OCR Maths S2

Mark Scheme Pack

$$
2005-2014
$$

1	$\text { (i) (a) } \operatorname{Po}(2): 1-\mathrm{P}(\leq 3)$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \end{array}$	Po(2) tables, " 1 - " used Answer, a.r.t. 0.143
	$\begin{aligned} \text { (b) } \begin{aligned} \operatorname{Po}(2 / 3): & e^{-2 / 3} \frac{\left(\frac{2}{3}\right)^{2}}{2!} \\ & =0.114 \end{aligned} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Parameter 2/3 Poisson formula correct, $r=2$, any μ Answer, a...t. 0.114
	(ii) $\begin{array}{l}\text { Foxes may congregate so not } \\ \text { independent }\end{array}$	$\begin{array}{ll} \\ & \\ \text { B1 } & \\ & \end{array}$	Independent/not constant rate/singly used Any valid relevant application in context
2	$\begin{aligned} & \begin{array}{l} \mathrm{N}(80 / 7,400 / 49) \\ \frac{13.5-\frac{80}{7}}{\frac{20}{7}} \\ =0.725 \\ 1-\Phi(0.725) \\ =0.2343 \end{array} \\ & =1 \end{aligned}$	$\begin{array}{ll}\text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 7\end{array}$	80/7, a.e.f (11.43) $400 / 49$ or $20 / 7$ seen, a.e.f. (8.163 or 2.857) Standardise with $n p$ \& $n p q$ or $\sqrt{ } n p q$ or $n q$, no $\sqrt{ } n$ $\sqrt{ }$ npq correct 13.5 correct Normal tables used, answer < 0.5 Answer, a.r.t. 0.234 [SR: Binomial, complete expression M1, 0.231 A1 Po(80/7) B1, complete expression M1, 0.260 A1 Normal approx to Poisson, B1B0 M1A0A1 M1A0]
3	$\begin{array}{lr} \hline \mathrm{H}_{0}: p=0.3 & \\ \mathrm{H}_{1}: p \neq 0.3 & \\ \mathrm{~B}(8,0.3) & \\ \mathrm{P}(\leq 4)=0.9420 ; & \mathrm{P}(>4)= \\ 0.0580 & \\ \mathrm{P}(\leq 5)=0.9887 ; & \mathrm{P}(>5)= \\ 0.0113 & \\ \hline \end{array}$ Compare 0.025 or critical value 6 Do not reject H_{0} Insufficient evidence that manufacturer's claim is wrong	B1 B1 M1 A1 M1 M1 A1 $\sqrt{ }$ 7	NH stated, must be this form (or π) AH stated, must be this form (or π) [μ : B1 both] $B(8,0.3)$ stated or implied Any one of these four probabilities seen Either compare $\mathrm{P}(\geq 5) \& 0.025 / \mathrm{P}(\leq 4)$ \& 0.975 Or critical region ≥ 6 with 5 H_{0} not rejected, can be implied, needs essentially correct method Correct conclusion in context [SR: Normal, Poisson: can get B2M1A0M0M1A1 $\mathrm{P}(\leq 5)$: first 4 marks. $\mathrm{P}(=5)$: first 3 marks only.]
4	(i) $\quad$$\mathrm{B}(80,0.02)$ approx $\operatorname{Po}(1.6)$ $1-\mathrm{P}(\leq 1)=1-0.5249$ $=0.4751$	M1 M1 M1 A1 4	```\(\mathrm{B}(80,0.02)\) seen or implied, e.g. \(\mathrm{N}(1.6,1.568)\) \(\operatorname{Po}(n p)\) used \(1-\mathrm{P}(\leq 1)\) used Answer, a.r.t. 0.475 [SR: Exact: M1 M0 M0, 0.477 A1]```
	$\begin{array}{ll} \text { (ii) } & \mathrm{P}(\leq 4)=0.9763, P(\geq 5)= \\ 0.0237 & \mathrm{P}(\leq 5)=0.9940, P(\geq 6)= \\ 0.0060 & \\ & \text { Therefore least value is } 6 \end{array}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Evidence for correct method, e.g. answer 6 At least one of these probabilities seen Answer 6 only $\begin{aligned} & \text { [SR N(1.6,1.568): } 2.326=(r-1.6) / \sqrt{ } 1.568 \text { M1 } \\ & r=5 \text { or (with cc) } 6 \quad \text { A1 } \\ & \text { Exact: M1 A0 A1] } \end{aligned}$

5	(i) $\quad \frac{0-\mu}{\mu / 2}=-2$, independent of μ $1-\Phi(2)=1-0.9772=$ 0.0228	M1 A1 A1 A1 4	Standardise, allow -, allow $\mu^{2} / 4$ $z=2 \text { or }-2$ z-value independent of μ and any relevant statement Answer, a.r.t. 0.023
	$\text { (ii) } \begin{array}{ll} & \Phi[(9-6) / 3] \\ & \Phi(1.0)=0.8413 \\ & {[\Phi(1.0)]^{3}} \\ & =0.59546 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Standardise and use Φ [no h] 0.8413 [not 0.1587] Cube previous answer Answer, in range [0.595, 0.596]
	(iii) Annual increases not	B1	Independence mentioned, in context. Allow "one year affects the next" but not "years not random"
6	$\mathrm{H}_{0}: \mu=32$; $\mathrm{H}_{1}: \mu>32$, where μ is population mean waist measurement $\begin{aligned} & \bar{W}=32.3 \\ & s^{2}=52214.50 / 50-\bar{W}^{2} \quad[=1] \\ & \hat{\sigma}^{2}=50 / 49 \times s^{2} \quad[=50 / 49 \text { or } 1.0204] \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \end{array}$	One hypothesis correctly stated, not x or \bar{x} or \bar{w} Both completely correct, μ used Sample mean 32.3 seen Correct formula for s^{2} used Multiply by $50 / 49$ or $\sqrt{ }$
	$\alpha: \quad z=(32.3-32) \times \sqrt{49}$ $=2.1$ Compare 2.1 with 3.09 or 0.0179 with 0.001	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Correct formula for z, can use s, aef, need $\mu=32$ $z=2.1$ or $1-\Phi(z)=0.0179$, not -2.1 Explicitly compare their 2.1 with $3.09(0)$ or their 0.0179 with 0.001
	$\begin{aligned} \beta: \mathrm{CV} & =32+3.09 \div \sqrt{49} \\ & =32.44 \\ & \text { Compare CV with } 32.3 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } 1 . \\ \hline \end{array}$	$32+z \times \sigma / \sqrt{n} \quad$ [allow \pm, s, any $z]$ $z=3.09$ and (later) compare \bar{x} CV in range [32.4, 32.5], $\sqrt{ }$ on k
	Do not reject H_{0} Insufficient evidence that waists are actually larger	M1V A1 $\sqrt{ }$ 10	Correct conclusion, can be implied, needs essentially correct method including $\sqrt{ } n$, any reasonable σ, but not from $\mu=32.3$ Interpreted in context
7		M 1 A 1 4 B 1 A 1 	Equate standardised variable to Φ^{-1}, allow $\sqrt{ } 12,8$ correct 2.326 or a.r.t 2.33 seen, signs must be correct Answer, a...t. 74.6, cwo, allow \leq or \geq
	(ii) (a) Type I error (b) Correct	$\begin{array}{ll} \mathrm{B} & \mathbf{1} \\ 1 \sqrt{ } & \mathbf{1} \\ \mathrm{~B} & \\ 1 \sqrt{ } & \end{array}$	"Type I error" stated, needs evidence "Correct" stated or clearly implied Wrong $c: 74<c<75$, B1 $\sqrt{ }$ B1 $\sqrt{ }$ $c<74$, both "correct", B1. $75<c<80$, both "Type I", B1 Also allow if only one is answered
	(iii) $\frac{74.63-\mu}{8 / \sqrt{12}}=-1.555$ Solve for μ $\mu=78.22$	M1*d ep A1 $\sqrt{ }$ dep M1 A1 4	$\frac{c-\mu}{8 / \sqrt{12}}=(\pm) \Phi^{-1}$, allow no $\sqrt{12}$ but not 80 , not 0.8264 Correct including sign, $\sqrt{ }$ on their c Solve to find μ, dep, answer consistent with signs Answer, a.r.t. 78.2

8	$\text { (i) } \quad \begin{aligned} \int_{0}^{1} x^{n} d x=\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1}=\frac{1}{n+1} \\ k /(n+1)=1 \text { so } k=n+1 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Integrate χ^{n}, limits 0 and 1 Equate to 1 and solve for k Answer $n+1$, not 1^{n+1}, c.w.o.
	$\text { (ii) } \quad \begin{aligned} & \int_{0}^{1} x^{n+1} d x=\left[\frac{x^{n+2}}{n+2}\right]_{0}^{1}=\frac{1}{n+2} \\ & \mu=\frac{k}{n+2}=\frac{n+1}{n+2} \mathbf{A G} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \\ & \\ \text { A1 } & 3 \end{array}$	Integrate x^{n+1}, limits 0 and 1 , not just $x . x^{n}$ Answer $\frac{1}{n+2}$ Correctly obtain given answer
	$\begin{aligned} & \text { (iii) } \quad \int_{0}^{1} x^{5} d x=\left[\frac{x^{6}}{6}\right]_{0}^{1}\left[=\frac{1}{6}\right] \\ & \sigma^{2}=\frac{4}{6}-\left(\frac{4}{5}\right)^{2}=\frac{2}{75} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \end{array}$	Integrate x^{5}, limits 0 and 1 , allow with n Subtract $\left(\frac{4}{5}\right)^{2}$ Answer $\frac{2}{75}$ or a.r.t. 0.027
	(iv) $\mathrm{N}\left(\frac{4}{5}, \frac{2}{7500}\right)$	B1 B1 B1 $\sqrt{ } 3$	Normal stated Mean $\frac{4}{5}$ or $\frac{n+1}{n+2}$ Variance their (iii)/100, a.e.f., allow $\sqrt{ }$
	(v) Same distribution, translated Mean 0 Variance $\frac{2}{75}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \sqrt{2} \\ & \text { B1 } \\ & 3 \\ & \hline \end{aligned}$	Can be negative translation; or integration, must include correct method for integral (Their mean) - $\frac{4}{5}$, c.w.d. Variance same as their (iii), or $\frac{2}{75}$ by integration

1		$\begin{aligned} & \mu=\frac{3}{37} \int_{3}^{4} x^{3} d x=\frac{3}{37}\left[\frac{x^{4}}{4}\right]_{3}^{4} \\ & \left.3 \frac{81}{148}\right] \\ & \frac{3}{37} \int_{3}^{4} x^{4} d x=\frac{3}{37}\left[\frac{x^{5}}{5}\right]_{3}^{4} \\ & =12 \frac{123}{185} \text { or } 12.665 \\ & \sigma^{2}=12 \frac{123}{185}-3_{\frac{81}{148}}{ }^{2}=\mathbf{0 . 0 8 1 5} \end{aligned}$	M1 M1 A1 A1 M1 A1	```Integrate xf(x), limits 3 & 4 [can be implied] [\frac{525 or 3.547]}{148} Attempt to integrate }\mp@subsup{x}{}{2}\textrm{f}(x)\mathrm{ , limits }3& Correct indefinite integral, any form 2343 or in range [12.6, 12.7] [can be implied] Subtract their }\mp@subsup{\mu}{}{2 Answer, in range [0.0575, 0.084]```
2	(i)	$\begin{array}{cl} \text { Find } \mathrm{P}(R \geq 6) & \text { or } \mathrm{P}(R<6) \\ =0.0083 & \text { or } 0.9917 \end{array}$ Compare with 0.025 [can be from $\mathrm{N}]$ [0.05 if "empty LH tail stated] Reject H_{0}	M1 A1 B1 A1 $\sqrt{ }$ 4	Find $P(=6)$ from tables/calc, OR RH critical region $P(\geq 6)$ in range $[0.008,0.0083]$ or $P(<6)=$ 0.9917 OR CR is 6 with probability 0.0083/0.9917 Explicitly compare with 0.025 [or 0.975 if consistent] OR state that result is in critical region Correct comparison and conclusion, $\sqrt{ }$ on their p
		$\begin{aligned} & n=9, \mathrm{P}(\leq 1)=0.0385[\mathrm{P} 0.025] \\ & n=10, \mathrm{P}(\leq 1)=0.0233[<0.025] \\ & \text { Therefore } n=9 \end{aligned}$	$\begin{array}{ll} & \\ \text { A1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	At least one, or $n=8, P(\leq 1)=0.0632$ Both of these probabilities seen, don't need 0.025 Answer $n=9$ only, indep't of M1A1, not from P(= 1)
3	(i)	$\begin{aligned} & (140-\mu) / \sigma=-2.326 \\ & (300-\mu) / \sigma=0.842 \end{aligned}$ Solve to obtain: $\begin{aligned} & \mu=257.49 \\ & \sigma=50.51 \end{aligned}$	M1 B1 A1 $\sqrt{2}$ M1 A1 A1 6	One standardisation equated to Φ^{-1}, allow " $1-$ ", σ^{2} Both 2.33 and 0.84 at least, ignore signs Both equations completely correct, $\sqrt{ }$ on their z Solve two simultaneous equations to find one variable μ value, in range [257, 258] σ in range [50.4, 50.55]
	(ii)	Higher as there is positive skew	$\begin{array}{\|ll} & B 1 \\ B 1 & 2 \\ \hline \end{array}$	"Higher" or equivalent stated Plausible reason, allow from normal calculations
4	(i)	Each element equally likely to be selected (and all selections independent) OR each possible sample equally likely	B1	One of these two. "Selections independent" alone is insufficient, but don't need this. An example is insufficient.
	(ii)	$\begin{aligned} & { }^{B(6,5 / 8)} \\ & { }^{6} C_{4} p^{4}(1-p)^{2} \\ & =0.32187 \end{aligned}$	M1 M1 A1 $\sqrt{ } 3$	$B(6,5 / 8)$ stated or implied, allow e.g. 499/799 Correct formula, any p Answer, a.r.t. 0.322 , can allow from wrong p
	(iii)	$\begin{aligned} & \mathrm{N}(37.5,225 / 16) \\ & \frac{39.5-37.5}{3.75}=0.5333 \\ & 1-\Phi(0.5333) \\ & =0.297 \end{aligned}$	B1 M1 dep A1 dep M1 A1 6	Normal, mean 37.5, or 37.47 from 499/799, 499/800 14.0625 or 3.75 seen, allow $14.07 / 14.1$ or 3.75 Standardise, wrong or no cc, $n p, n p q$, no $\sqrt{ } n$ Correct cc, $\sqrt{ } n p q$, signs can be reversed Tables used, answer < 0.5, $p=5 / 8$ Answer, a.r.t. 0.297 SR: $n p<5$: $\quad \operatorname{Po}(n p)$ stated or implied, B1

5	(i)	$\begin{aligned} & \mathrm{B}(303,0.01) \\ & \approx \mathrm{Po}(3.03) \end{aligned}$	B1 B1 2	$\mathrm{B}(303,0.01)$ stated, allow $p=0.99$ or 0.1 Allow Bin implied clearly by parameters $\mathrm{Po}(3.03)$ stated or implied, can be recovered from (ii)
	(ii)	$e^{-3.03}\left(1+3.03+\frac{3.03^{2}}{2}\right)=0.4165$ AG	$\begin{array}{ll} \mathrm{M1} \\ \text { A1 } & 2 \end{array}$	Correct formula, ± 1 term or "1 - " or both Convincingly obtain $0.4165(02542)$ [Exact: $0.41535]$
	(iii)	$\begin{aligned} & 302 \text { seats } \Rightarrow \mu=3.02 \\ & e^{-3.02}(1+3.02)=0.1962 \\ & 0.196<0.2 \\ & \text { So } 302 \text { seats. } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & 5 \end{array}$	Try smaller value of μ Formula, at least one correct term Correct number of terms for their μ 0.1962 [or 0.1947 from exact] Answer 302 only
```SR: B(303, 0.99): B1B0; M0; M1 then N(298.98,2.9898) or equiv, standardise: M1A1 total 4/9 SR: p = 0.1: }\quad\textrm{B}(303,0.1),N(30.3,27.27)B1B0; Standardise 2 with np & Vnpq, M1A0 N(0.1n, 0.09n); standardise with np & \npq; solve quadratic for }\sqrt{}{}n;n=339: M1M1M1A1, total SR: 6/9 B(303, 0.01) \approx N(3.03, 2.9997): B1B0; M0A0; M1A0```	SR: SR: SR	```B(303, 0.99): B1B0; M0; M1 then N(298.98,2.9898) or equiv, standardise: M1A1 total 4/9 p=0.1: }\quad\textrm{B}(303,0.1),N(30.3,27.27) B1B0; Standardise 2 with np & Vnpq, M1A0 N(0.1n, 0.09n); standardise with np & Vnpq; solve quadratic for }Vn;n=339: M1M1M1A1, total 6/9 B(303, 0.01) \approx N(3.03, 2.9997): B1B0; M0A0; M1A0```		
6	(i)	Customers arrive independently	B1 1	Valid reason in context, allow "random"
	(ii)	$\begin{aligned} & 1-0.9921 \\ & =0.0079 \end{aligned}$	$\begin{array}{ll} \mathrm{M1} \\ \text { A1 } & 2 \end{array}$	Poisson tables, " $1-$ ", or correct formula $\pm 1$ term Answer, a.r.t. $0.008 \quad[1-0.9384=0.0606$ : M1AO $]$
	(iii)	$\begin{aligned} & \begin{array}{l} \mathrm{N}(48,48) \\ z=\frac{55.5-48}{\sqrt{48}} \\ =1.0825 \end{array} \\ & 1-\Phi(1.0825) \\ & =0.1394 \end{aligned}$	B1   B1 $\sqrt{ }$   M1 dep   A1   dep M1   A1   6	Normal, mean 48   Variance or SD same as mean $\sqrt{ }$   Standardise, wrong or no cc, $\mu=\lambda$   Correct cc, $\sqrt{ } \lambda$   Use tables, answer < 0.5   Answer in range [0.139, 0.14]
	(iv)	$\begin{aligned} & e^{-\lambda}<0.02 \\ & \lambda>-\ln 0.02 \\ & \quad=3.912 \\ & 0.4 t=3.912: \quad t=9.78 \text { minutes } \\ & t=9 \text { minutes } 47 \text { seconds } \end{aligned}$	M1   M1   A1   M1   A1   5	Correct formula for $\mathrm{P}(0)$, OR $\mathrm{P}(0 \mid \lambda=4)$ at least In used $\quad$ OR $\lambda=3.9$ at least by $T$ \& I 3.91(2) seen OR $\lambda=3.91$ at least by $T \& I$ Divide $\lambda$ by 0.4 or multiply by 150, any distribution 587 seconds $\pm 1 \mathrm{sec}$ [inequalities not needed]


7		$\frac{c-4000}{60 / \sqrt{50}}=1.645$   Solve $c=4014$   [4013.958]   Critical region is $\mathbf{>} 4014$	M1   B1   A1 $\sqrt{ }$   M1   A1   A1 $\sqrt{ }$   6	Standardise unknown with $\sqrt{ } 50$ or 50 [ignore RHS]   $z=1.645$ or -1.645 seen   Wholly correct eqn, $\sqrt{ }$ on their $z[1-1.645$ :   M1B1A0]   Solve to find $c$   Value of $c$, a.r.t. 4014   Answer " $>4014$ ", allow $\geq$, $\sqrt{ }$ on their $c$, needs M1M1
	(ii)	Use "Type II is: accept when $\mathrm{H}_{0}$ false" $\begin{array}{cc} \frac{4020-4014}{60 / \sqrt{50}} & \\ =0.7071 & \\ 40.712 \text { from } \\ 4013.958] & \\ 1-\Phi(0.7071) & \\ =0.240 & {[0.238 \text { from }} \\ 4013.958] & \end{array}$	M1dep depM1 A1V   A1   M1   A1   6	Standardise 4020 and $4014 \sqrt{ }$, allow $60^{2}$, cc With $\sqrt{ } 50$ or 50 Completely correct LHS, $\sqrt{ }$ on their $c$ $z$-value in range [0.707, 0.712]   Normal tables, answer < 0.5 Answer in range [ $0.2375,0.2405$ ]
	(iii)	Smaller   Smaller cv, better test etc	$\begin{array}{ll} B 1 \\ \text { B1 } \end{array}$	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller   Smaller cv, larger prob of Type I etc	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	"Smaller" stated, no invalidating reason Plausible reason
	(v)	No, parent distribution known to be normal	B2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1

For over-specified answers (>6SF where inappropriate) deduct 1 mark, no more than once in paper.

