots$ or $t_1 = 0.7727 \dots$	A1		Principal value may be implied
	(a)			For using $\Delta t = 2t_0$ or
	$[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi - 2\cos^{-1}0.6)/1.2]$	M1		$\Delta t = T/2 - 2t_1$
	Time interval is 1.07s	A1ft		ft incorrect t_0 or t_1
	(b)	AIII		
	(0)			From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
	Time interval is 1.55s	B1ft	5	2.62 - ans(a) or
		BIII	5	incorrect t_0 or t_1
7	(i)	M1		For using VE gain - DE loss
/	(i)			For using KE gain = PE loss
	$\frac{1}{2}$ mv ² = mga(1 - cos θ)	A1		
	$aw^2 = 2g(1 - \cos\theta)$	B1	3	AG From $v = wr$
	(ii)			For using Newton's second law
				radially (3 terms required) with accel
		M1		$= v^2/r \text{ or } w^2r$
	$mv^2/a = mg\cos\theta - R \text{ or } maw^2 = mg\cos\theta - R$	A1		
				For eliminating v^2 or w^2 ; depends on
	$[2mg(1 - \cos\theta) = mg\cos\theta - R]$	DM1		at least one previous M1
		A1ft	4	ft sign error in N2 equation
	$R = mg(3\cos\theta - 2)$	71110		
	(iii)			For using Newton's second law
	$[mgsin\theta = m(accel.) \qquad or$			tangentially or
	$2a(\dot{\theta})\ddot{\theta} = 2gsin\theta(\dot{\theta})$]	N / 1		differentiating
		M1		$aw^2 = 2g(1 - \cos\theta)$ w.r.t. t
	Accel. $(=a\ddot{\theta}) = gsin\theta$	A1		
	$\theta = \cos^{-1}(2/3)$	M1		For using $R = 0$
				ft from incorrect R of the form
				mg(Acos +B), $A \neq 0, B \neq 0$;
	Acceleration is 7.30ms ⁻²	Alft	4	accept g $\sqrt{5}/3$
				For using rate of change = $-$
	(iv)	M1		•
		111		$(dR/d\theta)(d\theta/dt)$
	$dR/dt = (-3mgsin\theta) \sqrt{2g(1-\cos\theta)/a}$	4.1.0		ft from incorrect R of the form
		Alft		$mg(Acos +B), A \neq 0$
		M1		For using $\cos\theta = 2/3$
				Any correct form of \dot{R} with
	Data of sharpe is $\sqrt{10 g}$ N-1			$\cos\theta = 2/3$ used; ft with from
	Rate of change is $-mg \sqrt{\frac{10 g}{3 q}}$ Ns ⁻¹			incorrect R of the form $mg(Acos$
	y Su	A1ft	4	•
				+B), A $\neq 0, B \neq 0$

1 (i)	For triangle sketched with sides $(0.5)2.5$ and		
- (-)	$(0.5)6.3$ and angle θ correctly marked OR		
	Changes of velocity in i and j directions		
	$2.5\cos\theta - 6.3$ and $2.5\sin\theta$, respectively.	B1	May be implied in subsequent working.
	For sides 0.5x2.5, 0.5x6.3 and 2.6 (or 2.5, 6.3		
	and 5.2) OR		
	$-2.6\cos \alpha = 0.5(2.5\cos \theta - 6.3)$ and		
	$2.6 \sin \alpha = 0.5 (2.5 \cos \theta - 0.5)$ and $2.6 \sin \alpha = 0.5 (2.5 \sin \theta)$	B1ft	May be implied in subsequent working.
	$(5.2^2 = 2.5^2 + 6.3^2 - 2x2.5x6.3\cos\theta)$ OR		
	$[5.2 - 2.5 + 0.5 - 2.22.5x0.5c0s\theta - 0.7]$ $2.6^{2} = 0.5^{2} \{ (2.5\cos\theta - 6.3)^{2} + (2.5\sin\theta)^{2} \}$		For using cosine rule in triangle or eliminating
		M1	α.
	$\cos\theta = 0.6$	A1	AG
		[4]	
(ii)			For appropriate use of the sine rule or
			substituting for θ in one of the above
		M1	equations in θ and α
	$\sin \alpha = 2.5 \times 0.8 / 5.2 \qquad \text{OR}$		
	$-2.6\cos\alpha = 0.5(2.5\times0.6 - 6.3)$	A1	
		M1	For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{\circ}$
	Impulse makes angle of 157° or 2.75° with		
	original direction of motion of P.	Al	
		[4]	SR (relating to previous 2 marks; max 1 mark
			out of 2)
			$\alpha = 23^{\circ} \text{ or } 0.395^{\circ}$ B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
	X - Y = 35	A1 [2]	needed)
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
			needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
		[4]	•

•

3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$ $T_A - T_B = 18 - 6 = 12 = W \Rightarrow P \text{ in equil'm.}$	M1 A1 [2]	For using T = λ x/L for PA or PB
(ii)	Extensions are $0.45 + x$ and $0.15 - x$ Tensions are $18 + 40x$ and $6 - 40x$	B1 B1 [2]	AG From T = λ x/L for PA and PB
(iii)	$[12 + (6 - 40x) - (18 + 40x) = 12 \ddot{x}/g]$ $\ddot{x} = -80gx/12 \Rightarrow$ SHM Period is 0.777s	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period = $2\pi \sqrt{\frac{12}{(80 g)}}$
(iv)	$[v_{max} = 0.15 \sqrt{80 g / 12} or v_{max} = 2 \pi x 0.15 / 0.777 or \frac{1}{2} (12/g) v_{max}^{2} + mg(0.15) +24 {0.45^{2} + 0.15^{2} - 0.6^{2}} / (2x0.6) = 0] Speed is 1.21 ms^{-1}$	M1 A1 [2]	For using $v_{max} = An$ or $v_{max} = 2 \pi A/T$ or conservation of energy (5 terms needed)

4 (i)	Loss in PE = mg(0.5sin θ) [$\frac{1}{2}$ mv ² - $\frac{1}{2}$ m3 ² = mg(0.5sin θ)] v ² = 9 + 9.8sin θ	B1 M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$a_{r} = 18 + 19.6\sin\theta$ $[ma_{t} = mg\cos\theta]$ $a_{t} = 9.8\cos\theta$	B1 M1 A1 [3]	Using $a_r = v^2/0.5$ For using Newton's second law tangentially
(iii)	$[T - mg \sin \theta = ma_r]$ $T - 1.96\sin \theta = 0.2(18 + 19.6\sin \theta)$ $T = 3.6 + 5.88\sin \theta$ $\theta = 3.8$	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial i components of velocity for A and B		
	are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
		M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A1	
		M1	For using NEL
	0.75(4-3) = b - a	A1	
		M1	For attempting to find a
	a = 3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
		M1	For using $\tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a ($\neq 0$) only
		[10]	
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for <i>both</i> equ's
			a = 4 M1 as scheme A1
			j component for A is 4ms ⁻¹ B1
			Angle $\tan^{-1}(4/4) = 45^{\circ}$ M1 as scheme A1

		D 1	
6(i)	Initial speed in medium is $\sqrt{2 g \times 10}$ (= 14)	B1	
	·		For using Newton's second law with
		M1	a = dv/dt (3 terms required)
	[0.125 dv/dt = 0.125 g - 0.025 v]	1411	
	r 5dv r		For separating variables and attempt to
	$\int \frac{5dv}{5g - v} = \int dt$	M1	integrate
	5g - v		-
	$-5 \ln(5g - v) = t (+A)$	A1	
			$\Gamma_{\text{construct}} = -(0) = 14$
	$[-5 \ln 35 = A]$	M1	For using $v(0) = 14$
	$t = 5 \ln\{35/(49 - v)\}$	A1	
		M1	For method of transposition
	$v = 49 - 35e^{-0.2t}$	A1	AG
		[8]	
(ii)		M1	For integrating to find x(t)
	$x = 49t + 175e^{-0.2t} (+B)$	A1	
	· · ·		For using limits 0 to 3 or for using
	$[x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)]$	M1	x(0) = 0 and evaluating $x(3)$
	Distance is 68.0m	A1	
	Distance is 00.011		
		[4]	

7(i)	Gain in $EE = 20x^2/(2x2)$	B1	
			Accept 0.8gx if gain in KE is
	Loss in GPE = $0.8g(2 + x)$	B1	$\frac{1}{2}$ 0.8(v ² - 19.6)
	$\begin{bmatrix} \frac{1}{2} \ 0.8 v^2 = (15.68 + 7.84 x) - 5 x^2 \end{bmatrix}$ v ² = 39.2 + 19.6x - 12.5x ²	M1	For using the p.c.energy
	$v^2 = 39.2 + 19.6x - 12.5x^2$	A1	AG
		[4]	
(ii)	(a)	M1	For attempting to solve $v^2 = 0$
	Maximum extension is 2.72m	A1	
		[2]	
	(b)		For solving $20x/2 = 0.8g$ or for
			differentiating and attempting to solve
	[19.6 - 25x = 0,		$d(v^2)/dx = 0$ or $dv/dx = 0$ or for
	$v^2 = 46.8832 - 12.5(x - 0.784)^2$]	M1	expressing v^2 in the form $c - a(x - b)^2$.
	x = 0.784 or $c = 46.9$	A1	
			For substituting $x = 0.784$ in the
	$[v_{\text{max}}^2 = 39.2 + 15.3664 - 7.6832]$	M1	expression for v^2 or for evaluating \sqrt{c}
	Maximum speed is 6.85ms ⁻¹	A1	
		[4]	
	(c)		For using Newton's second law (3 terms
		M1	required) or $a = v dv/dx$
	$\pm (0.8g - 20x/2) = 0.8a$		
	or $2v dv/dx = 19.6 - 25x$	A1	
	$a = \pm (9.8 - 12.5x)$		
	or $\ddot{y} = -12.5y$ where $y = x - 0.784$	A1	
	$[a _{\max} = 9.8 - 12.5 \times 2.72 $	MI	For substituting $x = ans(ii)(a)$ into $a(x)$ or
	or $ \ddot{y}_{max} = -12.5(2.72 - 0.784]$	M1	$y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$
	Maximum magnitude is 24.2ms ⁻²	A1	
	0	[5]	

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹	B1	May be implied
	Vert. comp. of vel. after impact is		
	$\sqrt{5^2 - 4^2} = 3 \text{ms}^{-1}$	B1	AG
	Coefficient of restitution is 0.5	B1 [3]	From $e = 3/6$
		[3]	
ii	Direction is vertically upwards	B1	
	Change of velocity is $3 - (-6)$	M1	
	Impulse has magnitude 2.7Ns	A1 [3]	From $m(\Delta v) = 0.3 \times 9$
2 i	Horizontal component is 14N	B1	
			For taking moments for <i>AB</i> about <i>A</i> or <i>B</i>
	$80 \times 1.5 = 14 \times 1.5 + 3Y$ or	M1	or the midpoint of <i>AB</i>
	$3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or		
	$1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$	A1	
	Vertical component is 33N upwards	A1	AG
		[4]	
ii	Horizontal component at C is 14N	B1	May be implied
	[Vertical component at C is	M1	for using $R^2 = H^2 + V^2$
	$(\pm)\sqrt{50^2 - 14^2}$]	DM1	For resolving forces at <i>C</i> vertically
	$[W = (\pm)48 - 33]$	A1	
	Weight is 15N	[4]	
3 i		M1	For using the p.c.mmtm parallel to l.o.c.
	$4 \times 3\cos 60^{\circ} - 2 \times 3\cos 60^{\circ} = 2b$	A1	
	b = 1.5 j component of vel. of $B = (-)3\sin 60^{\circ}$	A1 B1ft	ft consistent sin/cos mix
	$[v^2 = b^2 + (-3\sin 60^\circ)^2]$	M1	For using $v^2 = b^2 + v_y^2$
			e de la company
	Speed $(3ms^{-1})$ is unchanged	Alft	AG ft - allow same answer following
	[Angle with l.o.c. = $\tan^{-1}(3\sin 60^{\circ}/1.5)$] Angle is 60° .	M1 A1ft	consistent sin/cos mix. For using angle = $\tan^{-1}(\pm u_1/u_2)$
	Aligie 18 00.	[8]	For using angle = $\tan^{-1}(\pm v_y/v_x)$ ft consistent sin/cos mix
		[~]	
ii	$[e(3\cos 60^\circ + 3\cos 60^\circ) = 1.5]$	M1	For using NEL
	Coefficient is 0.5	A1ft	ft - allow same answer following consistent sin/cos mix throughout.
		[2]	consistent sin/cos inix tilloughout.