$\begin{gathered} \mathbf{1} \quad \frac{22-\mu}{5}=-\Phi^{-1}(0.242) \\ =-0.7 \\ \mu=\mathbf{2 5 . 5} \end{gathered}$	M1    A1    B1    A1 4	Standardise with $\Phi^{-1}$, allow +, " 1 -" errors, cc, $\sqrt{5}$ or $5^{2}$ Correct equation including signs, no cc, can be wrong $\Phi^{-1}$ 0.7 correct to 3 SF , can be + Answer 25.5 correct to 3 SF
2 (i) $900 \div 12=75$	B1 1	75 only
(ii) (a) True, first choice is random   (b) False, chosen by pattern	  B1 1   B1 $\mathbf{1}$	True stated with reason based on first choice False stated, with any non-invalidating reason
(iii) Not equally likely e.g. $P(1)=0$, or triangular	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	"Not equally likely", or "Biased" stated Non-invalidating reason
3 Let $R$ be the number of 1 s $\begin{aligned} & R \sim \mathrm{~B}(90,1 / 6) \\ & \approx \mathrm{N}(15,12.5) \\ & \frac{13.5-15}{\sqrt{12.5}} \\ & \mathbf{0 . 6 6 4 3} \end{aligned}$	B1   B1   B1   M1   A1   A1   6	$B(90,1 / 6)$ stated or implied, e.g. $\operatorname{Po}(15)$   Normal, $\mu=15$ stated or implied   12.5 or $\sqrt{12.5}$ or $12.5^{2}$ seen   Standardise, $n p$ and $n p q$, allow errors in $\sqrt{ }$ or cc or both $\sqrt{ }$ and cc both right   Final answer, a.r.t. 0.664. [Po(15): 1/6]
$\begin{array}{\|lll} \hline 4 & \text { (i) } & \bar{w}=100.8 \div 14=7.2 \\ & & \frac{938.70}{14}-\bar{w}^{2}[=15.21] \\ & & \times 14 / 13 \\ & =\mathbf{1 6 . 3 8} \end{array}$	B1    M1    M1    A1 4	7.2 seen or implied Use $\Sigma w^{2}-$ their $\bar{w}^{2}$   Multiply by $n /(n-1)$   Answer, a.r.t. 16.4
(ii) $\quad \begin{aligned} & \mathrm{N}(7.2,16.38 \div 70) \\ & \\ & {[=\mathrm{N}(7.2,0.234)]}\end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } \sqrt{ } \\ \text { B1 } \sqrt{ } & 3 \\ \hline \end{array}$	Normal stated   Mean their $\bar{w} V$   Variance [their (i) $\sqrt{ } \div 70$ ], allow arithmetic slip
5 (i) $\lambda=1.2$     Tables or formula used     $\mathbf{0 . 6 6 2 6}$	B1    M1    A1 3	Mean 1.2 stated or implied   Tables or formula [allow $\pm 1$ term, or " 1 -"] correctly used Answer in range [0.662, 0.663] $\text { [.3012, } 6990,6268 \text { or } 8795: \text { B1M1A0] }$
(ii) $\quad \begin{aligned} & \mathrm{B}(20,0.6626 \sqrt{13} \\ & \\ & \\ & { }^{20} \mathrm{C}_{13} 0.66266^{13} \times 0.3374^{7} \\ & \mathbf{0 . 1 8 3}\end{aligned}$	M1   M1   A1 3	$\mathrm{B}(20, p), p$ from (i), stated or implied Correct formula for their $p$   Answer, a.r.t. 0.183
(iii) Let $S$ be the number of stars $\begin{aligned} & S \sim \operatorname{Po}(24) \\ & \approx \mathrm{N}(24,24) \\ & \frac{29.5-24}{\sqrt{24}}[=1.1227] \\ & \mathbf{0 . 8 6 9 2} \end{aligned}$	B1   B1   B1 $\sqrt{ }$   M1   A1   A1   6	Po(24) stated or implied   Normal, mean 24   Variance 24 or $24^{2}$ or $\sqrt{ } 24$, $\sqrt{ }$ if 24 wrong   Standardise with $\lambda, \lambda$, allow errors in cc or $\sqrt{ }$ or both $\sqrt{ } \lambda$ and cc both correct   Answer, in range [0.868, 0.8694]


$6$	$\begin{align*} & {\left[a x+\frac{b x^{2}}{2}\right]_{0}^{2}=1}  \tag{i}\\ & 2 a+2 b=1 \end{align*}$	M1   B1   A1 3	Use total area $=1$ Correct indefinite integral, or convincing area method Given answer correctly obtained, " 1 " appearing before last line [if $+c$, must see it eliminated]
(ii)	$\begin{aligned} & {\left[\frac{a x^{2}}{2}+\frac{b x^{3}}{3}\right]_{0}^{2}=\frac{11}{9}} \\ & 2 a+\frac{8 b}{3}=\frac{11}{9} \end{aligned}$   Solve simultaneously $a=\frac{1}{6}, \quad b=\frac{1}{3}$	M1   B1   A1   M1   A1   A1 6	Use $\int_{x f}(x) \mathrm{d} x=11 / 9$, limits 0,2   Correct indefinite integral   Correct equation obtained, a.e.f.   Obtain one unknown by correct simultaneous method $a$ correct, $1 / 6$ or a.r.t 0.167   $b$ correct, $1 / 3$ or a.r.t. 0.333
	$\begin{aligned} & \text { e.g. } \mathrm{P}(<11 / 9)=0.453 \text {, or } \\ & {\left[a x+\frac{b x^{2}}{2}\right]_{0}^{m}=0.5, m=1.303 \text { or } \frac{\sqrt{13}-1}{2}} \end{aligned}$   Hence median > mean	M1   M1   A1   A1 $\sqrt{ } 4$	Use $\mathrm{P}(x<11 / 9)$, or integrate to find median $m$ Substitute into $\int \mathrm{f}(x) \mathrm{d} x, \sqrt{ }$ on $a, b$, limits 0 and $11 / 9$ or $m$   [if finding $m$, need to solve 3 -term quadratic]   Correct numerical answer for probability or $m$   Correct conclusion, cwo   ["Negative skew", M2; median > mean, A2]
$7 \quad$ (i)   $\alpha$ :   $\beta$ :	$\begin{aligned} & \left.\hline \mathrm{H}_{0}: p=0.35 \quad \text { or } p \geq 0.35\right] \\ & \mathrm{H}_{1}: p<0.35 \\ & \mathrm{~B}(14,0.35) \\ & \mathrm{P}(\leq 2) \quad=0.0839>0.025 \\ & \mathrm{CR} \leq 1 \text {, probability } 0.0205 \\ & \text { Do not reject } \mathrm{H}_{0} \text {. Insufficient } \\ & \text { evidence that proportion that can } \\ & \text { receive Channel } \mathrm{C} \text { is less than } 35 \% \end{aligned}$	B1   B1   M1   A1   B1   M1   A1 $\sqrt{ } 7$	Each hypothesis correct, B1+B1, allow $p \geq .35$ if .35 used [Wrong or no symbol, B1, but $r$ or $x$ or $\bar{x}$ : B0] Correct distribution stated or implied, can be implied by $\mathrm{N}(4.9, \ldots)$, but not $\mathrm{Po}(4.9)$   0.0839 seen, or $\mathrm{P}(\leq 1)=0.0205$ if clearly using CR Compare binomial tail with 0.025 , or $R=2$ binomial CR Do not reject $\mathrm{H}_{0}, \sqrt{ }$ on their probability, not from N or Po or $\mathrm{P}(<2)$; Contextualised conclusion $\sqrt{ }$
(ii)	$\begin{aligned} & \mathrm{B}(8,0.35): \mathrm{P}(0)=0.0319 \\ & \mathrm{~B}(9,0.35): \mathrm{P}(0)=0.0207 \end{aligned}$   Hence largest value of $n$ is 8	M1    A1    A1    A1 4	Attempt to find $\mathrm{P}(0)$ from $\mathrm{B}(n, 0.35)$   One correct probability $\quad[\mathrm{P}(\leq 2)=.0236, n=18$ : M1A1]   Both probabilities correct   Answer 8 or $\leq 8$ only, needs minimum M1A1
or	$\begin{aligned} & 0.65^{n}>0.025 ; n \ln 0.65>\ln 0.025 \\ & 8.56 ; \quad \text { largest value of } n=8 \end{aligned}$	$\begin{aligned} & \text { M1M1 } \\ & \text { A1A1 } \end{aligned}$	$p^{n}>0.025$, any relevant $p$; take $\ln$, or T\&I to get 1 SF In range [8.5, 8.6]; answer 8 or $\leq 8$ only
8 (i) $\alpha$ :	$\frac{100.7-102}{5.6 / \sqrt{80}}=-2.076$   Compare with -2.576	M1 A1   B1 3	Standardise 100.7 with $\sqrt{ } 80$ or 80 a.r.t. -2.08 obtained, must be - , not from $\mu=100.7$   -2.576 or -2.58 seen and compare $z$, allow both +
$\text { or } \beta \text { : }$	$\begin{gathered} \Phi(-2.076)=0.0189 \\ \text { [or } \Phi(2.076)=0.981] \\ \text { and compare with } 0.005 \text { [or } 0.995 \text { ] } \end{gathered}$	M1   A1   B1 (3)	Standardise 100.7 with $\sqrt{ } 80$ or 80 a.r.t. 0.019 , allow 0.981 only if compared with 0.995 Compare correct tail with 0.005 or 0.995
$\text { or } \gamma \text { : }$	$\begin{aligned} & 102-\frac{k \times 5.6}{\sqrt{80}} \\ & k=2.576, \text { compare } 100.7 \\ & 100.39 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 (3) } \end{aligned}$	This formula, allow,+ 80 , wrong SD, any $k$ from $\Phi^{-1}$   $k=2.576 / 2.58$, - sign, and compare 100.7 with CV CV a.r.t. 100.4
	Do not reject $\mathrm{H}_{0}$ Insufficient evidence that quantity of $\mathrm{SiO}_{2}$ is less than 102	M1   A1 2	Reject/Do not reject, $\sqrt{ }$, needs normal, 80 or $\sqrt{80}, \Phi^{-1}$ or equivalent, correct comparison, not if clearly $\mu=100.7$ Correct contextualised conclusion
(ii) (a)	$\begin{align*} & \frac{c-102}{5.6 / \sqrt{n}}=-2.326 \\ & 102-c=\frac{13.0256}{\sqrt{n}} \tag{AG} \end{align*}$	M1   B1   A1 3	One equation for $c$ and $n$, equated to $\Phi^{-1}$, allow cc, wrong sign, $\sigma^{2} ; \quad 2.326$ or 2.33   Correctly obtain given equation, needs in principle to have started from $c-102,-2.326$
(b)	$\frac{c-100}{5.6 / \sqrt{n}}=1.645 \quad \text { or } \quad c-100=\frac{9.212}{\sqrt{n}}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	Second equation, as before Completely correct, aef
(c)	Solve simultaneous equations $\begin{aligned} & V_{n}=11.12 \\ & n_{\text {min }}=124 \\ & c=100.83 \end{aligned}$	M1    A1    A1    A1 4	Correct method for simultaneous equations, find $c$ or $\sqrt{n}$ $\sqrt{n}$ correct to 3 SF $n_{\min }=124 \text { only }$   Critical value correct, 100.8 or better


(i)   (ii)	$\begin{aligned} & \hat{\mu}=4830.0 / 100=48.3 \\ & 249509.16 / 100-\left(\text { their } \bar{x}^{2}\right) \\ & \times 100 / 99 \\ & =163.84 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	48.3 seen   Biased estimate: 162.2016: can get B1M1M0   Multiply by $n /(n-1)$   Answer, 164 or 163.8 or 163.84
	No, Central Limit theorem applies, so can assume distribution is normal	B2	2	"No" with statement showing CLT is understood (though CLT does not need to be mentioned)   [SR: No with reason that is not wrong: B1]
2	$\begin{aligned} & \mathrm{B}(130,1 / 40) \\ & \approx \mathrm{Po}(3.25) \\ & e^{-\lambda} \frac{\lambda^{\dagger}}{4!} \\ & =0.180 \end{aligned}$	B1 M1   A1 $\sqrt{ }$   M1   A1	5	B(130, 1/40) stated or implied   Poisson, or correct N on their $\mathrm{B}(n, p)$   Parameter their $n p$, or correct parameter(s) $\sqrt{ }$   Correct formula, or interpolation   Answer, 0.18 or a.r.t. 0.180   [SR: $\mathrm{N}(3.25,3.17)$ or $\mathrm{N}(3.25,3.25)$ : B1M1A1]
(ii)	Binomial	B1	1	Binomial stated or implied
	Each element equally likely Choices independent		2	All elements, or selections, equally likely stated Choices independent [not just "independent"] [can get B2 even if (i) is wrong]
4 (i)	Two of: Distribution symmetric No substantial truncation Unimodal/Increasingly unlikely further from $\mu$, etc	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	One property   Another definitely different property Don't give both marks for just these two "Bell-shaped": B1 only unless "no truncation"
(ii)	$\begin{aligned} & \text { Variance } 8^{2} / 20 \\ & z=\frac{47.0-50.0}{\sqrt{8^{2} / 20}}=-1.677 \\ & \Phi(1.677)=0.9532 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	Standardise, allow cc, don't need $n$   Denominator ( 8 or $8^{2}$ or $\left.\sqrt{ } 8\right) \div\left(20\right.$ or $\sqrt{ } 20$ or $\left.20^{2}\right)$   $z$-value, a.r.t. -1.68 or +1.68   Answer, a.r.t. 0.953
(ii)	$\mathrm{H}_{1}: \lambda>2.5$ or 15	B1	1	$\lambda>2.5$ or 15, allow $\mu$, don't need "H,
	Use parameter 15   $\mathrm{P}(>23)$   $1-0.9805=0.0195$ or $1.95 \%$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	```\(\lambda=15\) used \(\quad[\mathrm{N}(15,15)\) gets this mark only] Find \(\mathrm{P}(>23\) or \(\geq 23\) ), final answer \(<0.5\) eg 0.0327 or 0.0122 Answer, \(1.95 \%\) or \(2 \%\) or 0.0195 or 0.02 [SR: 2-tailed, 3.9\% gets 3/3 here]```
	$\begin{aligned} & \mathrm{P}(\leq 23 \mid \lambda=17)=0.9367 \\ & \mathrm{P}(\leq 23 \mid \lambda=18)=0.8989 \\ & \text { Parameter }=17 \\ & \lambda=17 / 6 \text { or } 2.83 \end{aligned}$	M1   A1   M1	3	One of these, or their complement: . $9367, .8989$, 0.9047, 0.8551, . 9317, . $8933, .9907, .9805$   Parameter 17 [17.1076], needs $\mathrm{P}(\leq 23)$, cwo   [SR: if insufficient evidence can give B1 for 17]   Their parameter $\div 6$   [2.85]   [SR: Solve $(23.5-\lambda) / \sqrt{\lambda}=1.282 \mathrm{M} 1 ; 18.05 \mathrm{~A} 0]$
6 (i)	$\mathrm{H}_{0}: p=0.19, \mathrm{H}_{1}: p<0.19$   where $p$ is population proportion $\begin{aligned} & 0.81^{20}+20 \times 0.81^{19} \times 0.19 \\ & =0.0841 \\ & \text { Compare } 0.1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \end{array}$		Correct, B2. One error, B1, but $x$ or $\bar{x}$ or $r$ : B0   Binomial probabilities, allow 1 term only   Correct expression [0.0148 + 0.0693]   Probability, a.r.t. 0.084   Explicit comparison of "like with like"
or	Add binomial probs until ans $>0.1$ Critical region $\leq 1$	$\begin{array}{\|l\|} \hline \text { A1 } \\ \text { B1 } \end{array}$		$[\mathrm{P}(\leq 2)=0.239]$
	Reject $\mathrm{H}_{0}$   Significant evidence that proportion of $e$ 's in language is less than 0.19	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \sqrt{ } \\ \hline \end{array}$	8	Correct deduction and method [needs $\mathrm{P}(\leq 1)$ ] Correct conclusion in context ..........[SR: N(3.8, 3.078): B2M1A0B1M0].