4 i	$F - 0.25v^2 = 120v(dv/dx)$	M1 A1	For using Newton's second law with $a = v(dv/dx)$
	$F = 8000/v$ $[32000 - v^{3} = 480v^{2}(dv/dx)]$ $\frac{480v^{2}}{v^{3} - 32000} \frac{dv}{dx} = -1$	B1 M1 A1 [5]	For substituting for F and multiplying throughout by $4v$ (or equivalent) AG
ii	$\int \frac{480v^2}{v^3 - 32000} dv = -\int dx$ 160 ln(v ³ - 32000) = -x (+A) 160 ln(v ³ - 32000) = -x + 160 ln32000 or 160 ln(v ³ - 32000) - 160 ln32000 = -500 (v ³ - 32000)/32000 = e ^{-x/160} Speed of <i>m/c</i> is 32.2ms ⁻¹	M1 A1 M1 A1ft B1ft B1 [6]	For separating variables and integrating For using $v(0) = 40$ or $[160 \ln(v^3 - 32000)]^{v}_{40} = [-x]^{500}_{0}$ ft where factor 160 is incorrect but +ve, Implied by $(v^3 - 32000)/32000 = e^{-3.125}$ (or = 0.0439). ft where factor 160 is incorrect but +ve, or for an incorrect non- zero value of <i>A</i>
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$ [$T_{\text{max}} = 18 \times 1/1.5$] Maximum tension is 12N	B1 M1 A1 [3]	For using $T = \lambda x/L$
	(a) Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52) Loss in GPE = 2.8mg (27.44m)	M1 A1 B1	For using $EE = \lambda x^2/2L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point
ii	[2.8 <i>m</i> × 9.8 = 11.52] <i>m</i> = 0.42 (b) ^{1/2} $mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2/(2 \times 1.5)$ or ^{1/2} $mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$ Speed at <i>M</i> is 4.24ms ⁻¹	M1 [5] M1 A1ft [3]	For using the p.c.energy AG For using the p.c.energy KE, PE & EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string

6 i	$\begin{bmatrix} -mg \sin \theta = m L(d^2 \theta/dt^2) \end{bmatrix}$ $d^2 \theta/dt^2 = -(g/L)\sin \theta$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2\theta/dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \ \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \ \theta \implies \text{motion is SH}$	M1 A1 [2]	For using $\sin \theta \approx \theta$ because θ is small ($\theta_{\text{max}} = 0.05$) AG
iii	$[4\pi/7 = 2\pi/\sqrt{9.8/L}]$ L = 0.8	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$\begin{bmatrix} \theta = 0.05\cos 3.5 \times 0.7 \end{bmatrix}$ $\theta = -0.0385$ t = 1.10 (accept 1.1 or 1.09)	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \{ \theta = \theta_0 \sin nt $ not accepted unless the <i>t</i> is reconciled with the <i>t</i> as defined in the question} ft incorrect $L \{ \theta = 0.05 \cos[4.9/(5L)^{\frac{1}{2}}] \}$ For attempting to find 3.5t ($\pi < 3.5t < 1.5\pi$) for which 0.05cos3.5 <i>t</i> = answer found for θ or for using $3.5(t_1 + t_2) = 2\pi$ ft incorrect $L \{ t = [2\pi (5L)^{\frac{1}{2}}]/7 - 0.7 \}$
V	$\dot{\theta}^2 = 3.5^2(0.05^2 - (-0.0385)^2) \text{ or}$ $\dot{\theta}^2 = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\dot{\theta}^2 = -0.1116)$ Speed is 0.0893ms ⁻¹ (Accept answers correct to 2 s.f.)	M1 A1ft A1ft [3]	For using $\dot{\theta}^2 = n^2(\theta_0^2 - \theta^2)$ or $\dot{\theta} = -n \ \theta_0 \sin nt$ {also allow $\dot{\theta} =$ $n \ \theta_0 \cos nt$ if $\theta = \theta_0 \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect L in (iii) or for $\dot{\theta} = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_0 \sin nt$ ft incorrect $L (L \times 0.089287/0.8 \text{ with})$ n = 3.5 used or from $ 0.35\sin\{4.9/[5L]^{\frac{1}{2}}\}/[5L]^{\frac{1}{2}} $ SR for candidates who use $\dot{\theta}$ as v . (Max 1/3) For $v = \pm 0.112$ B1

7 i	Gain in PE = $mga(1 - \cos\theta)$	B1	
	$[\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga(1 - \cos\theta)]$	M1	For using KE loss = PE gain
	$v^2 = u^2 - 2ga(1 - \cos\theta)$	A1	
	$[R - mg \cos \theta = m(\text{accel.})]$		
	$R = mv^2/a + mg\cos\theta$	M1	For using Newton's second law radially
		A1	
	$[R = m\{u^2 - 2ga(1 - \cos\theta)\}/a + mg\cos\theta]$	M1	For substituting for v^2
	$R = mu^2/a + mg(3\cos\theta - 2)$	A1	AG
		[7]	
ii	$10 - \frac{2}{2} = 5 = 1$	M1	$\Gamma_{\rm e} = 1.0^{-1} c_{\rm e}^{-1} c_{\rm e}^{-$
11	$\begin{bmatrix} 0 = mu^2/a - 5mg \end{bmatrix}$ $u^2 = 5ag$	M1 A1	For substituting $R = 0$ and $\theta = 180^{\circ}$
	$[v^{2} = 5ag - 4ag]$ Least value of v^{2} is ag	M1 A1 [4]	For substituting for u^2 (= 5 <i>ag</i>) and θ = 180° in v^2 (expression found in (i)) { but M0 if $v = 0$ has been used to find u^2 } AG
iii	$[0 = u^{2} - 2ga(1 - \sqrt{3}/2)]$ $u^{2} = ag(2 - \sqrt{3})$	M1 A1	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i)) Accept $u^2 = 2ag(1 - \cos \pi/6)$
	$u = ag(2 - \sqrt{5})$	[2]	Accept $u = 2ug(1 - \cos n/6)$

1	$0.4(3\cos 60^{\circ} - 4) = -I \cos \theta \qquad (= -1)$ $0.4(3\sin 60^{\circ}) = I \sin \theta \qquad (= 1.03920)$ $[\tan \theta = -1.5 \sqrt{3} / (1.5 - 4);$ $I^{2} = 0.4^{2} [(1.5 - 4)^{2} + (1.5 \sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$	M1 A1 A1 M1 A1 M1	For using I = Δmv in one direction SR: Allow B1 (max 1/3) for $3\cos 60^{\circ} - 4 = -I \cos \theta$ and $3\sin 60^{\circ} = I\sin \theta$ For eliminating I or θ (allow following SR case) Allow for θ (only) following SR case. For substituting for θ or for I (allow
	I = 1.44 or θ = 46.1	A1ft [7]	following SR case) ft incorrect θ or I; allow for θ (only) following SR case.
	Alternatively $I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ}$ or $V'^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ}$ I = 1.44	M1 A1 M1 A1 M1	For use of cosine rule For correct use of factor 0.4 (= m) For use of sine rule
	$\frac{\sin\theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ $\frac{\sin\alpha}{4(or1.6)} = \frac{\sin 60}{\sqrt{13(or2.08)}} and\theta = 120 - \alpha$ $\theta = 46.1$	A1ft A1	α must be angle opposite 1.6; ($\alpha = 73.9$) ft value of I or 'V'
2	$2a + 3b = 2 \times 4$	[7] M1 A1 M1	For using the principle of conservation of momentum
	$b - a = 0.6 \times 4$ [2(b - 2.4) + 3b = 8] b = 2.56 v = 2.56	A1 A1 A1 B1ft [7]	For using NEL For eliminating a ft v = b
3(i)	$2W(a \cos 45^{\circ}) = T(2a)$ $W = \sqrt{2} T$	M1 A1 A1 [3]	For using 'mmt of 2W = mmt of T' AG
(ii)	Components (H, V) of force on BC at B are $H = -T/\sqrt{2}$ and $V = T/\sqrt{2} - 2W$ $W(a \cos \alpha) + H(2a \sin \alpha) = V(2a \cos \alpha)$ $[W \cos \alpha - T\sqrt{2} \sin \alpha = T\sqrt{2} \cos \alpha - 4W\cos \alpha]$ $T\sqrt{2} \sin \alpha = (5W - T\sqrt{2}) \cos \alpha$ $\tan \alpha = 4$	B1 M1 A1 M1 A1ft A1 [6]	For taking moments about C for BC For substituting for H and V and reducing equation to the form $X \sin \alpha = Y \cos \alpha$

4730

	Alternatively for part (ii)		
		M1	For taking moments about C for the whole
	anticlockwise mmt =		
	$W(a \cos \alpha) + 2W(2a \cos \alpha + a \cos 45^{\circ})$	A1	
	$= T[2a\cos(\alpha - 45^{\circ}) + 2a]$	A1	For a during constinue to the form
	$[5W\cos\alpha + \sqrt{2}W = T(\sqrt{2}\sin\alpha) + 2]$	M1	For reducing equation to the form $X \sin \alpha = Y \cos \alpha$
	$T(\sqrt{2}\cos\alpha + \sqrt{2}\sin\alpha) + 2]$	A1ft	$A \sin \alpha = 1 \cos \alpha$
	$T \sqrt{2} \sin \alpha = (5W - T \sqrt{2}) \cos \alpha$ tan $\alpha = 4$	A1	
	$\tan \alpha = 4$	[6]	
4(i)	$[-0.2(v + v^2) = 0.2a]$	M1	For using Newton's second law
	$[v dv/dx = -(v + v^2)]$	M1	For using $a = v dv/dx$
	[1/(1 + v)] dv/dx = -1	A1	AG
		[3]	
(ii)		M1	For integrating
	$\ln (1 + v) = -x (+C)$ $\ln (1 + v) = -x + \ln 2$	A1	
	ln(1+v) = -x + ln3 [(1 + dx/dt)/3 = e ^{-x} \rightarrow dx/dt = 3e ^{-x} -1	A1	
	$(1 + dx/dt)/5 = e^{-1}$ $\Rightarrow e^x dx/dt = 3 - e^x$	M1	For transposing for v and using $v = dx/dt$
	$[-e^{x}/(3-e^{x})] dx/dt = -1$	A1	AG
		[5]	
(iii)	$[\ln(3 - e^x) = -t + \ln 2]$	M1	For integrating and using $x(0) = 0$
	$\ln(3-e^x) = -t + \ln 2$	A1	
	Value of t is 1.96 (or $\ln{2 \div (3 - e)}$	A1	
		[3]	
5(i)		M1	For using $EE = \lambda x^2/2L$ and $PE = Wh$
	Loss of EE = $120(0.5^2 - 0.3^2)/(2 \times 1.6)$		C
	and gain in $PE = 1.5 \times 4$	A1	
		M1	For comparing EE loss and PE gain
	v = 0 at B and loss of EE = gain in PE (= 6)		
	→distance AB is 4m	A1	AG
(ii)	[120e/1.6 = 1.5]	[4] M1	For using $T = mg$ and $T = \lambda x/L$
(11)	e = 0.02	A1	$1 \text{ or using } 1 = \inf_{i=1}^{n} \inf_{i=1}^{n} 1 = i \text{ for } i \text{ is a set } i = i \text{ for } i \text{ is a set } i = i \text{ for } i \text{ is a set } i = i \text{ for } i \text{ is a set } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i \text{ for } i = i \text{ for } i$
	Loss of EE = $120(0.5^2 - 0.02^2)/(2 \times 1.6)$		
	$(\text{or } 120(0.3^2 - 0.02^2)/(2 \times 1.6))$	B1ft	ft incorrect e only
	Gain in PE = $1.5(2.1 - 1.6 - 0.02)$		
	(or 1.5(1.9 + 1.6 + 0.02) loss)	B1ft	ft incorrect e only
	[KE at max speed = $9.36 - 0.72$		For using KE at max speed
	(or 3.36 + 5.28)]	M1	= Loss of EE $-$ Gain (or $+$ loss) in PE
	$\frac{1}{2}(1.5/9.8)v^2 = 9.36 - 0.72$ Maximum speed is 10.6 ms ⁻¹	A1 A1	
	Maximum speed is 10.0 ms	[7]	
	First alternative for (ii)	<u> </u>	
	x is distance AP		
	$[\frac{1}{2}(1.5/9.8)v^{2} + 1.5x + 120(0.5 - x)^{2}/3.2 =$		
	$120 \times 10.5^2 / 3.2$]	M1	For using energy at $P = energy$ at A
	KE and PE terms correct	A1	
	EE terms correct	A1	
	$v^2 = 470.4x - 490x^2$	A1	$\mathbf{F}_{\mathrm{ens}}$
	[470.4 - 980x = 0]	M1 A1	For attempting to solve $dv^2/dx = 0$
	x = 0.48 Maximum speed is 10.6 ms ⁻¹	AI A1	
	wiaximum specu is 10.0 ms	AI	

4730

	Second alternative for (ii)		
	[120e/1.6 = 1.5]	M1	For using T = mg and T = $\lambda x/L$
	e = 0.02	A1	$1 \text{ of using } 1 = \lim_{n \to \infty} \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n}$
	$[1.5 - 120(0.02 + x)/1.6 = 1.5 \ddot{x}/g]$	M1	For using Newton's second law
	[1.5 - 120(0.02 + X)/1.0 - 1.5 X/g]		For obtaining the equation in the form
			$\ddot{x} = -n^2 x$, using (AB – L – e _{equil}) for
		M1	amplitude and using $v_{max} = na$.
		A1	amplitude and using v_{max} – IIa.
	$n = \sqrt{490}$	111	
	a = 0.48	A1	
	Maximum speed is 10.6 ms^{-1}	Al	
6(i)	PE gain by $P = 0.4g \times 0.8 \sin \theta$	B1	
	PE loss by Q = $0.58g \times 0.8 \theta$	B1	
		M1	For using KE gain = PE loss
	$\frac{1}{2}(0.4 + 0.58)v^2 = g \times 0.8(0.58\theta - 0.4\sin\theta)$	A1ft	
	$v^2 = 9.28 \theta - 6.4 \sin \theta$	A1	AEF
	v = 9.200 0.45m0	[5]	
(ii)			For applying Newton's second law to P and
		M1	using $a = v^2/r$
	$0.4g\sin\theta - R = 0.4v^2/0.8$	A1	G ··· ···
	$[0.4g \sin\theta - R = 4.64\theta - 3.2 \sin\theta]$	M1	For substituting for v^2
	$R = 7.12 \sin \theta - 4.64 \theta$	A1	AG
	$\mathbf{K} = 7.12 \mathrm{SIII} \boldsymbol{\theta} - 4.04 \boldsymbol{\theta}$	[4]	
(iii)		M1	For substituting 1.53 and 1.54 into $R(\theta)$
(111)	R(1.53) = 0.01(48), R(1.54) = -0.02(9) or	1411	For substituting 1.55 and 1.54 into $\mathbf{R}(\mathbf{U})$
	R(1.53) = 0.01(48), R(1.54) = -0.02(5) of simply R(1.53) > 0 and R(1.54) < 0	A1	
	simply $R(1.55) > 0$ and $R(1.54) < 0$		Earwing the idea that if $\mathbf{D}(1.52)$ and
			For using the idea that if $R(1.53)$ and $R(1.54)$ are of some site sizes than R is zero.
			R(1.54) are of opposite signs then R is zero
		M1	(and thus P leaves the surface) for some value of θ between 1.53 and 1.54.
	R(1.53) × R(1.54) < 0 → 1.53 < α < 1.54	Al	
	$R(1.55) \wedge R(1.54) < 0$ 7 1.55 < $u < 1.54$	[4]	AG
			Encoder T A. (
7(i)	$T = 10 C_{\rm c}/1 C_{\rm c} = 1T = 10 C/1 C_{\rm c} > 11 C_{\rm c}$	M1	For using $T = \lambda e/L$
	$T_{AP} = 19.6e/1.6$ and $T_{BP} = 19.6(1.6-e)/1.6$	A1	
		M1	For resolving forces parallel to the plane
	$0.5g \sin 30^{\circ} + 12.25(1.6 - e) = 12.25e$	Alft	
	Distance AP is 2.5m	A1	
(••)		[5]	
(ii)	Extensions of AP and BP are $0.9 + x$ and	DI	
	0.7 - x respectively	B1	
	$0.5g \sin 30^\circ + 19.6(0.7 - x)/1.6$	DIC	
	$-19.6(0.9 + x)/1.6 = 0.5 \ddot{x}$	B1ft	
	$\ddot{x} = -49x$	B1	AG
		M1	For stating k < 0 and using T = $2\pi/\sqrt{-k}$
	Period is 0.898 s	A1	
		[5]	
(iii)		M1	For using $v^2 = \omega^2 (A^2 - x^2)$ where $\omega^2 = -k$
	$2.8^2 = 49(0.5^2 - x^2)$	A1ft	ft incorrect value of k
	$x^2 = 0.09$	A1	May be implied by a value of x
			ft incorrect value of k or incorrect value of
	x = 0.3 and -0.3	A1ft	x^2 (stated)
		[4]	

			For triangle with two of its sides marked
			0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		M1	or for using $I = \Delta mv$ in one direction.
	For included angle marked α or for		
	$0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$ For opposite side marked 4/0.8 (or 4) or for	A1	Allow B1 for omission of 0.8
	$0.8 \times 8.5 \sin \alpha = 4 \sin \beta$	A1	Allow B1 for omission of 0.8
			For using the cosine rule or for eliminating
		M1	β
	$8.4^2 + 6.8^2 - 2x8.4x6.8\cos\alpha = 4^2$	Alft	ft 0.8 mis-used or not used
	$\alpha = 28.1^{\circ}$	A1	
2(i)	$[100a = 2aV_B]$	[6] M1	For taking moments about A for AB
2(1)	Vertical component at B is 50 N	A1	For taking moments about A for AB
	Vertical component at C is 150 N	A1	
		[3]	
(ii)			For taking moments about B for BC (3
			terms needed) or about A for the whole (4
		M1	terms needed)
	$100(0.5a) + (\sqrt{3} a)F = 150a$ or		
	$100a + 100(1.5a) = 150a + (\sqrt{3} a)F$	A1ft	
	Frictional force is 57.7 N	A1	
	Direction is to the right	B1	
3 (i)	u = 4	[4] B1	
	u = 4 v = 2	B1 B1	
	v = 2	[2]	
		[_]	
(ii)			For using the principle of conservation of
		M1	momentum or for using NEL with $e = 1$
	mu = ma + mb (or u = b - a)	A1 B1	
	u = b - a (or $mu = ma + mb$) $a = 0$ and $b = 4ms^{-1}$	Alft	ft incorrect u
	Speed of A is $2ms^{-1}$ and direction at 90° to	AIIt	n meoneet u
	the wall	A1ft	ft incorrect v
	Speed of B is 4ms^{-1} and direction parallel to		
	the wall	A1ft	ft incorrect u
		[6]	
4(i)	10 05 1 /1 0/50 ² /2/2/202		For using Newton's second law (1 st or 2 nd
	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	stage)
			For attempting to integrate (1^{st} stage) and
		M1	using $v(0) = 0$ (may be implied by the absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$	A1	absence of $+ C_1$
	v = 12030 - t/1800 [v(12) = 1.92]	M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \rightarrow$	1,11	For using Newton's second law (2^{nd} stage)
	$v = t^3 / 1800 - 12t/50 + C_2]$	M1	and integrating
	$[1.92 = 0.96 - 2.88 + C_2]$	M1	For using $v(12) = 1.92$
	$v = t^3/1800 - 12t/50 + 3.84$	A1	
	$v(24) = 5.76 = 3 \times v(12)$	A1	AG
1		[8]	

Mark Scheme

(ii)	Sketch has $v(0) = 0$ and slope decreasing		
(11)	Sketch has $V(0) = 0$ and slope decreasing (convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave	DI	
	upwards) for $12 < t < 24$	B1	
	Sketch has v(t) continuous, single valued		
	and increasing (except possibly at $t = 12$)		
	with v(24) seen to be > $2v(12)$	B1	
		[3]	
5(i)	For using amplitude as a coefficient of a		
	relevant trigonometric function.	B1	
	For using the value of ω as a coefficient of t		
	in a relevant trigonometric function.	B1	
	$x_1 = 3cost and x_2 = 4cos1.5t$	B1	
(;;)		[3]	For using distance travelled by P_2 for
(ii)		M1	$0 < t < 5\pi/3$ is $5A_2$
	Part distance is 20m	A1	$0 < t < 5h/5$ is $5H_2$
		111	For subtracting displacement of P_2 when
	[20 - (-3.62)]	M1	t = 5.99 from part distance.
	Distance travelled by P_2 is 23.6 m	A1	r · · · · · · · · · · · · · · · · · · ·
	, , , , , , , , , , , , , , , , , , ,	[4]	
(iii)		M1	For differentiating x_1 and x_2
	$\dot{x}_1 = -3$ sint; $\dot{x}_2 = -6$ sin1.5t	A1	
	1 2		For evaluating when $t = 5.99$ (must use
		M1	radians)
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
		[4]	
	Alternative for (iii):		Equation $r^2 = r^2(r^2 - r^2)$ (must use redices
		M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x)
	$v_1^2 = 3^2 - 2.87^2$, $v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	to find values of x)
	$v_1 = 5 = 2.07$, $v_2 = 2.25[4 = (-5.02)]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$	111	For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0$	M1	changes sign at intervals of $T/2$ s
	$v_1 = 0.867, v_2 = -2.55$; opposite directions	A1	
6(i)	PE loss at lowest allowable point = $25W$	B1	
	-		For using $EE = \lambda x^2/(2L)$; may be scored in
		M1	(i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	
			For equating PE loss and EE gain and
	[25W = 20000]	M1	attempting to solve for W
	Value of W is 800	A1	
(;;)	[800 = 32000x/20]	[5] M1	For using W = $\lambda x/L$ at max speed
(ii)	[000 - 32000x/20]	M1	For using $W = \lambda x/L$ at max speed For using the principle of conservation of
		M1	energy (3 terms required)
	$\frac{1}{2}(800/9.8)v^2$		chergy (o terms required)
	$= 800 \times 20.5 - 32000 \times 0.5^{2}/(2 \times 20)$	A1	
	Maximum speed is 19.9ms ⁻¹	A1	
		[4]	
(iii)			For applying Newton's second law to
		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \text{ x } 5/20$	A1	
	Max. deceleration is 88.2 ms^{-2}	A1	
		[3]	

7(i)			For using the principle of conservation of
~ ~ ~	$\left[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m 6}^2 = \text{mg}(0.7)\right]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	
	Coefficient of restitution is 0.695	B1ft	ft 4.9 \div speed of P before collision
		[3]	-
(ii)			For using the principle of conservation of
	$[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
			For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mg\cos\theta = mv^2/0.7$	A1	
	$[T - m9.8\cos\theta = m3.43(3 + 4\cos\theta)/0.7]$	M1	For substituting for v^2
	Tension is 14.7m(1 + $2\cos\theta$)N	A1	AG
	$1 \text{ chsion is } 14.7 \text{ m}(1 + 20030^{\circ}) \text{ is }$	[6]	
(iii)	$T = 0 \Rightarrow \theta = 120^{\circ}$	B1	
			For using $a_r = -g\cos\theta$
			{or $3.43(3 + 4\cos\theta)/0.7$ }
		M1	or $a_t = -gsin \theta$
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ or		or $a_t = -g \sin \theta$
	transverse acceleration is $(\pm)8.49 \text{ ms}^{-1}$	A1	
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ and		
	transverse acceleration is $(\pm)8.49 \text{ ms}^{-1}$	B1	
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
			(max. 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43\{3 + 4(-0.5)\}x0.5^2 \text{ or}$		
	$V^2 = (-g\cos 120^\circ \ge 0.7) \ge \cos^2 60^\circ]$	M1	For using $V = v(120^\circ) \times \cos 60^\circ$
	$V^2 = 0.8575$	A1	AG
	$[mgH = \frac{1}{2} m(4.9^2 - 0.8575) \text{ or}$		For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2}m(3.43 - 1.05)$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	

1 i	(-)15cos α = (0 –) 0.5x22 or 15sin β = 0.5x22	M1 A1	M1 for using $I = \Delta(mv)$ in 'x' direction or for sketching Δ reflecting $\underline{I} = m(\underline{v} - \underline{u})$
	Impulse makes angle 42.8° (0.748 rads) with negative x-axis	A1 [3]	AEF, but angle must be clear
ii	$15\sin \alpha = 0.5v \text{ or } 15\cos \beta = 0.5v$ or $(0.5v)^2 = 15^2 - 11^2$ Correct explicit expression for v Speed is 20.4 ms ⁻¹	M1 A1 A1 [3]	For using I = Δ (mv) in 'y' direction or using sketched Δ

2	$\frac{1}{2}$ (m)(v ² - 6 ²) = -(m)g x 0.5 in (i) or	M1	For using the principle of conservation of energy in (i) or (ii)
	$\frac{1}{2}$ (m)(v ² - 6 ²) = -(m)g x 1 in (ii) v ² = 26.2 in (i) and 16.4 in (ii)	A1	soi
	$T = 0.4v^{2}/0.5 \text{ in (i) or} T + 0.4g = 0.4v^{2}/0.5$	M1 A1	For using Newton's second law with $a = v^2/L$. M1 for either attempt, A1 for both right
	Tension is 21.0N in (i) (20.96) 9.2N in (ii)	A1 A1	ngin
		[6]	

3			For taking moments about Q for PQ or for
i	2.8V = 1.4x72	M1	using symmetry
	Vertical component at <i>P</i> is 36 N	A1	
	_	[2]	
ii	36 + N = 72 + 54	M1	For resolving forces vertically on both rods
	Normal component at <i>R</i> is 90 N	A1	AG
		[2]	
iii			For taking moments about <i>Q</i> for <i>QR</i> or
	1.44F = 1.2x90 - 0.8x54 or		about <i>P</i> for the whole structure (all terms
	72x1.4 + 54x3.6 + 1.44F = 90x4	M1	needed)
	with not more than 1 error in either case	A1	
	Equation correct and leading to $F = 45$	A1	
	For using $F = \mu R$	M1	
	Coefficient is 0.5	A1	
		[5]	

4			For using the principle of conservation of
i	0.4(7x0.6) - 0.3x2.8 = 0.4a + 0.3b	M1	momentum
		A1	
	0.7(7x0.6 + 2.8) = b - a	M1	For using $e(\Delta u) = \Delta v$
		A1	
		M1	For eliminating a from equations
	Speed of <i>B</i> is 4ms^{-1}	A1	
		[6]	
ii	a = (-)0.9	B1	
	Component perp. to l.o.c. is 5.6	B1	
			For attempting to find α - the angle between
	$\tan \alpha = 5.6/0.9$	M1	the direction of motion of A after collision
	$\alpha = 80.9^{\circ}$	A1	and the l.o.c. to the left, or $90^{\circ} - \alpha$
	Angle turned through is 46.0° (0.803 ^c)	A1ft	$126.9^{\circ} - \alpha$
		[5]	