(ii)	Letters not independent	B1	1	Correct modeling assumption, stated in context Allow "random", "depends on message", etc


7	(i)		$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	3	Horizontal straight line   Positive parabola, symmetric about 0   Completely correct, including correct relationship between two   Don't need vertical lines or horizontal lines outside range, but don't give last B1 if horizontal line continues past " $\pm 1$ "
		is equally likely to take any value range, $T$ is more likely at xtremities	B2	2	Correct statement about distributions (not graphs) [Partial statement, or correct description for one only: B1]
		$\begin{aligned} & \int_{t}^{1} \frac{3}{2} x^{2} d x=\left[\frac{x^{3}}{2}\right]_{t}^{1} \\ & 1 / 2\left(1-t^{3}\right)=0.2 \text { or } 1 / 2\left(t^{3}+1\right)=0.8 \\ & t^{3}=0.6 \\ & t=0.8434 \end{aligned}$	M1   B1   M1   M1   A1	5	Integrate $\mathrm{f}(x)$ with limits $(-1, t)$ or $(t, 1)$ [recoverable if $t$ used later]   Correct indefinite integral   Equate to 0.2 , or 0.8 if $[-1, t]$ used   Solve cubic equation to find $t$   Answer, in range [0.843, 0.844]
8	(i)	$\begin{array}{ll} \frac{64.2-63}{\sqrt{12.25 / 23}} & =1.644 \\ \mathrm{P}(z>1.644) \\ =0.0 \end{array}$	M1dep A1 dep M1 A1	4	Standardise 64.2 with $\sqrt{ } n$ $z=1.644$ or 1.645 , must be + Find $\Phi(z)$, answer $<0.5$ Answer, a.r.t. 0.05 or $5.0 \%$
	(ii)	(a) $\quad 63+1.645 \times \frac{3.5}{\sqrt{50}}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	3	$\begin{aligned} & 63+3.5 \times k / \sqrt{50, k} \text { from } \Phi^{-1}, \text { not }- \\ & k=1.645 \text { (allow } 1.64,1.65 \text { ) } \end{aligned}$   Answer, a.r.t. 63.8, allow $>, \geq$, =, c.w.o.
		(b) $\quad$$\mathrm{P}(<63.8 \mid \mu=65)$                     $03.5-65 \sqrt{50}$$=-2.3956$	M1   M1   A1   A1	4	Use of correct meaning of Type II Standardise their $c$ with $\sqrt{ } 50$ $z=( \pm) 2.40$ [or -2.424 or -2.404 etc] Answer, a.r.t. 0.008 [eg, 0.00767]
	(iii)	B better: Type II error smaller (and same Type I error)	B2 $\sqrt{ }$	2	This answer: B2. "B because sample bigger": B1. [SR: Partial answer: B1]
9	(a)	$\begin{aligned} & \hline n p>5 \text { and } n q>5 \\ & 0.75 n>5 \text { is relevant } \\ & n>20 \end{aligned}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	3	Use either $n q>5$ or $n p q>5$   [SR: If M0, use $n p>5$, or " $n=20$ " seen: M1]   Final answer $n>20$ or $n \geq 20$ only
	(b)	(i) $\begin{aligned} & 70.5-\mu=1.75 \sigma \\ & \mu-46.5=2.25 \sigma \end{aligned}$   Solve simultaneously $\begin{aligned} & \mu=60 \\ & \sigma=6 \end{aligned}$	M1   A1   B1   M1   A1 $\sqrt{ }$   A1 $\sqrt{ }$	6	Standardise once, and equate to $\Phi^{-1}, \pm$ cc Standardise twice, signs correct, cc correct Both 1.75 and 2.25   Correct solution method to get one variable   $\mu$, a.r.t. 60.0 or $\pm 154.5$   $\sigma$, a.r.t. 6.00 [Wrong cc (below): A1 both]   [SR: $\sigma^{2}:$ M1A0B1M1A1A0]
		$\text { (ii) } \begin{array}{ll} n p=60, n p q=36 \\ & q=36 / 60=0.6 \\ & p=0.4 \\ & n=150 \end{array}$	M1dep depM1 A1 $\sqrt{ }$ A1 $\sqrt{ }$	4	$n p=60$ and $n p q=6^{2}$ or 6   Solve to get $q$ or $p$ or $n$   $p=0.4 \sqrt{ }$ on wrong cc or $z$   $n=150 \sqrt{ }$ on wrong cc or $z$

$\begin{array}{cc|ccccc|} & & \sigma & \mu & q & p( \pm 0.01) & n \\$\cline { 3 - 7 } 70.5 \& 46.5 \& 6 \& 60 \& 0.6 \& 0.4 \& 150 <br> \& \& \& $\left.\begin{array}{c}60.062\end{array} \\ 71 & 46 & 6.25 & 5 & 0.6504 & 0.3496 & 171.8 \\ & & & 60.562\end{array}\right)$

## 4733 Probability \& Statistics 2

1	$\begin{aligned} & \frac{80-\mu}{\sigma}=\Phi^{-1}(0.95)=1.645 \\ & \frac{\mu-50}{\sigma}=\Phi^{-1}(0.75)=0.674(5) \end{aligned}$   Solve simultaneously $\mu=58.7, \sigma=12.9$	M1    B1    A1    M1    A1    A1 $\mathbf{6}$	Standardise once with $\Phi^{-1}$, allow $\sigma^{2}$, cc   Both $1.645(1.64,1.65)$ and [ $0.674,0.675]$, ignore signs   Both equations correct apart from wrong $z$, not $1-1.645$   Solve two standardised equations   $\mu$, a.r.t 58.7   $\sigma$, a.r.t. $12.9\left[\right.$ not $\left.\sigma^{2}\right]$   [ $\sigma^{2}:$ M1B1A0M1A1A0]
2 (i)	Let $R$ denote the number of choices which are 500 or less. $\begin{aligned} & R \sim \mathrm{~B}\left(12, \frac{5}{6}\right) \\ & \mathrm{P}(R=12)=\left(\frac{5}{6}\right)^{12} \quad[=0.11216] \\ & =\mathbf{0 . 1 1 2} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\mathrm{B}\left(12, \frac{5}{6}\right.$ ) stated or implied, allow 501/600 etc $p^{12}$ or $q^{12}$ or equivalent   Answer, a.r.t. 0.112 $\text { [SR: } \frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \ldots ; 0.110: \quad \text { M1A1] }$   [M1 for 0.910 or 0.1321 or vague number of terms]
(ii)	Method unbiased; unrepresentative by chance	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	State that method is unbiased   Appropriate comment (e.g. "not unlikely")   [SR: partial answer, e.g. not necessarily biased: B1]
3 (i)	$\begin{aligned} & \mathrm{P}(\leq 1)=0.0611 \\ & \mathrm{P}(\geq 9)=1-\mathrm{P}(\leq 8)=1-0.9597 \\ & =0.0403 \\ & 0.0611+0.0403 \quad[=0.1014] \\ & =\mathbf{1 0 . 1 \%} \end{aligned}$	B1    M1    A1    M1    A1 $\mathbf{5}$	0.0611 seen   Find $P(\geq 9)$, allow 8 or 10 [ $0.0866,0.0171$ ] 0.0403 correct   Add probabilities of tails, or 1 tail $\times 2$   Answer [10.1, 10.2]\% or probability.
(ii)	$\begin{aligned} & \mathrm{P}(2 \leq G \leq 8) \\ & =0.8944-0.0266 \quad[=0.8678] \\ & =\mathbf{0 . 8 6 8} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Attempt at $\mathrm{P}(2 \leq G \leq 8)$, not isw, allow $1 \leq G \leq 9$ etc $\mathrm{Po}(5.5)$ tables, $\mathrm{P}(\leq$ top end $)-\mathrm{P}(\leq$ bottom end $)$ Answer, a.r.t. 0.868 , allow \%
4 (i)	$\begin{aligned} & \hat{\mu}=\bar{y}=\frac{3296.0}{40}=82.4 \\ & \frac{286800.4}{40}-82.4^{2}[=380.25] \\ & S^{2} \times \frac{40}{39} ;=390 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & \mathbf{4} \end{array}$	Mean 82.4, c.a.o.   Use correct formula for biased estimate Multiply by $n /(n-1)$   [SR: all in one, M2 or M0]   Variance 390, c.a.o.
(ii)	$\begin{aligned} & \Phi\left(\frac{60-82.4}{\sqrt{390}}\right)=\Phi(-1.134) \\ & =1-0.8716=\mathbf{0 . 1 2 8} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Standardise, allow 390 , cc or biased estimate, $+1-$, do not allow $\sqrt{ } n$   Answer in range [0.128, 0.129]
(iii)	No, distribution irrelevant	B1 1	"No" stated or implied, any valid comment
5 (i)	$\mathrm{H}_{0}: \mu=500$ where $\mu$ denotes $\mathrm{H}_{1}: \mu<500$ the population mean   $\alpha: \quad z=\frac{435-500}{100 / \sqrt{4}}=-1.3$   Compare - 1.282	$\begin{array}{\|l\|} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Both hypotheses stated correctly   [SR: 1 error, B1, but $\bar{x}$ etc: B0]   Standardise, use $\sqrt{ } 4$, can be + $z=-1.3 \text { (allow }-1.29 \text { from cc) or } \Phi(z)=0.0968(.0985)$   Compare $z \&-1.282$ or $p(<0.5) \& 0.1$ or equivalent
	$\begin{aligned} & 500-1.282 \times 100 / \sqrt{4} \\ & =435.9 \text { c compare } 435\end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } ; \mathrm{B} 1 \end{aligned}$	$500-z \times 100 / \sqrt{4}$, allow $\sqrt{ }$ errors, any $\Phi^{-1}$, must be CV correct, $\sqrt{ }$ on their $z ; 1.282$ correct and compare
	Reject $\mathrm{H}_{0}$   Significant evidence that number of visitors has decreased	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } \sqrt{ } & 7 \end{array}$	Correct deduction, needs $\sqrt{ } 4, \mu=500$, like-with-like Correct conclusion interpreted in context
(ii)	CLT doesn't apply as $n$ is small So need to know distribution	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	Correct reason [" $n$ is small" is sufficient]   Refer to distribution, e.g. "if not normal, can't do it"


6 (i)	(a) $\quad \begin{aligned} & 1-0.8153 \\ & =0.1847\end{aligned}$   (b) $\quad \begin{aligned} & 0.8153-0.6472 \\ & =\mathbf{0 . 1 6 8}\end{aligned}$		Po(3) tables, " 1 -" used, e.g. 0.3528 or 0.0839 Answer 0.1847 or 0.185 Subtract 2 tabular values, or formula $\left[e^{-3} 3^{4} / 4\right.$ !] Answer, a.r.t. 0.168
(ii)	$\begin{aligned} & \mathrm{N}(150,150) \\ & 1-\Phi\left(\frac{165.5-150}{\sqrt{150}}\right) \\ & =1-\Phi(1.266)=\mathbf{0 . 1 0 3} \end{aligned}$	B1    B1    M1    A1    A1 5	Normal, mean $3 \times 50$ stated or implied Variance or SD $=3 \times 50$, or same as $\mu$ Standardise 165 with $\lambda$, $\sqrt{ } \lambda$ or $\lambda$, any or no cc $\sqrt{ } \lambda$ and 165.5   Answer in range [0.102, 0.103]
(iii)	(a) The sale of one house does not affect the sale of any others   (b) The average number of houses sold in a given time interval is constant	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \quad 2 \end{aligned}$	Relevant answer that shows evidence of correct understanding [but not just examples]   Different reason, in context   [Allow "constant rate" or "uniform" but not "number constant", "random", "singly", "events".]
7 (i)	$\begin{aligned} & \int_{0}^{2} k x d x=\left[\frac{k x^{2}}{2}\right]_{0}^{2}=2 k \\ & =1 \text { so } k=1 / 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use $\int_{0}^{2} k x d x=1$, or area of triangle Correctly obtain $k=1 / 2$ AG
(ii)		$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Straight line, positive gradient, through origin Correct, some evidence of truncation, no need for vertical
(iii)	$\begin{aligned} & \int_{0}^{2} \frac{1}{2} x^{2} d x=\left[\frac{1}{6} x^{3}\right]_{0}^{2}=\frac{4}{3} \\ & \int_{0}^{2} \frac{1}{2} x^{3} d x=\left[\frac{1}{8} x^{4}\right]_{0}^{2}[=2] \\ & 2-\left(\frac{4}{3}\right)^{2}=\frac{2}{9} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{5} \end{array}$	Use $\int_{0}^{2} k x^{2} d x ; \frac{4}{3}$ seen or implied   Use $\int_{0}^{2} k x^{3} d x$; subtract their mean ${ }^{2}$   Answer $\frac{2}{9}$ or a.r.t. 0.222 , c.a.o.
(iv)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \quad 2 \end{aligned}$	Translate horizontally, allow stated, or " 1,2 " on axis One unit to right, 1 and 3 indicated, nothing wrong seen, no need for vertical or emphasised zero bits   [If in doubt as to $\rightarrow$ or $\downarrow$, M0 in this part]
(v)		$\begin{array}{ll} \mathrm{B} 1 \sqrt{ } \\ \mathrm{~B} 1 \sqrt{ } & 2 \end{array}$	Previous mean +1   Previous variance   [If in doubt as to $\rightarrow$ or $\downarrow$, B1B1 in this part]


8 (i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.65 \text { OR } p \geq 0.65 \\ & \mathrm{H}_{1}: p<0.65 \\ & \mathrm{~B}(12,0.65) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \text { M1 } \end{aligned}$	Both hypotheses correctly stated, in this form [One error (but not $r, x$ or $\bar{x}$ ): B1] $B(12,0.65)$ stated or implied				
	$\alpha: \quad \begin{array}{ll} \mathrm{P}(\leq 6)=0.2127 \\ & \text { Compare } 0.10 \end{array}$	$\begin{array}{\|l\|} \hline \text { A1 } \\ \text { B1 } \end{array}$	Correct probability from tables, not $\mathrm{P}(=6)$ Explicit comparison with 0.10				
	$\beta$ : $\quad$ Critical region $\leq 5 ; 6>5$   Probability 0.0846	$\begin{aligned} & \mathrm{B} 1 \\ & \text { A1 } \end{aligned}$	Critical region $\leq 5$ or $\leq 6$ or $\{\leq 4\} \cap\{\geq 11\}$ \& compare 6 Correct probability				
	Do not reject $\mathrm{H}_{0}$ Insufficient evidence that proportion of population in favour is not at least 65\%	M1V $\mathrm{A} 1 \sqrt{ }$ $7$	Correct comparison and conclusion, needs correct distribution, correct tail, like-with-like Interpret in context, e.g. "consistent with claim" [SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7]				
(ii)	Insufficient evidence to reject claim; test and $p / q$ symmetric	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Same conclusion as for part (i), don't need context Valid relevant reason, e.g. "same as (i)"				
(iii)	$\begin{aligned} & R \sim \mathrm{~B}(2 n, 0.65), \mathrm{P}(R \leq n)>0.15 \\ & \mathrm{~B}(18,0.65), p=0.1391 \end{aligned}$   Therefore $n=9$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	$\mathrm{B}(2 n, 0.65), \mathrm{P}(R \leq n)>0.15$ stated or implied Any probability in list below seen $p=0.1391$ picked out (i.e., not just in a list of $>2$ ) Final answer $n=9$ only   [SR $<n$ : M1A0, $n=4,0.1061$ A1A0]   [SR 2-tail: M1A1A0A1 for 15 or 14]   [SR: 9 only, no working: M1A1]   [MR B(12, 0.35): M1A0, $n=4,0.1061$ A1A0]				
			3 0.3529   4 0.2936   5 0.2485   6 0.2127	7 8 9 10	$\begin{aligned} & 0.1836 \\ & 0.1594 \\ & 0.1391 \\ & 0.1218 \end{aligned}$	12 13 14 15	$\begin{aligned} & 0.0942 \\ & 0.0832 \\ & 0.0736 \\ & 0.0652 \end{aligned}$

## 4733 Probability \& Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Significant evidence that time is unchanged" is also A0.

1	Biased in favour of those with strong political interest	B2	2	"Biased", "unrepresentative", "not indept" or equiv [but not "not random"] stated, with sensible reason. [SR: partial answer, B1]
	Obtain list of all pupils Allocate numbers sequentially Choose using random numbers	B1 B1 B1	3	List, can be implied; number serially or randomly, not just "number pupils"   Select consistently with method of numbering, not just "select randomly"   [SR: systematic: List B1, every $n^{\text {th }} \mathrm{B} 1$, random start B1]   [SR: names in a hat: B2]
$2$	$\begin{aligned} & \Phi\left(\frac{24-30}{12}\right)-\Phi\left(\frac{20-30}{12}\right) \\ & =\Phi(-0.5)-\Phi(-0.833) \\ & =(1-0.6915)-(1-0.7976)=\mathbf{0 . 1 0 6 1} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	Standardise one, allow $\sqrt{ } 12,12^{2}$, $\sqrt{ } n$   Both standardisations correct, allow cc here   Correct handling of tails [0.3085-0.2024]   Answer, a.r.t. 0.106, c.a.o.