5 i	2.45 $e/0.5 = 0.05g$ ($e = 0.1$) Distance from O is $0.5 + 0.1 = 0.6m$	M1 A1 A1 [3]	For using $T = \lambda e/L$ and resolving forces vertically accept use of 0.1 to show both sides equal to 0.49 AG
ii	$mg - T = m \ddot{x}$ $0.05g - 2.45(0.1 + x)/0.5 = 0.05 \ddot{x}$ $\ddot{x} = -98x$	M1 A1 A1 [3]	For using Newton's second law with 3 terms AG
iii	a = 0.075 $n = 7\sqrt{2}$ oe $x = 0.075\cos(7\sqrt{2} t)$ x(0.2) = -0.0298 $v = -0.075(7\sqrt{2})\sin(7\sqrt{2} t)$ v(0.2) = -0.681 → velocity is 0.681ms ⁻¹	B1 B1 M1 A1 M1 A1ft A1	accept 9.90 For using $x = a\cos nt$ oe For differentiating $x = a\cos nt$ and using it ft incorrect <i>a</i> and/or <i>n</i> If from $v^2 = n^2(a^2 - x^2)$ the direction must
	upwards	[7]	be clearly established

6 i	$112e/4 = 3.5 \times 9.8 \times \frac{40}{49}$ $V^{2} = 2x8x(4 + 1)$ $V^{2} = 80$	M1 A1 M1 A1	For using $mg\sin\theta$ and $\lambda e/L$ For using $s = 4 + e$ and $a = 8$ in $v^2 = 2as$, or by energy
	$0.5\sqrt{80} = (0.5 + 3.5)u$ Initial speed of combined particles is $\frac{1}{2}\sqrt{5}$ ms ⁻¹	M1 A1 [6]	For using the principle of conservation of momentum
ii	Gain in EE = $(112/(2x4))\{(X + 1)^2 - 1^2\}$ Loss of KE = $\frac{1}{2}(0.5 + 3.5) \ge \frac{5}{4}$ Loss of PE = $(0.5 + 3.5) \ge 9.8 \ge \frac{40}{49}X$	M1 A1 B1 B1	For using $EE = \lambda x^2/2L$
	14(X2 + 2X) = 2.5 + 32X $28X2 - 8X - 5 = 0$	M1 A1 [6]	For using the principle of conservation of energy AG
OR	$\frac{T - mg \sin\theta = -ma}{\frac{112(x+1)}{4} - 4g \frac{40}{49} = -4a}$ $\int (7x-1)dx = -\int vdv (+c)$ $7x^2 \qquad v^2$	M1 A1 M1	For use of $F = ma$ allow one sign slip for A1 Using $a = v \frac{dv}{dx}$ and integrating
	$\frac{7x^{2}}{2} - x = -\frac{v^{2}}{2} + c$ $c = \frac{5}{8}$ $28X^{2} - 8X - 5 = 0$	A1 A1 A1 [6]	AG Convincingly

7 i	$0.2g - v^2/2000 = 0.2v(dv/dx)$	M1	For using Newton's second law with $a = v(dv/dx)$
1	$(\frac{400v}{3920 - v^2})\frac{dv}{dx} = 1.$	A1 [2]	AG Convincing, with no slips.
ii	$-200 \ln(3920 - v^{2}) = x + (A)$ -200 ln(3920) = A	M1 A1 M1	For separating variables and integrating For using $v(0) = 0$
	$x = 200 \ln\left(\frac{3920}{3920 - v^2}\right)$	A1	
	$e^{x/200} = 3920/(3920 - v^{2})$ $v^{2} = 3920(1 - e^{-x/200})$ $0 < e^{-x/200} \Rightarrow v^{2} < 3920$	M1 A1 B1	For using inverse ln process AG Convincingly – dep on correct answer
		[7]	
iii	Using $0.2g - v^2/2000 = 0.2a$ v = 40 Gain in KE = $\frac{1}{2} 0.2x1600$ (=160J) 3920 (=104.00)	M1 A1 B1ft	
	$x = 200 \ln(\frac{3920}{3920 - 1600}) (= 104.90)$ 0.2g x (104.9) - 160 Work done is 45.6 J	B1ft M1 A1 [6]	For using WD = loss of PE – gain in KE
OR	Using $0.2g - v^2/2000 = 0.2a$ v = 40	M1 A1	
	$x = 200 \ln(\frac{3920}{3920 - 1600}) (= 104.90)$	B1ft	
	WD = $\int \frac{v^2}{2000} dx + c$ = $\int \frac{3920}{2000} (1 - e^{-x/200}) dx$	M1	Use of WD = $\int F dx$ and subst for v^2
	$= \int \frac{1}{2000} (1 - e^{-x}) dx$ = 3920 / 2000(x + 200e ^(-x/200) - 392	A1 A1	
	Work done is 45.6 J	[6]	

1	$[5\cos\theta - 4 = 0]$ $\cos\theta = 0.8$ $[I = 0.3(5\sin\theta - 0) \text{ or } \sin\theta = I \div (0.3 \text{ x 5})]$ I = 0.9	M1 A1 M1 A1 [4]	For using $v_x - u_x = 0$ or for a triangle sketched with sides $I/0.3$, 4 and 5 with angles θ and 90° opposite I/m and 5 respectively. AG For using I = $m(\Delta v)$ in 'y' direction or $I = \sqrt{((0.3 \times 5)^2 - (0.3 \times 4)^2)}$ M1
---	--	-----------------------------	--

2 i	$(1.8 + 3.2)R_B = (3.2 + 0.9)x300 + 1.6x400$ Force exerted on <i>AB</i> is 374 N Force exerted on <i>AC</i> is 326 N	M1 A1 A1 B1 [4]	For taking moments about <i>C</i> for the whole for M1 need 3 terms; allow 1 sign error and/or 1 length error and/or still including sin/cos or for taking moments about <i>B</i> for whole $(1.8 + 3.2)R_C = (1.8 + 1.6)x400 + 0.9x300$ giving force on <i>AC</i> first: M1A1A1A1
ii	0.9x300 + 1.2T = 1.8x374 Tension is 336 N	M1 A1 A1 [3]	For taking moments about A for AB for M1 need 3 terms, allow 1 sign error and/or 1 length error and/or still including sin/cos or moments about A for AC 1.6x400 + 1.2T = 3.2x326
iii	Horizontal component is 336 N to the left $[Y = 374 - 300]$ Vertical component is 74 N downwards	B1ft M1 A1ft [3]	For resolving forces on <i>AB</i> vertically

Give credit for part (ii) done on the way to part (i) if not contradicted in (ii).

3 i	$0.25(dv/dt) = -0.2v^{2}$ $0.25\int v^{-2}dv = -0.2t(+C)$	M1 dep M1	For using Newton's second law with $a = dv/dt$. Allow sign error and/or omitting mass For separating variables and attempting to integrate (ie get v^{-1} and t).
	$-v^{-1}/4 = -t/5 + C$ [1/4v = t/5 + 1/20] $v = \frac{5}{4t+1}$ oe	A1 M1 A1 [5]	For using $v(0) = 5$ to obtain <i>C</i>
ii	$(5/4) \ln (44 + 1) (+ B)$	M1	For using $v = dx/dt$ and integrating
	$x = (5/4)\ln(4t + 1) (+B)$ Subst $v = 0.2$ in (i) to find t	A1 M1	Implied by $t = 6$
	Obtain $x(6)$ (= 1.25 ln25 oe (4.02359)) Average speed is 0.671 ms ⁻¹	M1 A1 [5]	May be written as $\frac{5}{12} \ln 5$
	Alternatively		
		M1	For using $mv(dv/dx) = -0.2v^2$, separating variables and integrating. Allow sign error and/or omitting mass.
	$\ln v = -0.8x + B$	A1	
	Subst $v = 0.2$ in (i) to find t Obtain $x(0.2) (= 1.25 \ln(5/0.2)$ oe (4.0239))	M1 M1	Implied by $t = 6$
	Average speed is 0.671 ms^{-1}	A1	May be written as $\frac{5}{12} \ln 5$

4 i	$\begin{bmatrix} -0.2x2 \ddot{\theta} = 0.2g\sin\theta \end{bmatrix}$ $\frac{d^2\theta}{dt^2} = -4.9\sin\theta$ For small θ , $\sin\theta \approx \theta$ and $\ddot{\theta} = -4.9\theta$ represents SHM	M1 A1 B1 [3]	For using Newton's second law transversely. Allow sign error and/or sin/cos error and/or missing 0.2, g or l. AG
ii	$\theta = 0.15\cos(\sqrt{4.9} t)$ oe t = 1.04 at first occasion t = 1.80 at second occasion	M1 A1 A1 M1 A1 [5]	For using $\theta = A\cos(nt)$ or $A\sin(nt + \varepsilon)$. Allow sin/cos confusion for using $t_1 + t_2 = 2\pi/n$
iii	Angular speed is (-) 0.297 rads s ⁻¹ Linear speed is (-) 0.594ms ⁻¹	M1 A1 A1ft [3]	For using $\dot{\theta} = -An \sin(nt)$ oe. Allow sign error and/or ft from θ in (ii).

In (ii) & (iii) allow M marks if angular displacement/speed has been confused with linear.

5	$[\sin \gamma = 0.96 \div 1.2]$	M1	For using $v_B \sin \gamma = u_B \sin \beta$
1	$\sin \gamma = 0.8$	A1 [2]	
ii		M1	For using the principle of conservation of momentum. Allow sign error and/or
	$(m)2 - (m)u_B\cos\beta = (m)v_B\cos\gamma$	A1	$u_A \cos \alpha$ (instead of 2) for M1. allow $u_A \cos \alpha$ (instead of 2) for A1
		M1	For eliminating u_B or v_B . Allow with cos
	$2 = v_B(0.6 + 0.28 \div 1.2)$	A1	Or $2 = 0.28u_B + 0.72u_B$
	$v_B=2.4, u_B=2$	A1 [5]	
iii	$[(2+u_B\cos\beta)e=v_B\cos\gamma]$	M1	For applying Newton's exp'tal law. Allow sign error and/or $u_A \cos \alpha$ (instead of 2) for M1.
	$(2 + 2 \ge 0.28)e = 2.4 \ge 0.6$	A1ft	ft u_B and v_B only
	$e = \frac{9}{16}$ or 0.5625	A1 [3]	
iv	2		For using $\frac{1}{2}(m)v^2 = 6.5(m)$ and
	$[(y-component)^2 = 13 - 4]$	M1	$(y$ -component) ² = $v^2 - 2^2$. Allow 1 slip.
	$v_A = (y\text{-component})_{before} = 3$	A1 [2]	

6		M1	For using PE gain = $W(h_Y - h_X)$
i	PE gain = $6x0.8(\sqrt{3}/2 - 1/\sqrt{2})$		
	$= 2.4(\sqrt{3} - \sqrt{2})$	A1	Shown fully, with no slips AG
		M1	For using EE loss = $\lambda (e_x^2 - e_y^2)/2l$. Allow
	EE loss = $\frac{9}{2(\pi/10)}$ [(0.8 $\pi/4$ - $\pi/10$) ² -		slips for M1.
	$\frac{2(\pi/10)}{(0.8\pi/6 - \pi/10)^2]}$	A1	Fully correct
	EE loss = $45 \pi [(0.2 - 0.1)^2 - (0.4 - 0.3)^2 \div 9]$ = $5 \pi (9 \times 0.01 - 0.01) = 40 \pi / 100 = 0.4 \pi J$	A1	No slips in simplification
		[5]	AG
ii	T = 0 (0.0 - 10 - 10) (-10)	D 1	
	$T = 9 \ (0.8 \ \pi \ /6 - \pi \ /10) \div (\pi \ /10)$	B1	
		M1	For attempting to show that
	$W\sin\theta - T = 6 \times \sin(\pi/6) - 90 \times (0.2 \div 6) = 0$	A 1	$W\sin\theta - T = 0$ at <i>Y</i> by subst $\theta = \pi/6$
	\rightarrow transverse acceleration is zero	A1	AG No slips
		M1	For using KE gain = $EE \log - PE gain$ at
			<i>Y</i> . Need 3 terms, allow sign errors and/or
	$\frac{1}{2}(6/9.8)v^2 = 0.4 \pi - 2.4(\sqrt{3} - \sqrt{2})$	A1	g omitted.
	Maximum speed is 1.27 ms ⁻¹	A1	
		[6]	