(ii)	Not symmetrical (skewed) Therefore inappropriate	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Any comment implying not symmetric Conclude "not good model" [Partial answer: B1]
$3$	$\begin{aligned} & \mathrm{H}_{0}: \mu=28 \\ & \mathrm{H}_{1}: \mu \neq 28 \\ & \sigma^{2}=37.05 \times 40 / 39 \\ & z=\frac{26.44-28}{\sqrt{38 / 40}}=-1.601 \end{aligned}$   Compare -1.645 , or 0.0547 with 0.05	$\begin{aligned} & \hline \mathrm{B} 2 \\ & \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$		Both hypotheses correctly stated; one error, allow wrong or no letter, but not $x$ or $t$ or $\bar{x}$, B1 Multiply 37.05 or $\sqrt{ } 37.05$ by $n /(n-1)$ or $\sqrt{ }[n /(n-1)]$ Standardise with $\sqrt{ }$ n, allow $\sqrt{ }$ errors, cc, + Correct $z$, a.r.t -1.60 , or $p \in$ [0.0547, 0.0548]   Explicit comparison of $z$ with -1.645 or $p$ with 0.05
	$\begin{aligned} & \text { Critical value } 28-z \sigma / \sqrt{n} \quad[=26.397] \\ & z=1.645 \end{aligned}$   Compare 26.44 with 26.40	$\begin{aligned} & \hline \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \sqrt{ } \text { } \\ & \hline \end{aligned}$		Allow " $\pm$ ", $\sqrt{ }$ errors, cc, ignore other tail $z=1.645$ in CV expression, and compare 26.44 CV, $\sqrt{ }$ on their $z$, rounding to 3 SF correct
	Do not reject $\mathrm{H}_{0}$ [can be implied] Insufficient evidence that time taken has changed.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{2} \end{aligned}$	8	Needs $\sqrt{ } n$, correct method \& comparison, not $\mu=26.44$ Conclusion interpreted in context, $\sqrt{ }$ on $z$,
$4$	$\begin{array}{lll} \hline \frac{53-50}{\sigma / \sqrt{10}}<2.326 & & \\ & \sigma>4.08 & \text { AG } \\ {[\text { Allow } \geq]} & & \end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	Standardise with 10 or $\sqrt{10}$ and $\Phi^{-1}$   Both sides same sign, $\sqrt{ } 10$, don’t worry about $<$   2.326 or 2.33 seen   Convincingly obtain $\sigma>4.08$ to 3 SF , one other step   [SR: Substitution: standardise \& substitute 4.08 M 1 ;   $0.0101 \mathrm{~A} 1 ; 4.07$ or 4.075 tried, M1; full justification A1]
	$\begin{aligned} & \begin{array}{l} \mathrm{P}(\text { Type I })=0.01 \text { used, e.g. Geo(0.01) } \\ 0.99^{4} \times 0.01 \end{array} \\ & =\mathbf{0 . 0 0 9 6} \end{aligned}$	M1   M1   A1	3	Not enough merely to state $p=0.01$ $p^{4} \times q$   Answer, a.r.t. 0.0096
$5 \quad \text { (i) }$	$\begin{aligned} & \int_{-1}^{1} \frac{3}{4}\left(x^{2}-x^{4}\right) d x= \frac{3}{4}\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{-1}^{1}[=1 / 5] \\ & 1 / 5-0^{2} \\ &=\mathbf{1} / \mathbf{5} \end{aligned}$		4	Attempt $\int_{-1}^{1} x^{2} f(x) d x$   Correct indefinite integral   Mean 0 clearly indicated   Answer $1 / 5$ or a.r.t. 0.200 , don't need $\mu=0$
(ii)	(a)   (b) Areas equal, more spread out, so $\mathrm{g}_{\text {max }}$ lower   (c) $\quad W$ greater as more spread out	B1   M1   A1   B1dep   depB1	5	Correct graph, don't need $\mathrm{f}(x)$ as well. Don't allow if graph goes further below axis than "pips".   Don't worry too much about exact shape   Mention areas or total probability   Convincing argument, not just "flatter"   W greater...   ...with convincing reason



## 4733 Probability \& Statistics 2

1	$\begin{aligned} & U \sim \mathrm{~B}(800,0.005) \approx \mathrm{Po}(4) \\ & \mathrm{P}(U \leq 6) \quad=\mathbf{0 . 8 8 9 3} \\ & \\ & n>50 / \text { large, } n p<5 / p \text { small } \end{aligned}$	B1    M1    A1    B1 $\mathbf{4}$	Po(np) stated or implied   Tables or formula $\pm 1$ term, e.g. 0.7851, $0.9489,0.1107$, not $1-$   Answer 0.889 or a.r.t. 0.8893   Both conditions
2	$\begin{array}{ll} \frac{23.625-23}{5 / \sqrt{n}}=2 & \\ \sqrt{n}=16 & n=\mathbf{2 5 6} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Standardise with $\sqrt{ }$ n, allow $\sqrt{ } /{ }^{2}$ errors Equate to 2 or a.r.t. 2.00, signs correct Solve for $\sqrt{ } n$, needs $\Phi^{-1}$, not from $/ n$ 256 only, allow from wrong signs
3 (i)	(a)   (b) $0.42 e^{-0.42}=0.276$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Correct formula for $R=0$ or 1   P(0), a.r.t. 0.657   P(1), a.r.t. 0.276
(ii)	Po(2.1): $\begin{gathered} 1-P(\leq 3)=1-0.8386 \\ \ldots \ldots \ldots \ldots \ldots \ldots \end{gathered}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Po(2.1) stated or implied   Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or complement; Answer, in range [0.161, 0.162]
(iii)		B2 2	At least 3 separate bars, all decreasing Allow histogram. Allow convex $\mathrm{P}(0)<\mathrm{P}(1)$ but otherwise OK: B1 Curve: B1 [no hint of normal allowed]
4 (i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.14 \\ & \mathrm{H}_{1}: p<0.14 \\ & \mathrm{~B}(22,0.14) \\ & \mathrm{P}(\leq 2)=.86^{22}+\left(22 \times .86^{21} \times .14\right)+ \\ & \left(231 \times .86^{20} \times .14^{2}\right)=\mathbf{0 . 3 8 7 7} \\ & >0.1 \\ & \text { Do not reject } \mathrm{H}_{0} . \text { Insufficient } \\ & \text { evidence that company } \\ & \text { overestimates viewing proportion } \end{aligned}$	B2   M1   A1   A1   B1   M1   A1	Both correct. 1 error, B1, but $x$ or $r$ or $\bar{x}$ etc: 0   $\mathrm{B}(22,0.14)$ stated or implied, e.g. $\mathrm{N}(3.08,2.6488)$ or $\mathrm{Po}(3.08)$ Correct formula for 2 or 3 terms, or $\mathrm{P}(\leq 0)=0.036$ and CR Correct answer, a.r.t. 0.388 , or CR is $=0$   Explicitly compare 0.1 or CR with 2, OK from Po but not from N Correct comparison type and conclusion, needs binomial, at least 2 terms, not from $\mathrm{P}(<2)$   Contextualised, some acknowledgement of uncertainty [SR: Normal: B2 M1 A0 B0 M0] [SR: 2-tailed, or $p>0.14, \mathrm{P}(\geq 2)$ : B1M1A2B0M1A1]
(ii)	Selected independently Each adult equally likely to be chosen	$\begin{array}{ll} \mathrm{B} 1 \\ \mathrm{~B} 1 & 2 \end{array}$	Independent selection   Choice of sample elements equally likely (no credit if not focussed on selection)   [Only "All samples of size $n$ equally likely": B1 only unless related to Binomial conditions]
5 (i)		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Horizontal straight line   Symmetrical U-shaped curve   Both correct, including relationship between the two and not extending beyond [ $-2,2$ ], curve through $(0,0)$
(ii)	$S$ is equally likely to take any value   $T$ is more likely at extremities	B2 2	Correct statement about both distributions, $\sqrt{ }$ on their graph [Correct for one only, or partial description: B1] Not "probability of $S$ is constant", ett.
(iii)	$\begin{aligned} & \frac{5}{64} \int_{-2}^{2} x^{6} d x=\frac{5}{64}\left[\frac{x^{7}}{7}\right]_{-2}^{2}\left[=\frac{20}{7}\right] \\ & -0^{2} \\ & =\frac{20}{7} \end{aligned}$	$\begin{array}{ll}  & \\ \text { M1 } \\ \text { A1 } & \\ & \\ \text { A1 } & \mathbf{4} \end{array}$	Integrate $x^{2} \mathrm{~g}(x)$, limits $-2,2$   Correct indefinite integral [ $=5 x^{7} / 448$ ]   0 or $0^{2}$ subtracted or $\mathrm{E}(X)=0$ seen, not $\int x^{2} \mathrm{f}(x) \mathrm{d} x-\int x \mathrm{f}(x) \mathrm{d} x$   Answer $\frac{20}{7}$ or $2 \frac{6}{7}$ or a.r.t. 2.86, don't need 0


6 (i)	$\begin{aligned} & 50.0 \pm 1.96 \sqrt{\frac{20.25}{81}}=50.0 \pm 0.98 \\ & =49.02,50.98 \\ & \bar{W}<49.02 \text { and } \bar{W}>50.98 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { B1 } & \\ \text { A1A1 } & \\ \text { A1 } \sqrt{ } & 5 \end{array}$	$50.0 \pm z \sqrt{ }(1.96 / 81)$, allow one sign only, allow $\sqrt{ }$ errors $z=1.96$ in equation (not just stated)   Both critical values, min 4 SF at some stage (if both 3SF, A1) CR , allow $\leq / \geq$, don't need $\bar{W}, \sqrt{ }$ on their CVs, can't recover   [Ans $50 \pm 0.98$ : A1 only]   [SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
(ii)	$\begin{aligned} & \frac{50.98-50.2}{0.5}=1.56 \\ & \frac{49.02-50.2}{0.5}=-2.36 \\ & \Phi(1.56)-\Phi(-2.36)=\mathbf{0 . 9 3 1 5} \end{aligned}$	M1   A1   A1   M1   A1 $5$	Standardise one limit with same SD as in (i)   A.r.t. 1.56, allow - Can allow $\sqrt{ }$ here   A.r.t. -2.36 , allow $+\quad$ if very unfair   Correct handling of tails for Type II error   Answer in range [0.931, 0.932]   [SR 1-tail M1; -1.245 or 2.045 A1; 0.893 or 0.9795 A1] ....
(iii)	It would get smaller	B1	No reason needed, but withhold if definitely wrong reason seen. Allow from 1-tail
7 (i)	$\begin{aligned} & \begin{array}{l} \hat{\mu}=\bar{t}=13.7 \\ \begin{array}{c} \frac{12657.28}{64}-13.7^{2} \quad[=10.08] ; \times \frac{64}{63} \\ \quad=10.24 \end{array} \\ \begin{array}{c} \mathrm{H}_{0}: \mu=13.1, \mathrm{H}_{1}: \mu>13.1 \\ \frac{13.7-13.1}{\sqrt{10.24 / 64}}=1.5 \text { or } p=0.0668 \end{array} \\ 1.5<1.645 \text { or } 0.0668>0.05 \end{array} \end{aligned}$   Do not reject $\mathrm{H}_{0}$. Insufficient evidence that time taken on average is greater than 13.1 min	B1    M1     M1     A1     B2          M1     A1     B1          M1     A1 $\mathbf{1 1}$	13.7 stated   Correct formula for biased estimate   $\times \frac{64}{63}$ used, or equivalent, can come in later   Variance or SD 10.24 or 10.2   Both correct.   [SR: One error, B1, but $x$ or $t$ or $\bar{x}$ or $\bar{t}, 0$ ]   Standardise, or find CV, with $\sqrt{64}$ or 64   $z=$ a.r.t. 1.50 , or $p=0.0668$, or CV 13.758 [ $\sqrt{ }$ on $z$ ]   Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail), or $z=1.645 \& 13$ with CV   Correct comparison \& conclusion, needs 64 , not $\mu=13.7$   Contextualised, some acknowledgement of uncertainty [13.1 - 13.7: (6), M1 A0 B1 M0]
(ii)	Yes, not told that dist is normal	B1 1	Equivalent statement, not " $n$ is large", don’t need "yes"
8 (i)	N(14.7, 4.41)   Valid because $\begin{aligned} n p=14.7>5 ; n q & =6.3>5 \\ 1-\Phi\left(\frac{15.5-14.7}{\sqrt{4.41}}\right) & =1-\Phi(0.381) \\ =1-0.6484 & =\mathbf{0 . 3 5 1 6} \end{aligned}$	M1    A1    B1    B1        M1    A1    A1 7	
(ii)	$\begin{gathered} \bar{K} \sim \mathrm{~N}(14.7,4.41 / 36) \\ {\left[=\mathrm{N}\left(14.7,0.35^{2}\right)\right]} \end{gathered}$   Valid by Central Limit Theorem as 36 is large $\begin{aligned} \Phi\left(\frac{14.0+\frac{1}{72}-14.7}{\sqrt{4.41 / 36}}\right) & =\Phi(-1.96) \\ & =0.025 \end{aligned}$	M1   A1 $\sqrt{ }$   B1   M1   A1   A1   A1   7	```Normal, their \(n p\) from (i) Their variance/36 Refer to CLT or large \(n\) (= 36, not 21), or " \(K \sim N\) so \(\bar{K} \sim N\) ", not same as (i), not \(n p>5, n q>5\) for \(\bar{K}\) Standardise 14.0 with 36 or \(\sqrt{36}\) cc included, allow 0.5 here, e.g. 14.5 - 14.7 \(z=-1.96\) or -2.00 or -2.04 , allow + if answer \(<0.5\) 0.025 or 0.0228 [0.284 loses last 2] [Po(25.2) etc: probably 0]```
OR:	$\begin{aligned} & \mathrm{B}(756,0.7) \approx \mathrm{N}(529.2,158.76) \\ & \begin{aligned} \Phi\left(\frac{504.5-529.2}{\sqrt{158.76}}\right) & =\Phi(-1.96) \\ & =\mathbf{0 . 0 2 5} \end{aligned} \end{aligned}$	M1M1A1   B1   M1   A1   A1	$\times 36 ; \mathrm{N}(529.6, \ldots) ; 158.76$   CLT as above, or $n p>5, n q>5$, can be asserted here Standardise $14 \times 36$   cc correct and $\sqrt{ } n p q$ $0.025 \text { or } 0.0228$

## 4733 Probability \& Statistics 2

1	$\frac{105.0-\mu}{\sigma}=-0.7 ; \frac{110.0-\mu}{\sigma}=-0.5$   Solve: $\begin{aligned} & \sigma=25 \\ & \mu=122.5 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 6 \end{array}$	Standardise once, equate to $\Phi^{-1}$, allow $\sigma^{2}$ Both correct including signs \& $\sigma$, no cc (continuity correction), allow wrong $z$   Both correct $z$-values. " 1 -" errors: M1A0B1 Get either $\mu$ or $\sigma$ by solving simultaneously $\sigma$ a.r.t. 25.0   $\mu=122.5 \pm 0.3$ or 123 if clearly correct, allow from $\sigma^{2}$ but not from $\sigma=-25$.
2	$\operatorname{Po}(20) \approx \mathrm{N}(20,20)$   Normal approx. valid as $\lambda>15$ $\begin{aligned} & 1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right)=1-\Phi(1.006) \\ & =1-0.8427=\mathbf{0 . 1 5 7 3} \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{6} \\ \hline \end{array}$	Normal stated or implied   $(20,20)$ or $(20, \sqrt{ } 20)$ or $\left(20,20^{2}\right)$, can be implied "Valid as $\lambda>15$ ", or "valid as $\lambda$ large" Standardise 25, allow wrong or no cc, $\sqrt{ } 20$ errors $1.0<z \leq 1.01$   Final answer, art 0.157
3	$\mathrm{H}_{0}: p=0.6, \mathrm{H}_{1}: p<0.6$   where $p$ is proportion in population who believe it's good value $\begin{aligned} R \sim \mathrm{~B}(12,0.6) & \\ \alpha: \quad \mathrm{P}(R \leq 4) & =0.0573 \\ & >0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Both, B2. Allow $\pi$, \%   One error, B1, except $x$ or $\bar{x}$ or $r$ or $R$ : 0   $\mathrm{B}(12,0.6)$ stated or implied, e.g. $\mathrm{N}(7.2,2.88)$   Not $\mathrm{P}(<4)$ or $\mathrm{P}(\geq 4)$ or $\mathrm{P}(=4)$   Must be using $\mathrm{P}(\leq 4)$, or $\mathrm{P}(>4)<0.95$ and binomial
	$\begin{array}{ll} \beta: & \mathrm{CR} \text { is } \leq 3 \text { and } 4>3 \\ & p=0.0153 \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Must be using CR; explicit comparison needed
	Do not reject $\mathrm{H}_{0}$. Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \hline & \\ \hline \end{array}$	Correct conclusion, needs $\mathrm{B}(12,0.6)$ and $\leq 4$ Contextualised, some indication of uncertainty [SR: $\mathrm{N}(7.2, \ldots)$ or Po(7.2): poss B2 M1A0] [SR: $\mathrm{P}(<4)$ or $\mathrm{P}(=4)$ or $\mathrm{P}(\geq 4)$ : B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	One valid relevant reason   A definitely different valid relevant reason Not "not a random sample", not "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers"   SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: $\alpha$ : Members of population equally likely to be chosen   $\beta$ : Chosen independently/randomly   $\gamma$ : Large sample (e.g. > 30)	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	One reason. NB : If "independent", must be "chosen" independently, not "views are independent"   Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"


5 (i)	Bricks scattered at constant average rate \& independently of one another	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	B1 for each of 2 different reasons, in context. (Treat "randomly" $\equiv$ "singly" $\equiv$ "independently")
(ii)	$\begin{gathered} \mathrm{Po}(12) \\ \mathrm{P}(\leq 14)-\mathrm{P}(\leq 7)[=.7720-.0895] \\ {[\text { or } \mathrm{P}(8)+\mathrm{P}(9)+\ldots+\mathrm{P}(14)]} \\ =\mathbf{0 . 6 8 2 5} \end{gathered}$	B1 M1   A1 3	Po(12) stated or implied   Allow one out at either end or both, eg 0.617 , or wrong column, but not from Po(3) nor, eg, . 9105 .7720   Answer in range [0.682, 0.683]
(iii)	$\begin{aligned} & e^{-\lambda}=0.4 \\ & \lambda=-\ln (0.4) \\ & =0.9163 \\ & \text { Volume }=0.9163 \div 3=\mathbf{0 . 3 0 5} \end{aligned}$	B1    M1    A1    M1   	This equation, aef, can be implied by, eg 0.9   Take ln, or 0.91 by T \& I   $\lambda$ art 0.916 or 0.92 , can be implied   Divide their $\lambda$ value by 3   [SR: Tables, eg $0.9 \div 3$ : B1 M0 A0 M1]
6 (i)	$\begin{aligned} & 33.6 \\ & \frac{115782.84}{100}-33.6^{2}[=28.8684] \\ & \times \frac{100}{99} \quad=\mathbf{2 9 . 1 6} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}$, M's independent. Eg $\frac{\Sigma r^{2}}{99}\left[-336^{2}\right]$   SR B1 variance in range [29.1, 29.2]
(ii)	$\begin{aligned} & \begin{aligned} & \overline{\bar{R}} \sim \mathrm{~N}(33.6,29.16 / 9) \\ &=\mathrm{N}\left(33.6,1.8^{2}\right) \\ & 1-\Phi\left(\frac{32-33.6}{\sqrt{3.24}}\right) {[=\Phi(0.8889)] } \\ & \\ &=\mathbf{0 . 8 1 3 0} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Normal, their $\mu$, stated or implied Variance [their (i)] $\div 9 \quad[$ not $\div 100$ ]   Standardise \& use $\Phi, 9$ used, answer $>0.5$, allow $\sqrt{ }$ errors, allow cc 0.05 but not 0.5 Answer, art 0.813
(iii)	No, distribution of $R$ is normal so that of $\bar{R}$ is normal	B2 2	Must be saying this. Eg " 9 is not large enough": B0. Both: B1 max, unless saying that $n$ is irrelevant.
7 (i)	$\begin{aligned} & \frac{2}{9} \int_{0}^{3} x^{3}(3-x) d x=\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3}[=2.7]- \\ & (11 / 2)^{2} \quad=\frac{9}{20} \text { or } \mathbf{0 . 4 5} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \\ \hline \end{array}$	Integrate $x^{2} \mathrm{f}(x)$ from 0 to 3 [not for $\mu$ ]   Correct indefinite integral   Mean is $1 \frac{1}{2}$, soi   [not recoverable later]   Subtract their $\mu^{2}$   Answer art 0.450
(ii)	$\begin{aligned} \frac{2}{9} \int_{0}^{0.5} x(3-x) d x & =\frac{2}{9}\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{0.5} \\ & =\frac{2}{27} \mathrm{AG} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Integrate $\mathrm{f}(x)$ between $0,0.5$, must be seen somewhere   Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [ ] = 1/3)
(iii)	$\begin{aligned} & \mathrm{B}\left(108, \frac{2}{27}\right) \\ & \approx \mathrm{N}(8,7.4074) \\ & 1-\Phi\left(\frac{9.5-8}{\sqrt{7.4074}}\right) \\ & =1-\Phi(0.5511)) \\ & =\mathbf{0 . 2 9 1} \end{aligned}$	B1    M1    A1    M1    A1    A1 6	$\mathrm{B}\left(108, \frac{2}{27}\right.$ ) seen or implied, eg Po(8)   Normal, mean 8 ...   ... variance (or SD) 200/27 or art 7.41   Standardise 10, allow $\sqrt{ }$ errors, wrong or no cc, needs to be using $\mathrm{B}(108, \ldots)$   Correct $\sqrt{ }$ and cc   Final answer, art 0.291


(iv)	$\bar{X} \sim N\left(1.5, \frac{1}{240}\right)$	B1   B1 $\sqrt{ }$   B1 $\sqrt{ } 3$	Normal $\quad$ NB: not part (iii) Mean their $\mu$ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8 (i)	$\begin{aligned} & \mathrm{H}_{0}: \mu=78.0 \\ & \mathrm{H}_{1}: \mu \neq 78.0 \\ & z=\frac{76.4-78.0}{\sqrt{68.9 / 120}}=-2.1115 \\ & >-2.576 \text { or } 0.0173>0.005 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Both correct, B2.   One error, B1, but $x$ or $\bar{x}$ : B0.   Needs $\pm(76.4-78) / \sqrt{ }(\sigma \div 120)$, allow $\sqrt{ }$ errors   art -2.11 , or $p=0.0173 \pm 0.0002$   Compare $z$ with (-)2.576, or $p$ with 0.005
	$\begin{gathered} 78 \pm z \sqrt{ }(68.9 / 120) \\ =76.048 \\ 76.4>76.048 \end{gathered}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { B1 } \end{aligned}$	Needs 78 and 120, can be - only   Correct CV to 3 sf , $\sqrt{ }$ on $z$   $z=2.576$ and compare 76.4, allow from $78 \leftrightarrow$ $76.4$
	Do not reject $\mathrm{H}_{0}$. Insufficient evidence that the mean time has changed	M1 $\mathrm{A} 1 \sqrt{ } 7$	Correct comparison \& conclusion, needs 120 , "like with like", correct tail, $\bar{x}$ and $\mu$ right way round   Contextualised, some indication of uncertainty
(ii)	$\begin{aligned} & \frac{1}{\sqrt{68.9 / n}}>2.576 \\ & V_{n}>21.38 \\ & n_{\min }=458 \\ & \text { Variance is estimated } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with $n$ and 2.576 , allow $\sqrt{ }$ errors, cc etc but not 2.326   Correct method to solve for $\sqrt{ } n($ not from $n$ ) 458 only (not 457), or 373 from 2.326, signs correct   Equivalent statement, allow "should use $t$ ". In principle nothing superfluous, but "variance stays same" B1 bod

## Specimen Answers

## Question 4: Part (i)

$\alpha$	Takes too long/too slow	B0

$\beta \quad$ Interviewing people in the street isn't a random sample B0
$\gamma \quad$ Many tourists so not representative $\quad$ B1
$\delta \quad$ Those who don't shop won't have their views considered B1
$\begin{array}{lll}\varepsilon & \text { Interviewers biased as to who they ask } & \text { B1 }\end{array}$
$\zeta \quad$ Views influenced by views of others B1

Part (ii)
$\alpha \quad$ Choose a random sample of the town and ask their opinion B1
$\beta \quad$ Choose names at random from the town's phone book B1
$\gamma \quad$ A random number machine determines which house numbers should be used, and B0B0B1 every street should have the same proportion of residents interviewed
$\delta \quad$ Visit everyone door to door and give them a questionnaire B1B0B0
$\varepsilon \quad$ Assign everyone a number and select randomly B1B0B0
$\zeta \quad$ Assign everyone a number and select using random numbers B1B0B1
$\eta$ Ditto + "ignoring numbers that don’t correspond to a resident" B1B1B1
$\theta$ Assign each eligible person a number and pick numbers from a hat B1B1B0
1 Put names of all residents into a hat and pick them out B1B1B0
[NB: postal survey is biased]

## Part (iii)

$\alpha \quad$ One person's view should not affect another's B0
$\beta \quad$ It is without bias $\quad$ B0
$\gamma \quad$ Results occur randomly $\quad$ B0
$\delta \quad$ Should be asked if they are for or against (binomial testing) B0
$\varepsilon \quad$ It will survey a diverse group from different areas so should be representative B0
$\zeta \quad$ Everyone's should be chose independently of everyone else B1
$\eta \quad$ The sample size must be large $\quad$ B1
$\theta \quad$ Participants are chosen at random and independently from one another B1 only
[though $\eta$ \& $\theta$ together would get $B 2$ ]

## Question 5 (i)

$\alpha \quad$ Number of bricks must always be the same $\quad$ B0
$\beta$ Results occur randomly B0
$\gamma \quad$ The chance of a brick being in one place is always the same B0
$\delta \quad$ Events must occur independently and at constant average rate B0
$\varepsilon \quad$ They must occur independently and at constant average rate B1 only
$\zeta \quad$ Bricks’ locations must be random and independent $\quad$ [effectively the same] B1 only
$\eta \quad$ Only one brick in any one place; bricks independent $\quad[e f f e c t i v e l y$ the same] B1 only

## 4733 Probability \& Statistics 2

Penalise over-specified answers (>6 SF) first time but only once per paper.
Use (A)orCto annotate "over-assertive" or "no context" respectively

1	$\begin{aligned} & \hat{\mu}=\bar{x}=15.16 \\ & \hat{\sigma}^{2}=\frac{5}{4} s^{2} \end{aligned}$ $=1.363$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	4	15.16 or 15.2 as answer only   Use $\frac{\Sigma x^{2}}{5}-\bar{x}^{2} \quad[=1.0904]$   Multiply by $5 / 4$, or equiv for single formula Final answer 1.36 or 1.363 only, not isw
2 (i)	Not all equally likely - those in range 0 to 199 more likely to be chosen	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Not all equally likely stated or implied Justified by reference to numbers, no spurious reasons
	Ignore random numbers greater than 799, or 399	B1	1	Any valid resolution of this problem, no spurious reasons
3	$\begin{aligned} & \mathrm{B}(60,0.35) \approx \mathrm{N}(21,13.65) \\ & \Phi\left(\frac{18.5-21}{\sqrt{13.65}}\right)= \\ & =1-0.7(-0.6767) \\ & =1-0.7507 \\ & \\ & =\mathbf{0 . 2 4 9 3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	6	B $(60,0.35)$ stated or implied   $\mathrm{N}(21, \ldots)$   Variance or SD $=13.65$   Standardise, their $n p$ and $\sqrt{ } n p q$ or $n p q$, wrong or no cc   Both $\sqrt{ } n p q$ and cc correct   Answer, a...t. 0.249
4	$\mathrm{H}_{0}: \mu=60 ; \mathrm{H}_{1}: \mu<60$   $(\alpha)$ $\begin{aligned} & z=\frac{58.9-60}{\sqrt{5^{2} / 80}}=-1.967 \\ & <-1.645 \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		Both correct, B2   B1 for one error, but not $x, t, \bar{x}$ or $\bar{t}$   Standardise $58.9 \& \sqrt{ } 80$, allow - or $\sqrt{ }$ errors   $z$, art -1.97 or $p$ in range [0.024, 0.025]   Explicit comparison with -1.645 or 0.05 , or   +1.645 or 0.95 if 1.967 or 0.976 used
	$\begin{gathered} (\beta)_{c=}=60-1.645 \times \frac{5}{\sqrt{80}}=59.08 \\ 58.9<59.08 \end{gathered}$	M1   B1   A1.		$60-z \times 5 / \sqrt{80}$, any $z=\Phi^{-1}$, allow $\sqrt{ }$ errors or $\pm$, not just $+; z=1.645$ and compare 58.9   59.1 or better, fon wrong $z$
	Reject $\mathrm{H}_{0}$   Significant evidence that people underestimate time	M1   A1.	7	Correct first conclusion, needs essentially correct method including $\sqrt{ } 80$ or 80 Contextualised, uncertainty acknowledged SR: $\mu=58.9$ : B0M1A0B1 max $2 / 7$ SR: 2-tail: max 5/7
5 (i)	$\begin{aligned} & \begin{array}{ll} \mathrm{H}_{0}: \lambda=11.0 \\ \mathrm{H}_{1}: \lambda>11.0 \\ (\alpha) \quad & \mathrm{P}(\geq 19)=1-0.9823 \\ & =0.0177 \\ & <0.05 \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		Allow $\mu$. Both correct, B2 One error: B1, but not $C, x$ etc Find $\mathrm{P}(\geq 19)$ [or $\mathrm{P}(<19)$ if later 0.95] art $0.0177 \quad$ [0.9823, ditto] Compare 0.05 [ 0.95 if consistent], needs M1
	( $\beta$ ) $\quad$ $C R \geq 18$,        $P(\geq 18)=0.0322$    $19>18$	M1   A1   B1		CR or CV 16/17/18/19 stated or clearly implied, but not <   18 and 0.0322 both seen, allow 0.9678 Explicit comparison with 19, needs M1
	Reject $\mathrm{H}_{0}$   Significant evidence of an increase in number of customers	$\begin{aligned} & \text { M1 } \\ & \text { A1 } f \end{aligned}$	7	Needs essentially correct method \& comparison   Contextualised, uncertainty acknowledged SR: Normal, or $\mathrm{P}(=19)$ or $\mathrm{P}(\leq 19)$ or P(>19): First B2 only.
(ii)	Can't deduce cause-and-effect, or there may be other factors	B1	1	Conclusion needed. No spurious reasons. If "DNR" in (i), "couldn’t deduce even if..."


6 (i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
	(b) $\mathrm{P}(>70)$ must be $<\mathrm{P}(>50)$	B1	1	Equivalent statement
	(c) $\quad \begin{aligned} \mathrm{P}(>50)=0.3 \Rightarrow \mu<50 \\ \mathrm{P}(<70)=0.3 \Rightarrow \mu>70\end{aligned}$	B1	1	Any relevant valid statement, e.g. "P(<50) $=0.7$ but $\mathrm{P}(<50)$ must be $<\mathrm{P}(<70)$ "
(ii)	$\begin{aligned} & \mu=60 \text { by symmetry } \\ & \frac{10}{\sigma}=\Phi^{-1}(0.7)=0.524(4) \\ & \sigma=10 / 0.5243 \end{aligned}$ $\text { = } 19.084$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	4	$\mu=60$ obtained at any point, allow from $\Phi$ One standardisation, equate to $\Phi^{-1}$, not 0.758   $\Phi^{-1} \in[0.524,0.5245]$ seen   $\sigma$ in range [19.07, 19.1], e.g. 19.073
7 (i)		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	Horizontal line Evidence of truncation [no need for labels]
(ii)	$\begin{aligned} & \mu=8 \\ & \int_{5}^{11} \frac{1}{6} t^{2} d t=\left[\frac{1}{18} t^{3}\right]_{5}^{11} \quad[=67] \\ & -8^{2} \end{aligned}$	B1   M1   B1   M1   A1	5	8 only, cwd   Attempt $\int k t^{2} \mathrm{dt}$, limits 5 and 11 seen $k=1 / 6$ stated or implied   Subtract their (non-zero) mean ${ }^{2}$   Answer 3 only, not from MF1
(iii)	$\begin{aligned} & \mathrm{N}(8,3 / 48) \\ & 1-\Phi\left(\frac{8.3-8}{\sqrt{3 / 48}}\right)=1-\Phi(1.2) \\ & =1-0.8848 \\ & =\mathbf{0 . 1 1 5 1} \end{aligned}$   Normal distribution only approx.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	6	Normal stated or implied   Mean 8   Variance their (non-zero) (ii)/48   Standardise, $\sqrt{ } n$, ignore sign or $\sqrt{ }$ errors. cc:   M0   Answer, art 0.115   Any equivalent comment, e.g. CLT used
8 (i)	$\begin{aligned} & \mathrm{P}(\leq 4)=0.0473 \\ & \text { Therefore CR is } \leq 4 \\ & \mathrm{P}(\text { Type } \mathrm{I} \text { error })= \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	$\mathrm{P}(\leq r)$ from $\mathrm{B}(10,0.7), r=3 / 4 / 5$, not N " $\leq 4$ " stated, not just " 4 ", nothing else Answer, art 0.0473 or $4.73 \%$, must be stated
(ii)	$\begin{aligned} & \mathrm{B}(10,0.4) \text { and find } \mathrm{P}(>4) \\ & 1-\mathrm{P}(\leq 4) \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	3	Must be this, not isw, on (i) Allow for 0.6177 or 0.1622 Answer, art 0.367
(iii)	$0.5 \times 0.3669$ = 0.18345	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	$0.5 \times(\text { ii) }$   Ans correct to 3 SF, e.g. 0.184 from 0.367



$\begin{array}{lc} 1 \quad \text { (i)(a) } \\ & \\ & (\mathrm{b}) \end{array}$	$\begin{gathered} 1-\mathrm{P}(\leq 6)=1-0.8675 \\ \ldots \ldots \ldots \ldots \ldots \ldots . .=\mathbf{0 . 1 3 2 5} \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	$\begin{aligned} & 1-.9361 \text { or } 1-.8786 \text { or } 1-.8558: \text { M1. .9721: M0 } \\ & \text { Or } 0.132 \text { or } 0.133 \end{aligned}$
	$e^{-0.42} \frac{0.42^{2}(0.42)}{2!}=\mathbf{0 . 0 5 7 9 5}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\mathrm{Po}(0.42)$ stated or implied Correct formula, any numerical $\lambda$ Answer, art 0.058. Interpolation in tables: M1B2
(ii)	E.g. "Contagious so incidences do not occur independently", or "more cases in winter so not at constant average rate"	B2	Contextualised reason, referred to conditions: B2. No marks for mere learnt phrases or spurious reasons, e.g. not just "independently, singly and constant average rate". See notes.