7 i		M1	For using the principle of conservation of energy. Allow sign error, sin/cos; need 3 terms.
	$\frac{1}{2}mv^2 = \frac{1}{2}m5.6^2 - mg0.8(1 - \cos\theta)$	A1	
	$v^2 = 15.68(1 + \cos\theta)$	A1	AG No slips
	$T - mg\cos\theta = mv^2/r$	M1	For using Newton's second law. Allow sign error and/or sin/cos and/or <i>m</i> omitted
		A1	
	$[T - 0.3g\cos\theta = 0.3x15.68(1 + \cos\theta)/0.8]$	M1 A1	For substituting for v^2
	Tension is $2.94(3\cos\theta + 2)$ N oe	[7]	
ii		M1	For putting $T = 0$ and attempting to solve
	θ is 131.8° (or 2.3 rads) Accept 132° (exact)	A1	accept $\theta = \cos^{-1}(-2/3)$
	v is 2.29	B1	$\sqrt{15.68/3}$ exact
		[3]	
iii			For using 'speed at max. height = horiz.
	$[\text{speed} = v \cos(180 - \theta) =$	M1	comp. of vel. when string becomes slack'
	$\sqrt{15.68/3} \times (2/3)$]	IVI I	
	Speed at greatest height is 1.52 ms^{-1}	A1	
			For using the principle of conservation of
	$0.3gH = \frac{1}{2} \ 0.3(5.6^2 - 1.52^2)$	M1	energy
	Greatest height is 1.48 m	A1	40/27 exact
		[4]	
	ALTERNATIVE for (iii)		
	$[0 = 2.286^2 \times (1-4/9) - 19.6y,$		For using $0^2 = \dot{y}^2 - 2gy$ and
	H = 0.8(1 + 2/3) + y]		
	H = 1.3333 + 0.1481 (4/3 + 4/27)	M1	$H = 0.8\{1 + \cos(180 - \theta)\} + y$
	Greatest height is 1.48 m (40/27)	A1	
	$[\frac{1}{2}m(2.286^2 - \text{speed}^2) = mg \times 0.1481$		
	speed ² = $2.286^2 - 19.6 \times 0.1481$] or		For using the principle of conservation of
	$[\frac{1}{2}m(5.6^2 - \text{speed}^2) = mg \times 1.481$	MI	energy
	speed ² = $5.6^2 - 19.6 \times 1.481$] Speed at greatest height is 1.52 ms^{-1}	M1 A1	
	speed at greatest height is 1.32 his	ЛІ	

Q	uestion	Answer	Marks	Guidance	
1	(i)	Triangle of velocities/momentum All correct Use of Pythagoras' theorem to find I I = 0.075	M1 A1 M1 A1 [4]	For right angled triangle with at least one side correctly shown (2.5, 2, 20 <i>I</i> or 0.125, 0.1, <i>I</i>) or vector equation $(v_1, v_2) =$ (0, 20I) + (2, 0) with at least 3 of the 4 components on the RHS correct $400I^2 + 2^2 = 2.5^2$ or $I^2 = 0.125^2 - 0.1^2$	may be implied by $v_1^2 + v_2^2 = 2.5^2$ or $\sin \alpha = 0.6$
1	(ii)	Components of velocity parallel to the wall before and after are 2 and 2 Components of velocity perpendicular to the wall before and after are (-) 1.5 and 1.5 <i>e</i> $[2^2 + (1.5e)^2 = 5]$ Coefficient is $\frac{2}{3}$ or 0.667	B1 B1 M1 A1 [4]	For using $v_1^2 + v_2^2 = 5$ Must be perp to wall	may be implied
2	(i)	$2mu\cos\alpha - mu\cos\alpha = 2ma + mb$ $0.5(u\cos\alpha + u\cos\alpha) = b - a$ Comp of <i>B</i> 's velocity along l.o.c. is $u\cos\alpha$ Establishing B's speed unchanged	M1 M1 A1 A1ft A1 [5]	For using the p.c.m. parallel to l.o.c. For using NEL parallel to l.o.c. for both p.c.m and NEL correct & consistent dep on M1M1 gained by stating vel perp l.o.c. still $u\sin\alpha$, hence result, dep on all previous marks	allow sign errors, $m/2m$, sin/cos allow sign errors, e left in or by showing speed is still u condone 'vertical' in this part
2	(ii)	a = 0 correct interpretation of direction of <i>A</i> Direction of <i>B</i> is at angle α to l.o.c, with an indication that removes ambiguity (eg in sketch)	B1 B1 B1 [3]	may be shown in (i) perp to l.o.c.	condone 'vertical' for perpendicular, accept sketch, and refs to sketch in (i)

Q	uestion	Answer	Marks	Guidance		
3	(i)		M1	For using Newton's second law and $a = v(dv/dx)$	allow missed – sign / stray g / missed 0.3	
		$0.3v(dv/dx) = -1.2v^3$	A1			
		$[-v^{-1} = -4x + A]$	M1*	For finding dv/dx in terms of v and attempting	allow $A/v = Bx + C$ oe	
				to integrate		
		$[-u^{-1}=0+A]$	*M1	For using $v(0) = u$		
		$v = \frac{u}{4ux + 1}$	A1	AG		
			[5]			
3	(ii)	$\int (4ux+1)dx = \int udt$	M1*	For using $v = dx/dt$, separating the variables and attempting to integrate one side	-1.2 v^3 =0.3 dv/dt and attempt to int one side M1*	
		$2ux^2 + x = ut + B$	A1		$8t = 1/v^2 - 1/u^2$ and subst for v A1	
		$[(2\times 4-9)u=-2]$	*M1	For using $x(0) = 0$ (may be implied by absence of <i>B</i>) and $x(9) = 2$ – dep on int being done	then as main scheme	
		u = 2	A1			
		2	[4]			
4	(i)	EE gain = $44.1x^2 \div (2x0.75)$	B1		allow use of $(e + x)$ for x	
		PE loss = $1.8g(0.75 + x)$	B1	ignore signs	44.1.2 26.46 10.045 0.11	
		$[x^2 - 0.6x - 0.45 = 0]$	M1	For using EE gain = PE loss	$44.1x^2 - 26.46x - 19.845 = 0$ allow	
		Extension is 1.03 m	A1		sign errors 1.0348469	
			[4]		1.0540407	
4	(ii)		M1	For using $T = \lambda x/L$		
		$\frac{44.1 \times 1.03}{0.75} - 1.8 \times 9.8 = -1.8 \ddot{x}$	M1	For using Newton's 2^{nd} law	allow missed g, m, sign error	
		0.75	A1ft	ft their '1.03' from (i)	allow sign error	
		Acceleration is -24.0 ms^{-2}	All	direction must be clear	$1.03 \rightarrow -23.84666$	
			[4]		$1.035 \rightarrow -24.01$	

Q	uestion	Answer	Marks	Guidance		
5	(i)		M1	For taking moments about <i>B</i> for <i>BC</i>	must be 2 terms involving <i>T</i> , <i>L</i> , 84.5 and $\sin/\cos\beta$	
		$84.5 \times 12L/13 = T(2L)$	A1	must use $12/13$ for $\cos \beta$,	
		Tension is 39 N	A1			
			[3]			
5	(ii)			For resolving forces on <i>BC</i> horiz or vert	must involve their T and sin/cos	
			M1		β	
		$X = 39 \times 5/13$	A1 FT	explicit expression for X		
		$Y = 84.5 - 39 \times 12/13$	A1 FT	explicit expression for Y		
		X is to the left and Y is upwards	A1cao	AG (numerical values – must be correct) dep	accept on diagram	
				M1A1A1		
			[4]			
5	(iii)		M1*	For taking moments about A for AB	must involve 3 terms, 84.5, 48.5,	
					15, sin α and cos α ;	
		$84.5 \times L\cos\alpha + 48.5 \times 2L\cos\alpha = 15 \times 2L\sin\alpha$	A1		allow sign errors, L/2L	
		$[\tan \alpha = \frac{84.5 + 97}{30}]$	*M1	For obtaining a numerical expression for $\tan \alpha$	similar scheme for those who take moments about <i>A</i> for whole	
		$\alpha = 1.41^{\circ} \text{ or } 80.6^{\circ}$	A1		system	
			[4]		by stelli	
6	(i)	$[0.4 \pi = 2 \pi / n]$	M1	For using $T = 2\pi / n$		
		n = 5	A1			
			M1	For using $v_{\text{max}} = n(OA)$		
		Distance OA is 0.8 m	A1			
			[4]			
6	(ii)	$[x = 0.8\cos(5 \times 1)]$	M1	For using $x = a \cos nt$		
		x = 0.227	A1			
		$[\dot{x} = -0.8 \times 5\sin(5 \times 1)]$	M1	For using $\dot{x} = -an\sin nt$	Use of $v^2 = n^2 (a^2 - x^2) M1$	
		Velocity is 3.84 ms^{-1}	A1		Direc needs to be shown for A1	
			[4]			

Mark Scheme

Q	uestion	Answer	Marks	Guidance	
6	(iii)	t and x for one point	B2	Values of t are $= 0.257, 0.372, 0.885$	$0.4\pi - 1, 1 - 0.2\pi, 0.6\pi - 1$
		t and x for second point	B1	Values of <i>x</i> are 0.227, -0.227, -0.227	
		t and x for third point	B1		ignore ref to point when $t = 1$
		correctly stating precisely 3 points	B1		can show on graph
				sc all 3 x values B2	
				all 3 t values B2	
				one <i>t</i> value B1	
				one <i>x</i> value B1	
		If B1 or B0 scored (out of first 4) on above	(M1)	For $t = 1 \approx 0.8T \rightarrow 3/4T < 1 < 4/4T$ or equiv	
		scheme, allow, subject to max mark 2,	(A1)	-	
		Number of occasions is 3	[5]		
7	(i)	Tension in string	M1	For using $T = \lambda x/L$	
		$T = mg\sin\alpha$	B1		
		For using $e = R\alpha - 2R/3$	B1	$\begin{pmatrix} -2R \end{pmatrix}$	
				$mg\sin\alpha = 1.2mg\left(\frac{Ra - \frac{2R}{3}}{3}\right) \div \frac{2R}{3}$	
		$1.8\alpha - \sin\alpha - 1.2 = 0$	A1	AG establish result	By iteration
		Finding f(1.175) and f(1.185)	M1		$\alpha = (1.2 + \sin \alpha)/1.8$ M1
		correctly	A1	≈ -0.008 , and $\approx +0.0065$	start [1, 2], and 1 iteration A1
		correct conclusion	A1	AG α = 1.18 correct to 3 significant figures	at least 1 more iteration, and
			[7]		conclusion 1.18(0427) A1
7	(ii)	Direction is towards O	B1		
			[1]		
7	(iii)		M1*	For using $EE = \lambda e^2 \div (2L)$ and $PE = mgh$	
		Gain in EE = $1.2mg(1.18R - 2R/3)^2 \div (2x2R/3)$	A1		
		$PE loss = mgR(\cos 2/3 - \cos 1.18)$	A1	ignore signs	allow α for 1.18 for A1A1
			M1	For using $\frac{1}{2}mv^2 = PE \log - EE gain$	allow sign errors
		$v^2 =$			
		$2gR[\cos 2/3 - \cos 1.18 - 0.9(1.18 - 2/3)^2]$	A1		need 1.18 here
			*M1	For using acceleration = v^2/R	If candidates use $mR\ddot{\theta}$ use
		Acceleration is 3.29 ms^{-2} .	A1		equivalent scheme
			[7]		

	Questio	on	Answer	Marks	Guidance
1		(i)	$[40d = 30 \times 2]$	M1	For taking moments about <i>B</i> for <i>BC</i>
			Distance is 1.5 m	A1	
				[2]	
		(ii)	30 = 0.75 R	B1	
			Horizontal component on AB at B is 40 N to	B1	
			the left	2.61	N 20 10 1/ N 2
			For resolving forces on <i>BC</i> vertically, or	M1	$Y + 30 = 40$, or $40 \ge 1/2 = Y \ge 2$
			taking moments about C		Accept directions on diagram, if not contradicted in text
			Vertical component on <i>AB</i> at <i>B</i> is 10 N	A1	SR A1 if both magnitudes correct but directions wrong/not stated
			down	[4]	
		(iii)		M1	For taking moments about A for AB
		(111)	$(+/-)10 \times 2 + 60 \times 0.8d = (+/-)40 \times 1.5$	A1 FT	FT magnitudes of components at B; need to use ' $x = d\cos\theta$ '
			Distance is 0.833 m	A1	1 1 magintudes of components at D , need to use $x = a \cos \theta$
				[3]	May see moments about A for ABC (60 x $0.8d + 40$ x $3.5 = 30$ x $4 + 40$ x 1.5) or
				[0]	moments about B for AB – need to get equation with only 'd' unknown for M1
2		(i)	Since plane is smooth impulse is	B1	
			perpendicular to plane(so $\theta = 15$)	[1]	
		(ii)	Use of $v^2 = (u^2) + 2 \times g \times 2.5$	M1	
			$v = 7 \text{ ms}^{-1}$	A1	
			after impact:		
			Speed parallel to plane is 7sin15°	B1	1.81(173)
			$u = 7\sin 15^\circ / \cos 60^\circ$	M1	Allow sin/cos errors
			u = 3.62	A1	
			$I = 0.45(7 \cos 15^\circ + u \sin 60^\circ)$	M1	Allow sin/cos errors or $I = 0.45(7 \cos 15^\circ + 7\sin 15^\circ \tan 60^\circ)$
			I = 4.45	A1	4.45477 May see $e = 0.464$
				[7]	
			Or For using a triangle with sides 3.15 (0.45	M1	Need 2 correct sides and 1 correct angle
			x 7), <i>I</i> and 0.45 x <i>u</i> (or 7, I/0.45 and <i>u</i>) and		All correct
			correct angles 135°, 15° and 30°	A1	OR $I\cos 15^\circ = 3.15 + 0.45 \ u\cos 45^\circ$ M1
			Use of sin rule or cos rule (correct)	M1	$I\sin 15^\circ = mu\cos 45^\circ$ B1
			u = 3.62	A1	Solve sim equations M1, dep attempt at two comps of <i>I</i>
			I = 4.45	A1	Answers A1A1