2 (i)	$\begin{aligned} & \mathrm{B}(10,0.35) \\ & \mathrm{P}(<3) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	$\mathrm{B}(10,0.35)$ stated or implied   Tables used, e.g. 0.5138 or 0.3373 , or formula $\pm 1$ term Answer 0.2616 or better or 0.262 only
(ii)	Binomial requires being chosen independently, which this is not, but unimportant as population is large	B2	Focus on "Without replacement" negating independence condition. It doesn't negate "constant probability" condition but can allow B1 if "selected". See notes
3 (i)	$\left(\frac{32-40}{\sigma}\right)=\Phi^{-1}(0.2)=-0.842$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	Standardise and equate to $\Phi^{-1}$, allow " $1-$ " errors, $\sigma^{2}$, cc 0.842 seen   Answer, 9.5 or in range [9.50, 9.51], c.w.o.
(ii)	$\begin{aligned} & \begin{array}{l} \mathrm{B}(90,0.2) \\ \approx \mathrm{N}(18,14.4) \\ 1-\Phi\left(\frac{19.5-18}{\sqrt{14.4}}\right)=1-\Phi(0.3953) \\ =1-0.6537=\mathbf{0 . 3 4 6 3} \end{array} . \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	B $(90,0.2)$ stated or implied   N , their $n p \ldots$   ... variance their $n p q$, allow $\sqrt{ }$ errors   Standardise with $n p$ and $n p q$, allow $\sqrt{ }$, cc errors, e.g.   .396, .448, .458, .486, .472;   $\checkmark n p q$ and cc correct   Answer, a.r.t. $0.346 \quad$ [NB: 0.3491 from Po: 1/6]
$\begin{array}{ll}4 & \\ \\ & \\ & (\alpha)\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4, \\ & \mathrm{H}_{1}: p>0.4 \\ & R \sim \mathrm{~B}(16,0.4): \\ & \mathrm{P}(R \geq 11)=0.0191 \\ & \quad>0.01 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Fully correct, B2. Allow $\pi$. $p$ omitted or $\mu$ used in both, or > wrong: B1 only. $x$ or $\bar{x}$ or 6.4 etc: B0 $\mathrm{B}(16,0.4)$ stated or implied, allow $\mathrm{N}(6.4,3.84)$ Allow for $\mathrm{P}(\leq 10)=0.9808$, and $<0.99$, or $z=2.092$ or $p=0.018$, but not $\mathrm{P}(\leq 11)=0.9951$ or $\mathrm{P}(=11)=0.0143$ Explicit comp with .01 , or $z<2.326$, not from $\leq 11$ or $=11$
( $\beta$ )	CR $R \geq 12$ and $11<12$ Probability 0.0049	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Must be clear that it's $\geq 12$ and not $\leq 11$   Needs to be seen, allow 0.9951 here, or $p=.0047$ from N
	Do not reject $\mathrm{H}_{0}$. Insufficient evidence that proportion of commuters who travel by train has increased	$\begin{array}{lll} \hline \text { M1 } & \\ \text { A1 FT } & 7 \end{array}$	Needs like-with-like, $\mathrm{P}(R \geq 11)$ or $\mathrm{CR} R \geq 12$ Conclusion correct on their $p$ or CR , contextualised, not too assertive, e.g. "evidence that" needed. Normal, $z=2.34$, "reject" $[$ no cc] can get $6 / 7$
5 (i)	(a) $\begin{aligned} & 30+1.645 \times \frac{5}{\sqrt{10}} \\ & =32.6\end{aligned}$   Therefore critical region is $\bar{t}>32.6$	M1   B1   A1   4   A1 FT 4	$30+5 z / \sqrt{ } 10$, allow $\pm$ but not just - , allow $\sqrt{ }$ errors $z=1.645$ seen, allow Critical value, art 32.6 " > c" or " $\geq$ c", FT on $c$ provided $>30$, can't be recovered. Withhold if not clear which is CR
	(b) $\begin{aligned} & \mathrm{P}(\bar{t}<32.6 \mid \mu=35) \\ & \frac{32.6-35}{5 / \sqrt{10}}[=-1.5178] \\ & \mathbf{0 . 0 6 4 5}\end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { dep*M1 } \\ & \text { A1 }{ }_{3} \end{aligned}$	Need their $c$, final answer $<0.5$ and $\mu=35$ at least, but allow answer $>0.5$ if consistent with their (i) Standardise their CV with 35 and $\sqrt{ } 10$ or 10 Answer in range [ $0.064,0.065$ ], or 0.115 from 1.96 in (a)
(ii)	$\begin{aligned} & (32.6-\mu)=0 \\ & \mu=32.6 \\ & 20+0.6 m=32.6 \\ & m=21 \end{aligned}$		Standardise $c$ with $\mu$, equate to $\Phi^{-1}$, can be implied by: $\mu=$ their $c$   Equate and solve for $m$, allow from 30 or 35   Answer, a.r.t. 21, c.a.o.   MR: 0.05: M1 A0 M1, 16.7 A1 FT   Ignore variance throughout (ii)


6 (a)	$\begin{aligned} & \mathrm{N}(24,24) \\ & 1-\Phi\left(\frac{30.5-24}{\sqrt{24}}\right)=1-\Phi(1.327) \\ &=\mathbf{0 . 0 9 2 3} \end{aligned}$	B1    B1    M1    A1    A1 5	Normal, mean 24 stated or implied Variance or SD equal to mean Standardise 30 with $\lambda$ and $\sqrt{ } \lambda$, allow cc or $\sqrt{ }$ errors, e.g. .131 or $.1103 ; 30.5$ and $\sqrt{ } \lambda$ correct Answer in range [0.092, 0.0925]
(b)(i)	p or np [= 196] is too large	B1 1	Correct reason, no wrong reason, don't worry about 5 or 15
(ii)	$\begin{aligned} & \text { Consider }(200-E) \\ & (200-E) \sim \operatorname{Po}(4) \\ & \mathrm{P}(\geq 6) \quad[=1-0.7851] \\ & \quad=\mathbf{0 . 2 1 4 9} \end{aligned}$	M1   M1   M1   A1 $4$	Consider complement $\operatorname{Po}(200 \times 0.02)$   Poisson tables used, correct tail, e.g. 0.3712 or 0.1107   Answer a.r.t. 0.215 only
7             $(\alpha)$	$\begin{aligned} & \mathrm{H}_{0}: \mu=56.8 \\ & \mathrm{H}_{1}: \mu \neq 56.8 \\ & \bar{x}=17085 / 300=56.95 \\ & \frac{300}{299}\left(\frac{973847}{300}-56.9^{2}\right) \\ & \quad=2.8637 \ldots \\ & z=\frac{56.95-56.8}{\sqrt{2.8637 / 300}}=1.535 \\ & 1.535<1.645 \text { or } 0.0624>0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	Both correct   One error: B1, but not $\bar{X}$, etc   56.95 or 57.0 seen or implied   Biased [2.8541] : M1M0A0   Unbiased estimate method, allow if $\div 299$ seen anywhere   Estimate, a.r.t. 2.86 [not 2.85]   Standardise with $\sqrt{ } 300$, allow $\sqrt{ }$ errors, cc $z \in[1.53,1.54]$ or $p \in$ [0.062, 0.063], not -1.535   Compare explicitly $z$ with 1.645 or $p$ with 0.05 , or $2 p>0.1$, not from $\mu=56.95$
( $\beta$ )	$\begin{aligned} & \mathrm{CV}_{56.8 \pm 1.645 \times \sqrt{\frac{2.8637}{300}}}^{56.96>56.95} \\ & \hline \end{aligned}$	M1 A1 A1 FT	$\begin{aligned} & 56.8+z \sigma / \sqrt{ } 300 \text {, needn't have } \pm \text {, allow } \sqrt{ } \text { errors } \\ & z=1.645 \\ & c=56.96, \quad \text { FT on } z \text {, and compare } 56.95 \quad\left[c_{L}=56.64\right] \end{aligned}$
	Do not reject $\mathrm{H}_{0}$;   insufficient evidence that mean thickness is wrong	M1   A1 FT	Consistent first conclusion, needs 300, correct method and comparison Conclusion stated in context, not too assertive, e.g. "evidence that" needed
8 (i)	$\int_{1}^{\infty} k x^{-a} \mathrm{~d} x=\left[k \frac{x^{-a+1}}{-a+1}\right]_{1}^{\infty}$   Correctly obtain $k=a-1$ AG	M1    B1    A1 3	Integrate $\mathrm{f}(x)$, limits 1 and $\infty$ (at some stage) Correct indefinite integral Correctly obtain given answer, don't need to see treatment of $\infty$ but mustn't be wrong. Not $k^{-a+1}$
(ii)	$\begin{aligned} & \int_{1}^{\infty} 3 x^{-3} \mathrm{~d} x=\left[3 \frac{x^{-2}}{-2}\right]_{1}^{\infty}=11 / 2 \\ & \int_{1}^{\infty} 3 x^{-2} \mathrm{~d} x=\left[3 \frac{x^{-1}}{-1}\right]_{1}^{\infty}-\left(1 \frac{1}{2}\right)^{2} \end{aligned}$   Answer 3/4	M1    M1    A1    M1    A1 5	Integrate $x \mathrm{f}(x)$, limits 1 and $\infty$ (at some stage)   [ $x^{4}$ is not MR]   Integrate $x^{2} \mathrm{f}(x)$, correct limits   Either $\mu=11 / 2$ or $\mathrm{E}\left(X^{2}\right)=3$ stated or implied, allow $k, k / 2$   Subtract their numerical $\mu^{2}$, allow letter if subs later   Final answer $3 / 4$ or 0.75 only, cwo, e.g. not from $\mu=-1 \frac{1}{2}$.   [SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
(iii)	$\begin{aligned} & \int_{1}^{2}(a-1) x^{-a} \mathrm{~d} x=\left[-x^{-a+1}\right]_{1}^{2}=0.9 \\ & 1-\frac{1}{2^{a-1}}=0.9, \quad 2^{a-1}=10 \\ & a=4.322 \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { M } \\ & \text { dep*M1 } \\ & \text { M1 indept } \\ & \text { A1 } \quad 4 \\ & \hline \end{aligned}$	Equate $\int \mathrm{f}(x) \mathrm{d} x$, one limit 2, to 0.9 or 0.1 .   [Normal: 0 ex 4]   Solve equation of this form to get $2^{a-1}=$ number Use logs or equivalent to solve $2^{a-1}=$ number   Answer, a.r.t. 4.32. T\&I: (M1M1) B2 or B0

## Specimen Verbal Answers

$1 \quad \alpha \quad \begin{aligned} & \text { "Cases of infection must occur randomly, independently, singly and at } \\ & \text { constant average rate" }\end{aligned}$ B0
$\beta \quad$ Above + "but it is contagious" B1
$\gamma \quad$ Above + "but not independent as it is contagious" B2
$\delta \quad$ "Not independent as it is contagious" B2
$\varepsilon \quad$ "Not constant average rate", or "not independent" B0
$\lambda \quad$ "Not constant average rate because contagious" [needs more] B1
$\zeta$ "Not constant average rate because more likely at certain times of year" B2
$\mu \quad$ Probabilities changes because of different susceptibilities B0
$v \quad$ Not constant average rate because of different susceptibilities B2
$\eta \quad$ Correct but with unjustified or wrong extra assertion [scattergun] B1
$\theta$ More than one correct assertion, all justified B2
$\pi \quad$ Valid reason (e.g. "contagious") but not referred to conditions B1
[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".
$\alpha$ "No it doesn't invalidate the calculation" [no reason] B0
$\beta$ "Binomial requires not chosen twice" [false] B0
$\gamma$ "Probability has to be constant but here the probabilities change" B0
$\delta \quad$ Same but "probability of being chosen" [false, but allow B1] B1
$\varepsilon \quad$ "Needs to be independently chosen but probabilities change" [confusion] B0
$\zeta \quad$ "Needs to be independent but one choice affects another" [correct] B2
$\eta \quad$ "The sample is large so it makes little difference" [false] B0
$\theta \quad$ "The population is large so it makes little difference" [true] B2
$\lambda \quad$ Both correct and wrong reasons (scattergun approach) B1
[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.
Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition does require the possibility of the same person being chosen twice.]

1		$\begin{aligned} & \hat{\mu}=\bar{x}=\frac{468}{9}=52 \\ & \frac{24820}{9}-52^{2}[=53.78] \\ & \hat{\sigma}^{2}=\frac{9}{8} \times 53.78=\mathbf{6 0 . 5} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 4 \end{array}$	52 stated   Correct method for biased estimator   Multiply by $9 / 8$   [if single formula, allow M0 M1 if wrong but divisor 8 seen anywhere]   Answer 60.5 or exact equivalent
2		$\begin{aligned} & \frac{53.28-\mu}{5 / \sqrt{n}}=1.96 \\ & \frac{\mu-51.65}{5 / \sqrt{n}}=1.3 \\ & \sqrt{n}=10, \quad n=\mathbf{1 0 0} \\ & \quad \mu=52.3 \end{aligned}$	M1dep   A1   B1   depM1   A1   B1 $6$	Standardise with $\sqrt{ } n$ once \& equate to $z$, allow sign, square $/ \sqrt{ }$ errors   twice, signs correct, zs may be wrong   Both correct $z$ values seen   Solve to get $\sqrt{ } n$ or $\mu$, needs first M1   $n=100$, not from wrong signs   a.r.t. 52.3 , right arithmetic needed but $\sqrt{ } n$ can be omitted
3		$\begin{aligned} & \mathrm{B}(200,0.0228) \\ & \begin{aligned} \operatorname{Po}(4.56) \end{aligned} \\ & \begin{aligned} & e^{-4.56}\left(1+4.56+\frac{4.56^{2}}{2}\right) \\ & \quad= \mathbf{0 . 1 6 7} \end{aligned} \\ & n \text { large or } n>50 ; p \text { small or } n p<5 \end{aligned}$	M1    A1    M1    A1    A1    B1 6	B(200, 0.0228) stated or implied   $\mathrm{Po}(4.56)$ stated or implied, allow 4.6 here   Correct formula for $\mathrm{P}(\leq 2) \pm 1$ term, any $\lambda$ (tables: M0)   Correct formula, 4.56 needed   Answer, a.r.t. 0.167 [0.16694]   Both, can be merely asserted. If numbers, must be these   SR interpolation: clear method M1, answer A2   MR: typically $\mathrm{B}(200,0.228) \approx \mathrm{N}(45.6,3.52)$ : M1A1;   standardise correctly, M1; state $n p, n q>5$, B1
4	(i)	$\begin{aligned} \text { Either }_{z} & =\frac{213.4-230}{45 / \sqrt{50}} \\ & =-2.608 \\ -2.608 & <-2.576 \text { or } 0.0047<0.005 \end{aligned}$	M1   A1   B1	Standardise $z$ with $\sqrt{ } 50$, ignore sign or $\sqrt{ }$ or squaring errors   $z$-value, a.r.t. -2.61 , or $p$ in range $[0.0044,0.005$ )   Correctly compare (-)2.576, signs consistent, or $p$ explicitly with 0.005
	Or	$\begin{aligned} & \text { CV is } 230-2.576 \times \frac{45}{\sqrt{50}}=213.6 \\ & 213.4<213.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	$230-z \sigma / \sqrt{50}$, allow $\sqrt{ }$ or squaring errors, allow $\pm$ but not just + ; $\quad z=2.576$   Explicitly compare 213.4 with 213.6
		Reject $\mathrm{H}_{0}$. Significant evidence that population mean is not 230	M1   A1 FT 5	"Reject", FT, needs correct method and form of comparison; interpreted, acknowledge uncertainty
	(ii)	Yes, population distribution is not known to be normal	B2 2	Not, "yes, sample size is large" but ignore "can use it as ..." SR: Both right and wrong answers: B1   $\alpha$ "Yes as it must be assumed normal": B1
5		$\begin{aligned} & \mathrm{H}_{0}: \lambda=12 ; \quad \mathrm{H}_{1}: \lambda>12 \\ & \text { Either : } \mathrm{P}(\geq 19)=1-\mathrm{P}(\leq 18) \\ & \\ & =1-0.9626 \\ & \\ & \\ & \\ & \\ & \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Both correct: B2. Allow $\mu$. One error, B1, but not $x, r$ etc. $\mathrm{Po}(12)$ stated or implied, e.g. 0.9787   0.0374 , or 0.9626 if compared with 0.9   Explicitly compare $\mathrm{P}(\geq 19)$ with 0.1 , or $\mathrm{P}(\leq 18)$ with 0.9
		$\begin{gathered} \text { Or: } \mathrm{CR} \text { is } \geq 18, p=0.063 \\ 19 \geq 18 \end{gathered}$	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$	$\geq 18$ and 0.063 stated Explicit comparison of CV (right-hand CR) with 19
		Reject $\mathrm{H}_{0}$. Significant evidence of increase in mean number of applicants	M1   A1 FT 7	"Reject" FT, needs correct method and comparison, e.g. not from $\leq 19$ or $=19$, withhold if inconsistent Interpreted in context, acknowledge uncertainty


6	(i)	If one customer arrives, it does not change the probability that another one does so; customers probably arrive in groups of at least 2	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Answer that shows correct understanding of "independent", in context; not just equivalent to "singly"   Plausible reason, in context, nothing wrong, nothing that suggests "constant average rate"
	(ii)	0.1730	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	Correct use of tables or formula, e.g. .3007, or . 4405 from Po(5) if $\operatorname{Po}(7)$ stated; answer $0.173,0.1730$ or better
	(iii)	$\begin{aligned} & \operatorname{Po(35)} \\ & \begin{aligned} & \mathrm{N}(35,35) \\ & 1-\Phi\left(\frac{40.5-35}{\sqrt{35}}\right)=1-\Phi(0.9297) \\ &=\mathbf{0 . 1 7 6 3} \end{aligned} \end{aligned}$	B1   M1   A1   M1   A1   A1   6	Po( $5 \times 7$ ) stated or implied   Normal, $\mu=$ their $\lambda$   Both parameters correct, allow $35^{2}$, $\sqrt{ } 35$   Standardise 40 with $\lambda, \sqrt{ } \lambda$, allow $\sqrt{ }$, cc errors   Both $\sqrt{ } \lambda$ and cc correct   Answer, a.r.t. 0.176   [penalise 0.1765]
7	(i)		$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \\ \hline \end{array}$	Horizontal line above axis Concave decreasing curve above axis Both correct including approx relationship, not extending beyond $[1,3]$, verticals and scale not needed
	(ii)	$\int_{1}^{3} \frac{a}{x^{2}} \mathrm{~d} x=1,\left[\frac{-a}{x}\right]_{1}^{3}=1 ; a=\frac{3}{2}$	$\begin{array}{ll} \text { M1 } \\ \text { B1 } & \\ \text { A1 } & 3 \end{array}$	Attempt $\int \mathrm{f}_{X}(x) \mathrm{d} x$, limits 1,3 at some stage, and equate to 1 Correct indefinite integral Correctly obtain $3 / 2$ or 1.5 or exact equivalent