4730

Mark Scheme

Q	uestion	Answer	Marks	Guidance
3	(i)		M1	For using N's 2^{nd} law with $a = v dv/dx$; 3 terms
		$v \mathrm{d}v/\mathrm{d}x = g - 0.0025 v^2$	A1	
		$\int \frac{v dv}{g - 0.0025 v^2} = \int dx$	M1	For correctly separating variable and attempting to integrate
		$-200\ln(g - 0.0025v^2) = x (+A)$	A1	
		$A = -200 \ln g$	M1*	Attempt to find A from $Bln(C - Dv^2)$
		$[g - 0.0025v^2 = ge^{-0.005x}]$	*M1	For transposing equation to remove ln
		$v^2 = 400g(1 - e^{-0.005x})$	A1	
		$0 < e^{-0.005x} \le 1 \Rightarrow v^2$ cannot reach 400g	B1	dependent on getting other 7 marks.
		ie cannot reach 3920		Need ' $0 <$ ' oe
			[8]	
	(ii)	$v^2 = 400g(1 - e^{-0.5})$	M1	For substituting for x and evaluating v must have $v^2 = A + Be^{Cx}$ for (i), but not neces in this form
		Speed of P is 39.3 ms^{-1}	A1	
		•	[2]	
4	(i)		M1	For using the pce condone sin/cos and sign errors; need KE before and after and difference in PE
		$\frac{1}{2}mv^2 + mg(0.6)(1 - \cos\theta) = \frac{1}{2}m4^2$	A1	
		$v^2 = 4.24 + 11.76\cos\theta$	A1	AG
			M1	For using Newton's 2 nd law, condone sin/cos and sign erorrs; 3 terms needed
		$R - 0.45g\cos\theta = 0.45v^2/0.6$	A1	
		$R = 3.18 + 13.23 \cos \theta$	A1	
			[6]	
	(ii)		M1	For using $R = 0$
		$\cos\theta = -3.18/13.23$	A1 FT	-0.24036 or $-106/441$ or $\theta = 103.9^{\circ}$ ft from $R = A + B\cos\theta$, where $A, B \neq 0$
		$[v^2 = 4.24 - 11.76 \times 3.18/13.23]$	M1	For substituting for $\cos \theta$
		Speed is 1.19 ms^{-1}	A1	CAO without wrong working
			[4]	

Q	uestion	Answer	Marks	Guidance
5	(i)	[0.8mgx/0.78 = mg(5/13)]	M1	For resolving forces and using $T = \lambda x / L$ at equilibrium position
		x = 0.375	A1	Accept 1.155 for $e + l$
		$PE = mg(0.78 + 0.375) \times 5/13$	B1 FT	FT value of <i>x</i>
		$\text{EE} = 0.8mg \times 0.375^2 \div (2 \times 0.78)$	B1 FT	FT value of <i>x</i>
		$[\frac{1}{2}mv^2 = m(4.353 0.7067)]$	M1	For using $\frac{1}{2}mv^2 = PE \log - EE gain$
		Maximum speed is 2.70 ms^{-1}	A1	
			[6]	
		OR at extension x		
		$PE = mg(x+0.78) \times \frac{5}{13}$	B1	
		$$ $0.8mgx^2$	B1	
		$EE = \frac{0.8mgx^2}{2 \times 0.78}$		
		$mg(x+0.78) \times \frac{5}{13} = \frac{1}{2}mv^{2} + \frac{0.8mgx^{2}}{2 \times 0.78}$	M1	For using $\frac{1}{2}mv^2 = PE loss - EE gain$
		$v^2 = -10.05x^2 + 7.53x + 5.88$		$v^{2} = -\frac{40 \times 9.8}{39} x^{2} + \frac{98}{13} x + \frac{9.8 \times 3.9 \times 2}{13}$
		$v^2 = -10.05(x^2 - 0.749x - 0.585)$		$v^{2} = -\frac{392}{39}\left(x^{2} - \frac{3}{4}x - \frac{3 \times 3.9 \times 2}{40}\right)$
		for attempting to complete square	M1	
		$v^2 = -10.05((x - 0.375)^2 - 0.726)$	A1	$v^{2} = -\frac{392}{39}((x - \frac{3}{8})^{2} - 0.725625)$
		Max speed is 2.70 ms ⁻¹	A1	
				Note, after getting equation for v^2 , can instead
				Differentiate v^2 wrt x M1
				Establish max at $x = 0.375$ A1
				Max speed 2.70 ms ⁻¹ A1

Mark Scheme

Qı	uestion	Answer	Marks	Guidance
	(ii)		M1*	For using PE loss = EE gain
		$mg(0.78 + x) \times 5/13 = 0.8mgx^2 \div (2 \times 0.78)$	A1	or $mg(x) \times 5/13 = 0.8mg(x - 0.78)^2 \div (2 \times 0.78)$ if $PO = x$ or
			12.54	$mg(x+0.78+0.375) \times 5/13 = 0.8mg(x+0.375)^2 \div (2 \times 0.78)$ if $PO = x + 0.78 + 0.375$
		$[x^2 - 0.75x - 0.585 = 0 \text{ if } x \text{ is extension}]$	*M1	For arranging in quadratic form and attempting to solve All nec terms required
		x = 1.2268 so Distance is 2.01 m	A1	$[x^2 - 2.31x + 0.6084 = 0 \text{ if } PO = x] \qquad [20x^2 = 14.5125, \text{ if } PO = x + 0.78 + 0.375]$
			[4]	$[x = 2.0068] \qquad [x = 0.8518]$
			2.54.4.6	
		OR put $v = 0$ in v^2 equation from above	M1A1ft	
		Solve to get $x = 1.23$ (+0.78) = 2.01 m	M1A1	

(Juestio	n	Answer	Marks	Guidance
6		(i)		M1	For using $\frac{1}{2}m(u^2 - v^2) = 7.56$ and solving for <i>v</i> ; must use '5', allow sign error/
					missing $\frac{1}{2}$, missing m.
			$\frac{1}{2} \times 2(5^2 - v^2) = 7.56$ ($v^2 = 17.44$) Speed is 4.18 ms ⁻¹	A1	
			Speed is 4.18 ms^{-1}	A1	Do not award if this is not candidate's final answer.
				[3]	
		(ii)	$v_{Ay} = u_{Ay} = 5\sin\alpha = 4$	B1	
			$[v_{Ax}^2 + 4^2 = 17.44 \rightarrow v_{Ax}^2 = 1.44]$	M1	For using $v_{Ax}^2 + v_{Ay}^2 = 17.44$
			$v_{Ax} = \pm 1.2$ and v_{Ax} must be less than 0.8		
			\rightarrow Component has magnitude 1.2 ms ⁻¹ and		
			direction to the left	A1	
				[3]	
		(iii)		M1	For using the pcm parallel to loc must use 5cosa, 2, 0.8 and '1.2', 4 terms or
					equivalent, allow sign errors, condone one mass missing
			$2 \times 3 - m \times 2 = 2 \times (-1.2) + m \times 0.8$	A1 FT	FT incorrect v_{AX}
			m = 3	A1	CAO
				[3]	
		(iv)	[e(3+2) = (1.2+0.8)]	M1	For using NEL with their '1.2' and 5cosα, 2 and 0.8; allow sign errors. Must be right
					way up
			e = 0.4	A1	
				[2]	

Q	Juestion	Answer	Marks	Guidance
7	(i)		M1	For using EPE = $\lambda x^2/2L$ for both strings for one position
		$E_{(AP=2.9)} = 120 \times 0.9^2 / 4 + 180 \times 0.1^2 / 6$		
		= (24.3 + 0.3) and		
		$E_{(AP=2.1)} = 120 \times 0.1^2 / 4 + 180 \times 0.9^2 / 6$		
		$= (0.3 + 24.3)$ \rightarrow same for each position	A1	24.6 seen twice
		Conservation of energy $\rightarrow v = 0$ when AP		Need to point out that $v = 0$ when $AP = 2.1$ or $KE = 0$
		= 2.1, string taut here so taut throughout	D1	
		motion – oe,	B1	Dep on M1A1
	(ii)	T = 120/(0.5 + x)/(2) T = 180/(0.5 - x)/(2)	[3] B1	soi
	(11)	$T_A = 120(0.5 + x)/2, \ T_B = 180(0.5 - x)/3$ [(30 - 60x) - (30 + 60x) = (+/-)0.8a]	M1	For using Newton's 2 nd law; allow omission of 0.8
		$\begin{bmatrix} (30 - 00x) - (30 + 00x) - (47 - 00x) \\ a = -150x \end{bmatrix}$	A1	With no wrong working
		$u = -150\lambda$	[3]	while no wrong working
	(iii)	SHM because $a = -k$ (where $k > 0$)	M1	SHM because $a = -\omega^2 x$ or in words
		$[T = 2\pi / \sqrt{150}]$	M1	For using $T = 2 \pi / n$; must follow from (ii)
		Time interval is 0.257 s	A1 FT	FT π ÷ candidate's <i>n</i> 0.256509
			[3]	
	(iv)	$[x = 0.4 \cos(\sqrt{150} \times 0.6) = 0.194]$	M1	For using $x = a\cos(0.6n)$, where <i>n</i> follows from (ii) and <i>a</i> is numerical.
		[distance = 4a + (a - 0.194)]	M1	For using $T < 0.6 < 1.25 T \rightarrow$ distance = 4 $a + (a - x)$; may be implied by 1.6 <
				distance < 2.0
		Distance travelled is 1.81 m	A1	CAO, no wrong working
			[3]	
	(v)		M1	For using $\dot{x} = -an\sin(0.6n)$, where <i>n</i> follows from (ii)
				Or using $v^2 = n^2(a^2 - x^2)$, where <i>n</i> follows from (ii) and <i>x</i> follows from (iv)
				or using $\dot{x} = an \cos(0.6n)$ if $x = a\sin(0.6n)$ used in (iv), where <i>n</i> follows from (ii)
		Speed is 4.29 ms^{-1} .	A1	Condone –4.29
			[2]	

		Answer	Marks	Guidan	ce
1			M1		Use of cos rule; condone + for $- /$ missing 2/ missing '0.6'; angle as ' θ ' for M1
		$I^2 = 2.04^2 + 0.9^2 - 2x2.04x0.9x\frac{15}{17}$	A1	And attempt to square root	Condone + for -
		1.32 (N)	A1	CAO	(1.3159)
		46.8(°) with initial direction of ball	M1 A1	Correct use of sin rule from their diagram oe CAO OR $0.9 + I\cos\theta = 0.6x3.4x15/17$ M1 $I\sin\theta = 0.6x3.4x8/17$ M1	Can be in terms of $I \alpha$ and θ (46.8476) (0.8176 rads) Accept 46.7 from using I = 1.32 Allow missing 0.6 and/or sign or trig error for these 2 marks, then M0A0A0
			[5]	square and add to find I^2 ;M1or divide to find θ M1 I, θ A1 A1 CAO	
2	(i)	Vel unchanged perp to L o C $0.6\sin 30^\circ = v\cos 30^\circ$ $0.2\sqrt{3} \text{ (ms}^{-1}\text{)}$	M1 M1 A1 [3]		Stated or used Allow 1 sign or trig error (0.34641)
2	(ii)	Use momentum equation	M1		Allow their <i>v</i> ; allow sign errors / omission of <i>m</i>
		$0.3m - 0.6m\cos 30^\circ = am + 0.2\sqrt{3m\cos 60^\circ}$ (<i>a</i> =) 0.393 to left	A1ft A1 [3]	Follow through on <i>v</i> Direction must be clearly stated or implied from working. WWW	<i>m</i> 's not necessary; (0.39282) Away from B/opp direction to before
2	(iii)	Use of NLR ($(0.2\sqrt{3})\cos 60^\circ - (-0.393) = e(0.6\cos 30^\circ + 0.3)$	M1 A1ft	Ft on a and v	Allow sign error and/or trig error
		0.691	A1 [3]	CAO	(0.69082 or 0.6905679)

		Answer	Marks	Guidan	ce
3	(i)	Use of $F = ma$, using $v \frac{dv}{dx}$ $0.3v \frac{dv}{dx} = 1.5x$	M1* A1		Allow sign error / 0.3 omitted
		Attempt to rearrange and integrate $v = \sqrt{5}x$ AG	*M1 A1 [4]	$0.3v^2 = 1.5x^2(+c)$ correct derivation WWW	No need for <i>c</i> . At least one side integrated correctly
3	(ii)	Integrate to find x in terms of t $ lnx = \sqrt{5t} + c $ $ x = e^{\sqrt{5t}} $ $ v = \sqrt{5} e^{\sqrt{5t}} $	M1 A1 A1 A1 [4]	$dx/x = \sqrt{5}dt$ and int 1 side correctly CAO	Need to separate variables No need for c for first 2 marks Must include showing $c = 0$.
		OR Integrate to find <i>v</i> in terms of <i>t</i> $\frac{dv}{dt} = \sqrt{5dt}$	M1	Use jn $0.3 \frac{dv}{dt} = 1.5x$ and int 1 side correctly	No need for c for first 2 marks
		$v = \sqrt{5t} + c$ $\ln v = \sqrt{5t} + \ln(\sqrt{5})$ $v = \sqrt{5} e^{\sqrt{5t}}$	A1 A1 A1	CAO	Must include showing $c = \ln(\sqrt{5})$

		Answer	Marks	Guidan	ce
4	(i)	Conservation of energy	M1 M1		Need 4 terms; allow sign & trig errors Both KE or both PE correct
		$\frac{1}{2}0.4v^2 + \frac{1}{2}0.6v^2 + 0.4ga\sin\theta - 0.6ga\theta = 0$	A1		completely correct
			M1	Attempt to find v^2 dep both earlier M1s	Allow with sign and trig errors
		$v^2 = 3.92a(3\theta - 2\sin\theta)$	A1	AG	No errors
		F = ma radially for P	M1*		Allow sign and trig errors
		$0.4g\sin\theta - R = \frac{0.4v^2}{a}$	A1		
			*M1	Manipulation attempted, leading to $a\theta$ + $b\sin\theta$	Allow sign and trig errors
		$R = -4.704\theta + 7.056\sin\theta$	A1		$2.352(-2\theta + 3\sin\theta)$
			[9]		
4	(ii)	Using $R = 0$	M1	$0 = -4.704\theta + 7.056\sin\theta$	
		$(k =) \frac{2}{2}$	A1		Must be from correct expression in (i)
		$(\mathbf{K} =)\frac{1}{3}$	[2]		
5	(i)	2.5g = 36.75 <i>e</i> /3	M1	<i>P</i> in equilibrium	Allow missing g
5	(1)	e = 2	A1		Anow missing g
		$v^2 = 0^2 + 2g(3 + e)$	M1		
		$v = 7\sqrt{2}$	A1		May be implied by $v^2 = 98$
		$1 \ge v = 3.5 V$	M1		
		Combined speed = $2\sqrt{2}$ (ms-1)	A1	AG	Convincing derivation, no errors
			[6]		

		Answer	Marks	Guidan	ce
5	(ii)	change in PE is $3.5gX$ change in KE is $0.5x3.5 (2\sqrt{2})^2$ change in EE is $36.75(X+2)^2/(2\times3)-36.75\times2^2/(2\times3)$ Use conservation of energy $35X^2 - 56X - 80 = 0$	B1 B1 M1 A1 M1 A1	$\frac{34.3X}{14}$ $\frac{36.75(X+2)^2}{2\times3} = \frac{36.75\times2^2}{2\times3} + 3.5gX + \frac{3.5}{2}V^2$ AG	Allow sign errors / omission of 2; Allow 'x' or 'x + 5' for 'x + 2'; 2 terms or difference Allow sign errors; at least PE, KE, EE term Convincing derivation, no errors
6	(i)	Moments about <i>C</i> for <i>CD</i> $Wl\sqrt{3}/2(\cos 30^\circ) = Ql\sqrt{3}(\cos 30^\circ)$ (Q =) W/2 Resolve vert $(R =) \frac{3}{2}W$	[6] M1 A1 A1 M1 A1 [5]	AG CAO	may see $36.75X^2 - 58.8X - 84 = 0$ allow M if sin/cos wrong
6	(ii)	X = 0 Resolve vert for <i>CD</i> or <i>AB</i> Y = W/2 Vertically downwards	B1 B1* *B1 [3]	Y + Q = W or Y + W = R	

		Answer	Marks	Guidan	ice
6	(iii)	Moments about C for AB	M1		Allow M if sin/cos wrong or sign errors; need all terms
		$Pl\cos 30^\circ + Fl\cos 30^\circ = Rl\sin 30^\circ$	A1	Correct	
		Use P in terms of F	M1	F = P or other correct 2nd step	Allow if missing term above
		Find F in terms of W , or in terms of R	M1	$F = \frac{\sqrt{3}}{4}W$	Or getting 'their' <i>F</i> oe, ie putting $F = \mu R$ in moment equation.
		$\mu = (F/R) = \sqrt{3/6}$	A1	Accept decimal answers from 0.288675	
			[5]		
		OR Moments about A for AB	M1		Allow M if sin/cos wrong or sign errors; need all terms
		$Wl\sin 30^\circ + (Y)l\sin 30^\circ + F2l\cos 30^\circ = R2l\sin 30^\circ$	A1		May have X term if not 0 in (ii)
		Write Y (and X) in terms of W	M1		
				$F = \frac{\sqrt{3}}{4}W$	
		Find F in terms of W , or in terms of R , oe	M1	$F = \frac{1}{4}W$	
		$\mu = (F/R) = \sqrt{3}/6$	A1	Accept decimal answers from 0.288675	
7	(i)	Use of energy equation	M1		Allow M1 if sign error and/or 9.8 missing and/or missing <i>m</i> or <i>l</i>
		$0.5 \text{ m} (0.3)^2 = mx9.8x0.8x(1 - \cos \theta)$	A1		
		$\theta = 0.107$	A1 [3]	No errors AG	0.107194171
7	(ii)	Use $F = ma$	M1	$m \ge 9.8 \sin\theta = -m \ge 0.8 \ddot{\theta}$	allow M1 if sign error, or 9.8 missing
		$\ddot{ heta} = -12.25 \ heta$	A1		Allow fraction
		small θ	B1	Dep on having seen $acc = ksin\theta$	Rigorous
		Use of $T = \frac{2\pi}{2\pi}$	M1	or sight of $\omega = 3.5$	
		ω			
		T = 1.80	A1		accept $\frac{4\pi}{7}$ (1.795195)
			[5]		

	Answer		Marks	Guidan	ice
7	(iii)	identifying amplitude as 0.107 Use of $(\dot{\theta}) = 0.107 \times 3.5 \times \cos(3.5t)$ Use of $\dot{\theta} = -0.25$ t = 0.658	B1 M1 A1 A1	or $sin(3.5t+\varepsilon)$, ε not 0 Consistent angle or length	ft from (i) ft for a and ω ; allow sign error (0.6576339)
		Use of $\theta = 0.107 \sin(3.5t)$ ($\theta = $) 0.0797rads	M1 A1 [6]	ft from velocity equation (matches, ignore sign) accept 5.20°	(0.0796678 or 0.079576)

C	Questior	n Answer	Marks	Guida	nce
1		Use of $T = \frac{\lambda e}{l}$	M1	Attempt at one tension; allow use of <i>x</i>	allow 2 <i>l</i> for M1
			A1	$\frac{20(d-0.4)}{0.4}$ or $\frac{30(d-0.6)}{0.6}$	either term seen, accept in terms of x
		Weight = tension $1 + tension 2$	M1		condone Wg and W/g
			A1	100 = 50d - 20 + 50d - 30	fractions and brackets removed
		(AW =) 1.5 (m)	A1		
			[5]		
2	(i)	Use of correct formula	M1	$v^2 = 0^2 + 2 \times 9.8 \times 0.4$	or by energy
		Vert speed imm before bounce = $2.8 \text{ (m s}^{-1})$	A1		
		Time between bounces = 0.286 (s) (2/7)	B1		
			[3]		0.0
2	(ii)	Use of their t in a correct formula V_{out} and V_{out} and V_{out}	M1	$0 = u + 9.8 \times 0.5(t)$ Allow their value of t	or $-u = u - 9.8t$
		Vert speed imm after bounce = $1.4 \text{ (m s}^{-1})$ Coeff of rest = 0.5	A1 B1ft	Their values for v after/v before	must be worked out to fraction or
		Coeff of rest = 0.5	DIII	Their values for v after/v before	decimal; $0 \le e \le 1$
			[3]		
2	(iii)	Imp = change of mom	M1	$I = 0.3 \times (v) + 0.3 \times (u)$ Allow their u, v	allow sign errors for M1, allow if answer implies use of their values
		I = 1.26 (N s)	A1	CAO	
			[2]		
3	(i)	Use of $F = ma$	M1	$\frac{3}{2}t - 1 = 0.2\frac{\mathrm{d}v}{\mathrm{d}t}$	allow sign errors or m omitted
		Integrate correctly	A1	$v = \frac{15}{4}t^2 - 5t(+c)$	allow if <i>c</i> missing or wrong
		$v = \frac{15}{4}t^2 - 5t + 0.8$	A1		oe
			[3]		

(Question	Answer	Marks	Guida	nce
3	(ii)	Use vel = 0.8	M1	$\frac{15}{4}t^2 - 5t + 0.8 = 0.8$	ft their (i)
		t = 1.33 (s) or 1 1/3 (s)	A1	must come from correct equation for v	Accept 4/3
			[2]		
3	(iii)	Integrate to find <i>x</i>	M1*	At least 2 terms with powers increased by 1	
		$x = \frac{15}{12}t^3 - \frac{5}{2}t^2 + 0.8t$	A1	Need to state $c = 0$, or use limits	
		Solve for $x = 0$	*M1		
		t = 1.6 (s) or 0.4 (s)	A1	Both answers needed; must be from correct work to find equation	Ignore $t = 0$
			[4]		
3	(iv)	x(3) - x(2)	M1	Allow for <i>x</i> (2) or <i>x</i> (3) worked out from (iii)	13.65 or 1.6
		Distance is 12.05 (m)	A1		Accept 12 or 12.1
			[2]		
4	(i)	Conservation of momentum	*M1	Must have 4 terms	allow sign errors, $\cos\theta$ omitted
			A1	$0.1 \times 3 + 0.2 \times 1 \times \cos \theta = 0.1 \times a + 0.2 \times b$	<i>a</i> and <i>b</i> are vel components of <i>A</i> and <i>B</i> to right, respectively, after collision
		Newton's experimental law	*M1	Must have 4 terms and 0.8	allow sign errors, $\cos\theta$ omitted
			A1	$b-a=-0.8(1\times\cos\theta-3)$	
		Attempt to solve their 2 sim eqns	M1*	Dep both previous M marks	allow 1 slip
		0.12 in same direction as before	A1	Direction may be implied by working	withhold if direction stated to left
			[6]		
4	(ii)	b = 2.04	B1	Must be seen/used in (ii)	
		vel of <i>B</i> perp to line of centres $= 0.8$	B1	$(1 \times \sin \theta)$	
		Direction of B after collision makes angle	M1	$\tan \varphi = 0.8/2.04;$	Allow with their 0.8 and 2.04 (b from
		21.4° with line of centres	A1	or 0.374 rads	(i)); allow $\tan \varphi = 2.04/0.8$, if angle clear, leading to 68.4° for A1
		Angle turned through by <i>B</i> is 31.7°	A1ft	or 0.554 rads; allow +/-	$53.1(3) - \varphi$, 0.927 – 0.374 rads
			[5]		

(Juestion	n Answer	Marks	Guid	lance
5	(i)	Use of energy equation at <i>A</i> and <i>B</i>	M1	3 terms needed $mg0.6\cos\frac{\pi}{6} = mg0.6\cos\theta + \frac{1}{2}mv^2$	allow sign error, missing <i>m</i> / <i>g</i> / <i>r</i>
		F = ma radially	A1 M1 A1	$mg\cos\theta - R = \frac{mv^2}{0.6}$	allow if θ replaced by $\varphi + \pi/6$ allow sign error, missing m / g
		Use of $R = 0$ $\cos TOB = \frac{\sqrt{3}}{3}$ AG	M1 A1	May be incorporated in previous step Completely correct	not given if decimals used for angle.
			[6]		
5	(ii)	Use of $\sqrt{3}/3$ in 'correct' equation in (i)	M1	$mg0.6\cos\frac{\pi}{6} = mg0.6 \times \frac{\sqrt{3}}{3} + \frac{1}{2}mv^2$	equation must have gained M1 in (i) but allow restart here
				or $mg \frac{\sqrt{3}}{3} = \frac{mv^2}{0.6}$	
		$1.84 (m s^{-1})$	A1 [2]		
5	(iii)	Use of $F = ma$ tangentially	M1	$mg\sin\theta = ma$ seen	allow missing m/g , – sign; allow M1 if angular accel found
		$8.00 (m s^{-2})$	A1		
			[2]		
6	(i)	Moments about <i>B</i> for equilibrium of <i>BC</i>	M1	$2Wl\cos 60^\circ + F2l\sin 60^\circ = R2l\cos 60^\circ$	3 moment terms, condone sin/cos errors and missing <i>l</i> . Need trig terms for M1
		$W + \sqrt{3} F = R$ AG	A1	Must be formula for <i>R</i>	correct, with sin/cos evaluated
			[2]		

C	Question	Answer	Marks	Guidar	nce
6	(ii)	Moments about A for equilibrium of whole system	M1	At least one of F and R terms must involve lengths of both rods	At least 3 moment terms, condone sin/cos errors, sign errors and $l/2l$ confusion/missing. Wrong use of forces at <i>B</i> gets M0
			A1	$Wl\cos 30 + 2W(2l\cos 30 + l\cos 60) + F(2l\sin 60 + 2l\sin 30) = R(2l\cos 30 + 2l\cos 60)$	4 terms, accept sin/cos errors and <i>l</i> /2 <i>l</i> confusion/missing and sign errors for A1
			A1	sin/cos left in, but correct	
		$W\left(\frac{5\sqrt{3}}{2}+1\right)+F\left(\sqrt{3}+1\right)=R\left(\sqrt{3}+1\right)$	A1	fully correct, oe. Mark final answer	accept $5.33W + 2.73F = 2.73R$, $W\left(\frac{13}{4} - \frac{3\sqrt{3}}{4}\right) + F = R$
				Allow full credit for candidates who work out internal forces at B and work correctly from there.	Eg 3 $R = \sqrt{3}F + 7.5W$
			[4]		
6	(iii)	Solving 2 sim equations to eliminate F or R	M1	Both equations must involve W , F and R	allow slips in working
			A1	$F = \frac{3\sqrt{3}}{4}W$	F = 1.299 W
			A1	$R = \frac{13}{4}W$	R = 3.25 W
		Use $F = \mu R$ to find μ	M1	At any point	
		$(\mu =) \frac{3\sqrt{3}}{13}$ (0.39970)	A1		Accept 0.4 if with correct working 5.33(R - 1.73F) + 2.73F = 2.73R 2.6R = 6.52F
				Or eliminate W M1A1A1	
				Use $F = \mu R$ M1	
				cao A1	
			[5]		