	(iii)	$\begin{aligned} & \int_{1}^{3} \frac{a}{x} \mathrm{~d} x=[a \ln x]_{1}^{3} \\ & =\frac{3}{2} \ln 3 \end{aligned}$	M1   B1 FT   A1 FT 3	Attempt $\int x f_{X}(x) \mathrm{d} x$, limits 1, 3 at some stage   Correct indefinite integral, FT on $a$   Answer, any exact equivalent or a.r.t 1.65, FT on $a$, or $a \ln 3$
	(iv)	$T$ is equally likely to take any value between 1 and 3	B1 1	Must be "values taken by $T$ " (or "of $T$ ") or clear equivalent Any hint that they think $T$ is an event gets B0.   $\alpha$ "Same chance of occurring anywhere between 1 and 3 ": 0   $\beta$ "For values of $T$ between 1 and $3, T$ is equally likely": 0   $\gamma$ "Each value of $T$ is equally likely to occur": 1
8	(i)	$\begin{aligned} & \mathrm{B}(40,0.225) \\ & \approx \mathrm{N}(9,6.975) \\ & \frac{5.5-9}{\sqrt{6.975}}=-1.325 \\ & \\ & n p=9>5 \text { or } n \text { large; and } \\ & n q=31>5 \text { or } p \text { close to } 0.5 \end{aligned}$	M1   M1   A1   M1   A1   A1   B2 $8$	B( $40,0.225$ ) stated or implied   Normal, mean 9   Variance 6.975 or SD 2.641 or 6.975   Standardise with $n p$ and $\sqrt{n p q}$, allow $n p q$, no or wrong cc   CC and $\sqrt{ } n p q$ correct, allow from $\mathrm{N}(3600,0.225)$   Answer, in range [0.907, 0.908]   Full conditions B2; partial, B1 (assertions OK). Allow npq, allow from e.g. $n=3600$
	(ii)	Number list sequentially and select using random numbers If \# > 3600, ignore (etc)	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Number list, don't need "sequentially"   Mention random numbers (not "select numbers randomly")   Deal with issue of \# > 3600, or "ignore repeats"   $\alpha$ "Randomly pick numbers from 0 to 3599": (B1) B0 B1
9	(i)	$\mathrm{B}(14,0.7)$   CR is $\geq \mathbf{1 3}$   with probability 0.0475	M1    A1    A1 3	$B(14,0.7)$ stated or implied, e.g. $\mathrm{N}(9.8,2.94)$, can be recovered CV 13, or $>12$ or $\{13,14\}$, allow $=$ but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen
	(ii)	$\begin{aligned} & \mathrm{H}_{0}: p=0.7, \mathrm{H}_{1}: p>0.7 \\ & 12<13 \end{aligned}$   Do not reject $\mathrm{H}_{0}$. Insufficient evidence that proportion who show improvement is greater than 0.7	B2   B1   M1   A1 FT 5	Both, B2. Allow $\pi$. One error, B1, but $r, x$ etc: B0 Compare CV from correct tail and inequality with 12, or $\mathrm{P}(\geq 12)=0.1608$ and $>0.05$ or $\mathrm{P}(<12)=0.8392$ and $<0.95$ Correct method \& conclusion, requires like-with-like; CV method needs $\geq 13$ or $<12$; $p$ method needs $\geq 12$ or $<12$   Withhold if inconsistent   Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]
	(iii)	$\begin{gathered} \mathrm{B}(14,0.8) \\ \mathrm{P}(\leq 12) \text { from } \mathrm{B}(14,0.8) \\ \mathbf{0 . 8 0 2 1} \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$B(14,0.8)$ stated or implied, allow from $B(14,0.75)$ Attempt prob of acceptance region, e.g. 0.8990 , $\sqrt{ }$ on (i) Answer 0.802 or a.r.t. 0.8021


1		Number all the houses sequentially, or use house numbers Select using random numbers   Ignore numbers > 263	B1   B1   B1 $3$	Any mention of using house numbers, or houses, or other numbering. (List can be implied).   Not random numbering unless correct subsequent method (e.g. sort them numerically)   Mention random numbers. Not "select numbers randomly". Must be random method.   NB: Using $263 \times$ calculator Rand \# is biased: B0. But "Ran\#(263)" is unbiased.   Deal with problem of $>263$, or repeats.   "Select 20 random numbers between 1 and 263": B1B0   [If this, need to mention repeats to get last B1]   Example:   "put numbers/house names (etc) into hat and select": B1B0B0
2	$\alpha$	$\begin{aligned} & \mu=\frac{48+57}{2} \quad=52.5 \\ & \Phi^{-1}(0.9332)=1.5 \\ & 4.5 \div 1.5 \quad[\sigma=3] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \end{aligned}$	Use symmetry to find $\mu$   Obtain $\mu=52.5$   1.5 seen, e.g. in $4.5 \div 1.5$   $4.5 \div$ their $\Phi^{-1}$, or $1.645 \div$ their $\Phi^{-1}$, must be + ve, allow cc
	$\beta$	$\frac{57-\mu}{\sigma}=1.5, \frac{48-\mu}{\sigma}=-1.5$   Solve simultaneously: $\mu=52.5 \quad[\sigma=3]$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	$\frac{57-\mu}{\sigma}=z, \frac{48-\mu}{\sigma}=-z$ M1 for one, ignoring cc, $\sigma^{2}$, sign or " $1-$ " errors, RHS must be $\Phi^{-1}$ (not $\Phi$ [e.g. 0.8246 or 0.5267 ] or 0.0668 or 0.9332 ); A1 for both completely correct except for value of $z$. $z=1.5$ or -1.5 in at least one equation   Solve without obvious errors, get $\mu=52.5$, OK from wrong $z$ [NB: 52.5 from both signs wrong: A0]
		$\begin{aligned} \mu+\frac{4.5}{1.5} & \times 1.645 \\ & =57.4(35) \end{aligned}$	M1   B1   A1 $7$	$\begin{aligned} & \mu+z \sigma \text { [Their } \mu \text { and } \sigma \text {, anything recognisable as } z] \quad \text { [expect to see } 52.5+3 \times 1.645 \text { ] } \\ & z=1.645 \text { seen } \\ & \text { Answer in range [57.4, 57.45], cwo } \end{aligned}$
3		$\begin{aligned} & \mathrm{CV} 20-\frac{5}{\sqrt{16}} \times 2.326=17.0925 \\ & \mathrm{P}(X>17.0925) \\ & =\Phi\left(\frac{17.0925-15}{5 / \sqrt{16}}\right)=\Phi(1.674) \end{aligned}$   Answer $\mathbf{0 . 0 4 7 1}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \\ \text { M1* } & \\ & \\ \text { A1 } & \\ \text { dep M1 } & \\ \text { A1 } & 7 \end{array}$	Attempt $20-5 z / \sqrt{ } 16$, allow $S D \leftrightarrow$ var errors, allow $20 \pm 5 z / \sqrt{ } 16$, not $20+5 z / \sqrt{ } 16$, allow cc 2.326 seen   CV a.r.t. 17.1   [NB: not 17.9075]   Standardise any attempt at a CV (from $\mu=20$ ) with 15 and any SD that would have got first M1, allow cc   $z=1.674$ seen or implied, e.g. by $p=0.047$ or 0.953 or 0.9535 , allow anything in range [1.67, 1.68]   Probability $<0.5$, or $>0.5$ if their CV is $<15$   Answer, a.r.t. 0.047 [including 0.0465 from CV 17.1]   Notes: 16 missing: can get M0B1A0M1A0M1A0, or even last two A1's if 16 used then


4	(i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Positive parabola, all above axis. [Don't worry about being pointed unless extreme.] Correct place, touches $x$-axis, not beyond the limits suggested by their axes, symmetric ends, not too straight
	(ii)	$\begin{aligned} & \frac{3}{16} \int_{0}^{4} x^{2}(x-2)^{2} \mathrm{~d} x \\ & =\frac{3}{16}\left[\frac{x^{5}}{5}-x^{4}+4 \frac{x^{3}}{3}\right]_{0}^{4} \quad\left[=6 \frac{2}{5}\right] \\ & \sigma^{2}=6 \frac{2}{5}-2^{2} \\ & =2 \frac{2}{5} \end{aligned}$	M1   M1   B1   B1   A1	5	Attempt $\int_{x^{2}} \mathrm{f}(x) \mathrm{d} x$, limits 0 and 4   Method for integration, e.g. multiply out [indept] [Or use $\sigma^{2}=\frac{3}{16} \int_{0}^{4}(x-2)^{4} \mathrm{~d} x$ ]   Correct indefinite integral, limits not needed, e.g. parts: $\frac{3}{16}\left[\frac{x^{2}(x-2)^{3}}{3}-\frac{x(x-2)^{4}}{6}+\frac{(x-2)^{5}}{30}\right]$   Subtract $2^{2}$   Final answer 2.4, any equivalent exact form, cwo
	(iii)	No because $x$ represents a value taken by the random variable [not an event that "occurs"]	B1	1	Show clear understanding that $x$ is a value of $X$. Usual misunderstanding is " $X$ is an event that may or may not occur, depending on $x$ ". However:   SR: Allow B1 for answer clearly indicating that probabilities higher where curve higher, or clearly stating that all probabilities are effectively zero.   E.g.: "Agree as area under graph [or " $\mathrm{f}(x)$ "] increases", or "minimum at 2"   "True only between 0 and 4": B0 unless explanation   Mention of variance etc: 0 . "Agree because the graph shows this": B0
5	(i) $\begin{aligned} & \\ & \\ & \alpha\end{aligned}$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ & \mathrm{~B}(10,0.4) \\ & \\ & \mathrm{P}(\leq 1)=0.0464 \\ & <0.05 \text { so reject } \mathrm{H}_{0} \end{aligned}$	B1B1   M1   A1   A1		Both: B2. Allow $\pi$. One error, B1, but $x$ or $r$ : 0 . SEE NOTES AT START AND END   $\mathrm{B}(10,0.4)$ stated or implied, e.g. $\mathrm{N}(4,2.4)$ [ $P(=1)[=0.0404]$ or $P(\geq 1)[=0.9940]$ or $P(<1)$ [ $=0.0060$ ] or Poisson or normal, or RH tail for CR, gets no more marks in (i)]   This probability or 0.9536 only   Explicit comparison with 0.05 , or 0.9536 with 0.95
	$\beta$	CR is $\leq 1$ and compare 1 Probability of this is 0.0464	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$		Comparison needn't be explicit in this method This probability needs to be seen
		Reject $\mathrm{H}_{0}$.   Significant evidence that \% who book with travel agents reduced	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \downarrow \end{aligned}$	7	Correct method, $\checkmark$, comparison and first conclusion Interpreted in context, "evidence that" or equiv needed, $\checkmark$ on numbers
	(ii)	Can't deduce cause-and-effect	B1	1	Equivalent comment, regardless of answer to (i). Ignore wrong answer if right answer seen   "Other factors haven't been considered" B1   "Sample is small", or "test may be wrong" B0


6	(i) $\begin{aligned} & \\ & \\ & \\ & \\ & \\ & \alpha\end{aligned}$	$\begin{aligned} & \mathrm{H}_{0}: \mu=24.3 ; \mathrm{H}_{1}: \mu \neq 24.3 \\ & \bar{t}=26.28 \\ & \begin{array}{c} \hat{\sigma}^{2}=\frac{50}{49}\left[\frac{36602.17}{50}-26.28^{2}\right] \\ =42.25 \\ z=\frac{26.28-24.3}{\sqrt{42.25 / 50}}=2.154 \\ \\ <2.576 \end{array} \end{aligned}$	B1B1 B1 M1 M1 A1 M1 A1 A1		Both: B2. 1 error, B1, but $t, x$ etc: B0   SEE NOTES AT START AND END   26.28 seen or implied   Correct formula for biased estimate [ $=41.405$ ]   Multiply by 50/49   [Single formula: M2, or give M1 if wrong but 49 divisor seen]   42.25 or 6.5 seen or implied   Standardise their $\bar{t}$ with $24.3, \sqrt{ } 50$, allow sign $/ \sqrt{ } /$ cc errors, their variance   2.15(4) or $p$ in range [0.0153, 0.0158], not -2.154 unless $0.015(6)$ subsequently used, not 1-tail   Compare $z$ with $\pm 2.576$, or $p>0.005$, or $2 p$ with 0.01 , not from $\mu=26.28$
	$\beta$	$\begin{aligned} & \text { CV } 24.3+2.576 \times \sqrt{\frac{42.25}{50}} \\ & =26.67 \text { and } 26.28<26.67 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$		$24.3+\mathrm{zs} / \sqrt{ } 50$, allow cc, $\sqrt{ }$ errors, allow $\pm$ but not - only. Not $26.28-z s / \sqrt{ } 50$ $z=2.576$, not from $\mu=26.28$ or 50 omitted, not from 1-tail Correct CV, $\checkmark$ on $z$, and compare sample mean
		Do not reject $\mathrm{H}_{0}$. Insufficient evidence of a change in maximum daily temperature.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \checkmark \end{aligned}$		Conclusion, $\checkmark$, needs method, like-with-like, 50 , not from $\mu=26.28$, doesn't need correct $z$ Contextualised, recognise uncertainty, $\checkmark$ on numbers   NB: Clear evidence of $\mu=26.28$ : can't get last 4 marks. See exemplars $\gamma$ and $\delta$
	(ii)	$n$ is large	B1	1	This answer only or " $n>$ number" where number $\geq 29$, not both this and "distribution unknown". But " $n$ is large so we can approximate even though we don't know the distribution" is B1 "Possible as $n=50$ " B0.
7	(i)	$\begin{aligned} & \mathrm{Po}(11) \\ & 1-\mathrm{P}(\leq r)=0.854 \text { gives } r=14 \\ & \text { so } n=15 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Po(11) stated or clearly implied   Find $1-0.146$ in tables, e.g. answer 14 [RH tail, e.g. " 7 ", or single value only: max M1M0A0] $n=15$ only, allow " $\geq 15$ "
	(ii)	$\begin{aligned} & \operatorname{Po}(44) \approx \mathrm{N}(44,44) \\ & \Phi\left(\frac{37.5-44}{\sqrt{44}}\right)=\Phi(-0.980) \\ & =\mathbf{0 . 1 6 3 5} \end{aligned}$	M1   A1   M1   A1   A1		Normal, mean attempted $2.2 \times 20$   Both parameters 44, allow var $=\sqrt{ } 44$ or $44^{2}$   Standardise, their 44 , allow cc, $\sqrt{ }$ errors, e.g. ans 0.283 or 0.2036 or 0.4411 , not $\div 20$   $\sqrt{ }$ and cc both correct   Answer in range [0.163, 0.164$]$
	(iii)	$\begin{aligned} & \begin{array}{l} \mathrm{B}(40,0.146) \\ \approx \mathrm{N}(5.84,4.98736) \\ 1-\Phi\left(\frac{7.5-5.84}{\sqrt{4.98736}}\right) \quad=1-\Phi(0.7433) \\ =\mathbf{0 . 2 2 8 6} \end{array} \end{aligned}$	M1 M1 A1 M1 A1 A1	6	```\(\mathrm{B}(40,0.146)\) stated or implied, e.g. by Po(5.84) Normal, attempt at mean \(=n p \quad\) [Poisson etc, or exact binomial (0.22132): no more marks] Both parameters correct \(\quad[\) Poisson(5.84) \(\rightarrow \mathrm{N}(5.84,5.84)\) : M0A0] Standardise with their \(n p\) and \(n p q\), allow \(c c, \sqrt{ }\) errors, e.g. ans 0.3838 or 0.302 or 0.370 cc and \(\sqrt{ }\) both correct Answer in range [0.228, 0.229] SC: \(\quad \mathrm{B}(40,0.854) \approx \mathrm{N}(34.16,4.98736)\) : can get full marks, but if \(R>7\) used, max 3```


8	(a) (i)   (ii)	Several calls may all refer to the same incident   Calls occur at constant average rate   E.g. No, because incidents are less/more common at night	B1   B1   B1	1 2	Any reason showing correct understanding of "independent", but not just "singly" or equivalent. Ignore extra condition(s) unless clearly wrong in which case B0. Not "fires" independent.   "Fires might spread" B0   This condition only, allow "average" omitted, not "constant probability", not "random" unless clearly correct interpretation follows. No third condition unless fully justified by subsequent answer. Need contextualising somewhere in this part.   Any comment (with either yes or no) showing correct understanding, but   "Fires might not occur at constant average rate" is not enough (gets B1 B0)   "Different rates at different times of year": B0
	(b) (i)	$\begin{aligned} 1-\left(1+2.74+\frac{2.74^{2}}{2!}\right) & e^{-2.74} \\ & =\mathbf{0 . 5 1 6}(\mathbf{1}) \end{aligned}$	M1   M1   A1	3	Formula for any one correct Poisson probability for $r \geq 1 \quad[1-(0.06457+0.17692+0.24238)]$ Correct overall formula, allow 1 error (e.g. 1 term extra or missing or no " 1 -")   Answer, a.r.t. 0.516   [Interpolation (0.51604) or no working: B0 or B3]
	(ii)	$\begin{gathered} \left(e^{-2} \times 1\right)\left(e^{-3} \times 3\right)+\left(e^{-2} \times 2\right)\left(e^{-3} \times 1\right) \\ =0.0337 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Two correct terms multiplied, or all 4 bits seen, e.g. $1353 \times .1494+.2707 \times .4979=0.0202+0.0135$ Correct expression   Answer, a.r.t. 0.0337
	(iii)	$\begin{aligned} & \left(e^{-\lambda} \times 1\right)\left(e^{-\mu} \times \mu\right)+\left(e^{-\lambda} \times \lambda\right)\left(e^{-\mu} \times 1\right) \\ & =e^{-\lambda} \times e^{-\mu}(\lambda+\mu) \\ & =e^{-(\lambda+\mu)}(\lambda+\mu) \\ & =\mathrm{P}(T=1) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		Correct algebraic expression   [Ignore 1! throughout]   Take out factor of $e^{-\lambda} \times e^{-\mu}$ or equivalent essential step   Correctly obtain exact answer [allow $e^{-\lambda-\mu}(\lambda+\mu)$ ]   All correct, and write down correct formula for $\mathrm{P}(T=1)$ [NB: $T$ needed] Allow working towards middle SR: $\lambda=2, \mu=3$ : Can get M1M1A1A0 if $e^{-2}$ and $e^{-3}$ retained. As soon as decimal approximations seen, no more marks.