(Questio	n	Answer	Marks	Guida	nce
7	(i)		Use of $F = ma$ when string stretched	M1	Must have mg – tension term (involving 39.2 m , 0.8 and x) = ma	allow if sign errors; x could be length or ext of string, or from eq ^m pos.
					$mg - \frac{39.2m(x - 0.8)}{0.8} = m\ddot{x}$	$mg - \frac{39.2mx}{0.8} = m\ddot{x}$ leads to
				A1	$\ddot{x} = -49(x-1)$	$\ddot{x} = -49(x - 0.2)$
						$mg - \frac{39.2(x+0.2)}{0.8} = m\ddot{x}$ leads to
						$\ddot{x} = -49x$
			Show $x = 1$ is centre of SHM or that $x = 1$ is equilibrium position.	B1	and state about $x = 1$	Convincingly
				[3]		
7	(ii)		By energy	M1	Must be PE term and EE term	Allow for missing '2', wrong ' g ' or inconsistent lengths
				A1	$mg(0.8+e) = \frac{39.2me^2}{2 \times 0.8}$	Or $mgh = \frac{39.2m(h-0.8)^2}{2 \times 0.8}$ and
						h = 0.8 + e 2.5e ² - e - 0.8 = 0
			e = 0.8 satisfies this equation AG	A1	Or by solving quadratic in <i>e</i>	Convincingly
					Allow full credit if done correctly from $v^2 = \omega^2 (a^2 - x^2)$	Allow integration of $v \frac{dv}{dx} = g - 49x$
				[3]		

Q	uestio	n	Answer	Marks	Guida	nce
7	(iii)		For SHM, $\omega = 7$	B1		To be awarded if seen in (i) or (iv)
			<i>a</i> = 0.6	B1		or seen or used here
			Correct use of appropriate SHM distance equation	M1	$-0.2 = 0.6 \cos(7t)$ or $-0.2 = 0.6 \sin(7t)$	Allow +0.2, allow their a and ω
			t = 0.272(9476) from bottom ($x = 1.6$) to $x = 0.8$	A1	Could be 0.0485 + 0.224	
			t = 0.404(061) from <i>O</i> to $x = 0.8$	B1	Or $\frac{2\sqrt{2}}{7}$	May be seen first
			Time to reach lowest point = 0.677 s	A1ft	('0.273' + '0.404')	
				[6]		
7	(iv)		Use of $v = -a\omega \sin\omega t$ or $a\omega \cos\omega t$	M1	Must ft from their ' x ' equation in (iii), or shown here	Allow use of their a and ω , sign error
			$v = -0.6 \times 7\sin 7t$	A1	or $0.6 \times 7\cos 7t$	
			Use of $t = 0.8 - 0.677 = 0.123$ after bottom point	B1ft	Or use of $t = 0.3475$ in 'cos' version	Must be between 0 and 0.8
			<i>v</i> = 3.19 (3.185677)	A1	(-)3.187	Do not allow if direction stated to be down.
				[4]		

	Answer		Marks	Guidance	
1	(i)	realising impulse must be in same direction as velocity, or opposite max speed 2.8 (m s ⁻¹) min speed 1.2 (m s ⁻¹)	M1 A1 A1 [3]	0.8 +/- 0.6/0.3 - 1.2 is wrong	various methods
	(ii)	Impulse momentum diagram $\cos \theta = \frac{0.6^2 + 0.24^2 - 0.75^2}{2 \times 0.6 \times 0.24}$ $\theta = 120^\circ (2.098 \text{ rad})$	M1 A1 M1	Triangle with sides labelled 0.24, 0.6 and 0.75 or 0.8, 2 and 2.5 accept 59.8° (1.04 rad)	Allow M1 if positions wrong. Diagram must be correct. $v_x = 0.8 + 2 \cos \theta$ M1 either $v_y = 2 \sin \theta$ and correct diag A1 both Square, add, giving $1.61 = 3.2 \cos \theta$ M1 120.(21)A1
		angle shown correctly	A1 [4]	consistent with their θ ; dep M1A1M1	
2	(i)	By energy $\frac{30(d-0.6)^2}{48 \times d}$	M1* A1	Attempt at elastic energy	Allow M1 for $\frac{30y^2}{(2)\times 0.6} = kd$ $\frac{30x^2}{2\times 0.6} = 48(x+0.6)$
		$\frac{30(d-0.6)^2}{2 \times 0.6} = 48 \times d$ $25d^2 - 78d + 9 = 0$ or $30d^2 - 93.6d + 10.8 = 0$	*M1	get 3 term quadratic and attempt to solve	2×0.6 allow 1 slip or $25x^2 - 48x - 28.8 = 0$
		(d =) 3 (m)	A1 [4]	ignore $d = 0.12$, unless given as answer	(x =) 2.4 leading to $(d =)$ 3
	(ii)	Use $F = ma$ 48 $-\frac{30 \times (3 - 0.6 - 1.3)}{0.6} = (\pm)\frac{48}{g}a$	M1 A1ft	ft their '3'	allow missing g, allow 1.3 or 0.6 to be omitted Using energy:
		(a =) (+/-) 1.43	A1	1.4291666	$a = v \frac{dv}{dx} = \frac{g}{40} (50x - 72)$ M1A1
		upwards	A1 [4]	depends on a being right	u. 48

	Answer		Marks	Guidance	
3	(i)	Using conservation of momentum along loc $0.1 \ge 2.8 + 0.4 \ge 1 \ge 0.4 \ge b$ Using NEL $b - 0 = -e(1 \ge 0.8 - 2.8)$ e = 0.75	M1 A1 M1 A1 A1 [5]	3 (or 4) terms, correct dimensions Vel diff after = e x vel diff before	Allow sign errors, (sin/cos) may see $b = 1.5$ Allow $\pm e$
	(ii)	b(perp) = 0.6 $\tan \beta = \frac{b(perp)}{\text{their 1.5}},$ angle turned through is 36.9° - β = 15.1° (0.262 rad)	B1 M1* *M1 A1 [4]	$\beta = 21.8^\circ$; ft 1.5 from (i) Must be 36.9° – their β (soi)	May be on diagram 21.8014(0.381 rad) 36.86989 15.068 scB1 for 165° after B1M1
4	(i)	Use $F = mv \frac{dv}{dx}$ $-4v = \frac{dv}{dx}$ $-4x = \ln v + c$ $0 = \ln 2 + c$ $\ln \frac{v}{2} = -4x$ $v = 2e^{-4x}$	M1 A1 M1 M1 A1 [5]	expression for $\frac{dv}{dx}$ required get (+/-) $Ax = \ln v + c$ valid attempt to find c need a step leading to given answer AG	Allow sign error, missing m or g inc
	(ii)	$e^{4x} dx = 2 dt$ $\frac{1}{4}e^{4x} = 2t + c$ $\frac{1}{4} = 0 + c$ $e^{4x} = 4(1 + \frac{1}{4})$ $x = \frac{1}{4}\ln 5$	M1* A1 *M1 *M1 A1 [5]	Write v as $\frac{dx}{dt}$ and separate variables must have <i>c</i> or use limits valid attempt to find <i>c</i> or subst limits find <i>x</i> when <i>t</i> = 0.5 - need to remove exp; allow even if no <i>c</i> Accept 0.402(359)	$dv/4v^{2} = -dt$ $\frac{1}{v} = 4t + \frac{1}{2}$ $\frac{dx}{dt} = \frac{2}{8t+1} \text{OR } t = 0.5 \text{ gives } v = 0.4$ $x = \frac{1}{4}\ln(8t+1) + c \text{OR } -4x = \ln 0.2$ $x = \frac{1}{4}\ln 5$
5	(i)	Take moments about A for whole body $Wx2L\cos60^\circ + 2Wx6L\cos60^\circ = Rx8L\cos60^\circ$ R = 1.75W S = 1.25W	M1 A1 A1 B1 [4]	Correct 3 terms needed; dim correct cos60° may be omitted at least 1 correct step to show given answer	Allow sign errors, $W/2W$, cos/sin, <i>R</i> is reaction at <i>C</i> <i>S</i> is reaction at <i>A</i> For less efficient methods, M1 can only be earned when equation with one unknown, R, is reached.

	Answer		Marks	Guidance	
	(ii)	Take moments about <i>B</i> for equil of <i>BC</i> $TxLsin60^{\circ} + 2Wx2Lcos60^{\circ} =$ $1.75Wx4Lcos60^{\circ}$	M1*	Correct 3 resolved terms needed; dim correct; or for BA $TxLsin60^{\circ} + Wx2Lcos60^{\circ} =$ $1.25Wx4Lcos60^{\circ}$	allow sign errors, <i>W</i> /2 <i>W</i> , cos/sin,
		solve to get	*M1	1.25 W X42C0800	
		$T = \sqrt{3}W$	A1 [4]	accept $T = 1.73W$	
	(iii)	Resolve vertically for AB Y + 1.25W - W = 0	M1		Weight and normal term must be for same rod
		Y = 0.25W, downwards	A1CAO		
		$X = \sqrt{3}W$ to left	B1ft [3]	direction must be clear	
6	(i)	$\frac{1}{2}mv^2 = mg \times 0.8(1 - \sin 30^\circ)$	M1	Or with '5 m ' if for Q	allow g missing for M1.
		$v = 2.8 \text{ m s}^{-1}$	A1		Might see $v^2 = 0.8g$
		Speed of P and Q equal	B1ft	soi	
		Use conservation of momentum 5mx2.8 - mx2.8 = 5mq + mp Use of NEL	B1ft M1	Ft on velocity	<i>p</i> is vel of <i>P</i> , <i>q</i> is vel of <i>Q</i> , both to left Allow $\pm e$
		p-q = -0.95(-2.8-2.8)	Alft	Ft on velocity	
		$p = 6.3 \text{ m s}^{-1}$	A1	supporting work required forAG	
		$q = 0.98 \text{ m s}^{-1}$ Q moves to left	A1 [8]	direction must be clear	
	(ii)	By energy for P at top $\frac{1}{2}m6.3^2 = \frac{1}{2}mv^2 + mg \times 1.6$ $v^2 = 8.33$	M1 A1	must have 3 terms	allow g missing, sign error
		$v^2 = 8.33$	A1	Soi	
		Use $F = ma$ at top	M1	must have 3 terms	allow g missing, sign error
		$mg + R = m \times \frac{8.33}{0.8}$	A1ft	their v^2	
		R = 0.6125m 0.8	A1CAO [6]	Or 49 <i>m</i> /80	

	Answer		Marks	Guidance	
7	(i)	$mg \times 0.2 = \frac{2.45m \times e}{0.3}$	M1		allow sin/cos, wrong sign, missing g
		<i>e</i> = 0.24	A1 [2]	No errors; must show all numbers	
	(ii)	Use $F = ma$ down slope	M1	3 terms needed	Allow sign error, sin/cos , missing g or m
		$mgsin\alpha - \frac{2.45m(x-0.3)}{0.3} = m\ddot{x}$			Could use x in place of $x - 0.3$, leading to $\dot{\ddot{x}} = -\frac{49}{6}(x - 0.24)$ (about $x = 0.24$)
		$\ddot{x} = -\frac{49}{6}(x - 0.54)$	A1	oe Accept 2.45/0.3 for ω^2	Or x + 0.24 in place of x – 0.3 leading to $\ddot{x} = -\frac{49}{6}x$ (about x = 0)
		SHM (about $x = 0.54$)	A1	Dep M1A1. Must be in correct form, and ω^2 in simplified form	
		$\omega = 7/\sqrt{6} (2.8577)$	B1	Soi	May see $\omega^2 = 8\frac{1}{6}$
		T = 2.20 a = 0.105 m (0.1049795)	B1CAO B1ft [6]	AG Need to see $2\pi/\omega$ oe ft their $\omega = \frac{3\sqrt{6}}{70}$	2.1986568 NB Can find <i>a</i> by energy, leading to ω and <i>T</i>
	(iii)	Use of SHM eqn for distance x = -0.0956(227) Dist from <i>O</i> is 0.444(377) (m)	M1 A1ft A1CAO	$x = a \sin \omega t$ Their a	Allow M1 for $x = a\cos\omega t$ Or -0.9553 or -0.09577
		Use of SHM equation for velocity	M1	$v = a\omega\cos\omega t$	Allow M1 for $v = -a\omega \sin\omega t$ if consistent with x eqn for $\sin/\cos a$, ω
		v = -0.124 (-0.123949)	A1 [5]	must be clear velocity is towards O	Use of $v^2 = \omega^2 (a^2 - x^2)$ will not gain A1 unless direction is established

⁴⁷³⁰