## Specific examples for question 5(i)

$\alpha$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ & \mathrm{~N}(4,2.4) \\ & \mathrm{P}(\leq 1)=0.0533 \\ & >0.05 \end{aligned}$   So do not reject $\mathrm{H}_{0}$. Insufficient evidence that $\%$ who book with travel agents reduced	$\begin{array}{ll} \hline \text { B1B1 } & \\ \text { M1 } & \\ \text { A0 } & \\ \text { M0 } & \\ & 3 \end{array}$	$\delta$	$\begin{aligned} & \hline \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ & \mathrm{~B}(10,0.4) \\ & \mathrm{P}(\geq 1)=0.9939 \\ & >0.95 \end{aligned}$   So reject $\mathrm{H}_{0}$   Insufficient evidence that \% who book with travel agents reduced	B1B1 M1 A0 A0 M0 A0	3
$\beta$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ & \mathrm{~B}(10,0.4) \\ & \text { "P(=1)=0.0464" } \quad \text { [allow this] } \\ & <0.05 \\ & \text { So reject } \mathrm{H}_{0} \\ & \text { Insufficient evidence that } \% \text { who book with travel } \\ & \text { agents reduced } \end{aligned}$	$\begin{array}{ll} \hline \text { B1B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A0 } & \mathbf{6} \end{array}$	$\varepsilon$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p \neq 0.4 \quad \text { [two-tailed] } \\ & \mathrm{B}(10,0.4) \\ & \text { " } \mathrm{P}(=1)=0.0464 \text { " } \\ & >0.025 \end{aligned}$   So do not reject $\mathrm{H}_{0}$   Insufficient evidence that \% who book with travel agents reduced	B1B0 M1 A1 A0 M1 A1	5
$\gamma$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ & \mathrm{~B}(10,0.4) \\ & \mathrm{P}(=1)=0.0404 \quad \text { [look out for this] } \\ & <0.05 \text { so reject } \mathrm{H}_{0} \\ & \text { Significant evidence that } \% \text { who book with travel } \\ & \text { agents reduced } \end{aligned}$	B1B1    M1    A0    A0    M0    A0 3	$\zeta$	$\begin{aligned} & \begin{array}{l} \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ \mathrm{~B}(10,0.4) \\ \mathrm{P}(=1)=0.0464 \\ \quad \quad \text { no explicit comparison] } \\ \text { So reject } \mathrm{H}_{0} \text {. Significant evidence that } \% \text { who book with } \\ \text { travel agents reduced } \end{array} \\ & \hline \end{aligned}$	B1B1   M1   A1   A0   M1   A1	6

## Specific examples for question 6(i)

$\alpha$	Accept $\mathrm{H}_{0}$, maximum temp unchanged [over-assertive, otherwise A1]	B0B0    B1    M1    M0    A0    M1    A0    A1    M1A0 5	$\delta$	$\begin{aligned} & \begin{array}{l} \mathrm{H}_{0}=24.3 ; \mathrm{H}_{1} \neq 24.3 \quad \text { [missing symbol] } \\ \bar{t} \\ =26.28 \\ \hat{\sigma}^{2}=\ldots=42.25 \\ z=\frac{24.3-26.28}{\sqrt{42.25 / 50}}=-2.154 \text { [loses 1] } \\ \\ \quad>-2.576 \end{array} . \end{aligned}$   Insufficient evidence to reject $\mathrm{H}_{0}$. No change in maximum daily temperature. [OK]	B1 only    B1    M1M1    A1    M1    A0    A1    M1    A1 9
$\beta$	$\begin{aligned} & \begin{array}{l} \mathrm{H}_{0}: \mu=26.28 ; \mathrm{H}_{1}: \mu \neq 26.28 \quad \text { [WRONG] } \\ \bar{t}=24.3 \text { [explicitly] } \\ \hat{\sigma}^{2}=\ldots=42.25 \\ z=\frac{26.28-24.3}{\sqrt{42.25 / 50}}=2.154 \quad \text { [allow this }- \text { BOD] } \\ \\ \\ <2.576 \end{array} . \end{aligned}$   Accept $\mathrm{H}_{0}$. Insufficient evidence of a change in maximum daily temperature.	B0B0   B0   M1M1   A1   M1   A1   A1   M1   A1 $8$	$\varepsilon$	$\begin{aligned} & \mathrm{H}_{0}: \mu=24.3 ; \mathrm{H}_{1}: \mu>24.3 \text { [one-tail] } \\ & \bar{t}=26.28 \\ & \hat{\sigma}^{2}=\ldots=42.25 \\ & z=\frac{26.28-24.3}{\sqrt{42.25 / 50}}=2.154 \\ &<2.326 \end{aligned}$   Accept $\mathrm{H}_{0}$. Insufficient evidence of a change in maximum daily temperature.	B1B0   B1   M1M1   A1   M1   A1   A0   M1   A1
$\gamma$	$\mathrm{H}_{0}: \mu=26.28 ; \mathrm{H}_{1}: \mu \neq 26.28 \quad$ [WRONG]   $\bar{t}$ not seen separately   [implied] $\begin{aligned} & \hat{\sigma}^{2}=\ldots=42.25 \\ & z=\frac{24.3-26.28}{\sqrt{42.25 / 50}}=-2.154 \\ & \\ & >-2.576 \end{aligned}$ $z=\frac{24.3-26.28}{\sqrt{42.25 / 50}}=-2.154 \text { [DON'T allow this] }$   Accept $\mathrm{H}_{0}$. Insufficient evidence of a change in maximum daily temperature.	B0B0   B1   M1M1   A1   M1   A0   A0   M0   A0 $5$	$\zeta$ $\zeta$ $\cdots$	$z=\frac{24.3-26.28}{\sqrt{42.25 / 50}}=-2.154$ but then...   So $p=0.0156>0.005 \quad$ [OK here] Accept $\mathrm{H}_{0}$. Insufficient evidence of a change in maximum daily temperature. $\begin{aligned} z=\frac{26.28-24.3}{\sqrt{42.25}} & =0.3046\left[\begin{array}{ll} \text { no } & 150 \end{array}\right] \\ & <2.576 \end{aligned}$   Accept $\mathrm{H}_{0}$. Insufficient evidence of a change in maximum daily temperature.	M1    A1    A1    M1    A1 (11)   M0    A0    A0    M0    A0 (6)

The following guidance notes are provided.

## 1 Standardisation using the normal distribution.

(a) In stating parameters of normal distributions, don't worry about the difference between $\sigma$ and $\sigma^{2}$, so allow $\mathrm{N}(9,16)$ or $\mathrm{N}\left(9,4^{2}\right)$ or $\mathrm{N}(9,4)$. When calculating $\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$, the following mistakes are accuracy mistakes and not method mistakes so can generally score M1A0:
confusion of $\sigma$ with $\sigma^{2}$ or $\sqrt{ } \sigma$; $n$ versus $\sqrt{ } n$; wrong or no continuity corrections.
(b) Use of $\frac{\mu-\bar{x}}{\sigma}$ instead of $\frac{\bar{x}-\mu}{\sigma}$ is not penalised if it leads to a correct probability, but if the candidate is using a $z$-value in a hypothesis test, an answer of $z=-2.15$ when it ought to be 2.15 is an accuracy error and loses the relevant A1. When finding $\mu$ or $\sigma^{2}$ from probabilities, some candidates are taught to use $\frac{\mu-\bar{x}}{\sigma}$ whenever $\mu>\bar{X}$; provided the signs are consistent this gains full marks.
(c) Some candidates are taught to calculate, for example, $\mathrm{P}(X>5)$ from $\mathrm{N}(9,16)$ by calculating instead $\mathrm{P}(X<13)$. This is a correct method, though it looks very strange the first time you see it.
(d) When calculating normal approximations to binomial or Poisson, use of the wrong, or no, continuity correction generally loses the last two marks: A0 A0.

2 Conclusions to hypothesis tests. There are generally 2 marks for these.
(a) In order to gain M1, candidates must not only say the correct "Reject/do not reject $\mathrm{H}_{0}$ " but have done the whole test in essence correctly apart from numerical errors. In other words, they must have compared their $p$ value with a critical $p$ value or other "like-with-like" (e.g. not say 0.0234 with 1.96 ), using the correct tail (e.g. not -2.61 with +2.576 ), and the working should in general have accuracy errors only. Thus miscalculation of $z$, comparison with 1.645 instead of 1.96 , or using $n$ instead of $\sqrt{ } n$, or omission of a continuity correction when it is necessary, are all accuracy errors and the candidate can still gain the last M1 A1. Omission of $\sqrt{ } n$ where it is necessary is a method mistake and so gets M0. In hypothesis tests using discrete distributions, use of $\mathrm{P}(\leq 12)$ or $\mathrm{P}(>12)$ or $\mathrm{P}(=12)$ when it should be $\mathrm{P}(\geq 12)$ is a method mistake and usually loses all the final marks in a question.
(b) The A1 mark is for interpreting the answer in the context of the question, and without over-assertiveness. Thus "The mean number of applicants has increased" is over-assertive and gets A0 (although we allow "There is sufficient evidence to reject $\mathrm{H}_{0}$. The mean number of applicants has increased", A1), and "There is sufficient evidence that the mean has increased" is not contextualised, so that too is A0.
(c) A wrong statement such as $-2.61>-2.576$ generally gets B 0 for comparison but can get the subsequent M1A1. Otherwise:
(d) If there is a self-contradiction, award M1 only if "Reject/Accept $\mathrm{H}_{0}$ " is consistent with their comparison. Thus if, say, we had $z=2.61>z_{\text {crit }}=2.576$ :
"Reject $\mathrm{H}_{0}$, there is insufficient evidence that the mean number of ... has changed" is M1A0. but "Do not reject $\mathrm{H}_{0}$, there is evidence that the mean number of ... has changed" is M0A0.
(e) We don’t usually worry about differences between "Reject $\mathrm{H}_{0}$ " and "Accept $\mathrm{H}_{1}$ " etc.

	Question	Answer	Marks	Guidance
1		$\begin{aligned} & \hat{\mu}=\bar{x}=3.65 \\ & S^{2}=\frac{739.625}{50}-3.65^{2}[=1.47] \\ & \begin{aligned} \hat{\sigma}^{2} & =\frac{50}{49} S^{2} \\ & =\mathbf{1 . 5} \end{aligned} \end{aligned}$	B1   M1   M1   A1   [4]	3.65 stated explicitly, not isw   Correct formula for biased estimate used, award if 1.47 seen $n /(n-1)$ factor used, or if wrong single formula, M1 if $n-1$ divisor anywhere. Correct single formula: M2 Answer 1.5 or exact equivalent only
2		$\begin{aligned} & \operatorname{Po}(4.2) \\ & e^{-4.2} \frac{4.2^{5}}{5!} \\ & n \text { large, } p \text { small }=\mathbf{0 . 1 6 3 3} \\ & \text { or } n>50, n p<5 \end{aligned}$	M1   M1   A1   B1   B1   [5]	Po( $n p$ ) stated or implied   Poisson formula or tables, allow for .1944, .1144, .16(0), .1663;   Answer, a.r.t. 0.163   One condition \ Needs Poisson. If inequalities   The other condition Jused, must be these, but allow $p<0.1$ if and nothing extraneous $n>50$ already stated
3		$\begin{aligned} & \mu=60 \\ & \frac{63.8-\mu}{\sigma}=\Phi^{-1}(0.9)=1.282 \\ & \sigma=2.96(4) \\ & \begin{aligned} 1-\Phi\left(\frac{65-60}{2.964}\right) & =1-\Phi(1.687) \\ & =\mathbf{0 . 0 4 5 8} \end{aligned} \end{aligned}$	B1   M1   B1   A1   M1   A1   [6]	$\mu=60$ stated or implied, can be written down Standardise 63.8 or 56.2 with $\sigma$, allow $\sqrt{ }$ or cc errors, equate to $\Phi^{-1}$   1.282 (or 1.281 or 1.28 ) seen   $\sigma$, in range [2.96, 2.97], can be implied by what follows, not $\sigma^{2}$   Standardise 65 with their $\mu$ and $\sigma$, allow $\sqrt{ }$ or cc errors   Final answer, a.r.t. 0.046, c.w.o.
4		$\begin{aligned} & \hline \mathrm{N}(2.5,0.025) \\ & \Phi\left(\frac{2.59-2.5}{\sqrt{0.025}}\right)=\Phi(0.5692) \\ &=\mathbf{0 . 7 1 5 4} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	Normal (any - can be implied by standardisation)   Mean 2.5   Variance or SD $1.25 \div 50$ stated or used   Standardise 2.59 or 2.61 , with $\sqrt{ }(1.25 / 50)$   Answer in range $[0.715,0.716]$ or $[0.736,0.737]$ from 0.632


5	(i)	(a)	${ }^{6} C_{4} 0.6^{4} 0.4^{2} \quad=\mathbf{0 . 3 1 1}[04] \quad[=972 / 3125]$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	This formula, allow $0.6 \leftrightarrow 0.4$, or tables used correctly Final answer, exact fraction or a.r.t. 0.311
5	(i)	(b)	$\begin{aligned} { }^{12} C_{4} \times{ }^{8} C_{2} \div{ }^{20} C_{6} & {[=495 \times 28 \div 38760] } \\ & =\mathbf{0 . 3 5 7 6} \end{aligned}$	M1   A1   [2]	Product of two ${ }^{n} C_{r}$ divided by ${ }^{n} C_{r}$, or ${ }^{6} C_{2}\left(\frac{12}{20} \times \frac{11}{19} \times \frac{10}{18} \times \frac{9}{17} \times \frac{8}{16} \times \frac{7}{15}\right)$   Final answer, exact fraction or a.r.t. 0.358
5	(ii)		$\begin{aligned} & \mathrm{B}(60,0.6) \approx \mathrm{N}(36,14.4) \\ & \begin{aligned} 1-\Phi\left(\frac{29.5-36}{\sqrt{14.4}}\right)= & 1-\Phi(-1.713) \\ = & \mathbf{0 . 9 5 6 7} \end{aligned} \end{aligned}$   No effect as population is large or yes but not by much	$\begin{gathered} \hline \text { B1 B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \\ {[6]} \end{gathered}$	$\mathrm{N}(36, \ldots)$ or $\mathrm{N}(24, \ldots)$; 14.4 or $\sqrt{ } 14.4$, both from $\mathrm{B}(60,0.6)$   Standardise with their $n p$ and $\sqrt{ } n p q$ (or $n p q$ )   Both their $\sqrt{ } n p q$ and cc correct   [30.5 if using 24]   Answer in range [0.956, 0.957]   Need all of one of these [not "sample"], or equiv, nothing wrong
6			$\begin{aligned} & \left.\mathrm{H}_{0}: \lambda=6.3 \text { [or } \mu\right] \\ & \left.\mathrm{H}_{1}: \lambda<6.3 \text { or } \mu\right] \\ & \mathrm{P}(\leq 2)=e^{-6.3}(1+6.3+19.845) \\ & \quad=\mathbf{0 . 0 4 9 8} \\ & <0.05 \end{aligned}$   Therefore reject $\mathrm{H}_{0}$.   Significant evidence that average number of pips has been reduced.	B2 M1 A1 A1 B1 M1 A1 $\sqrt{2}$ $[8]$	Both: B2. One error e.g. " $\mathrm{H}_{0}=6.3$ ", or " $\mathrm{H}_{1}: \lambda \neq 6.3$ ", B1, but $x, r$ etc: 0   Correct formula for at least 2 terms, can be implied by 0.0134   Fully correct formula for $\leq 2$, can be implied by answer   Answer, a.r.t. 0.0498   SR tables: B2 if a.r.t. 0.0506, else 0 [then can get B1M1A1]   Explicitly state $<0.05$, not from $\mathrm{H}_{1}: \lambda \neq 6.3$, or $\mathrm{CR} \leq 2$ and   explicitly state 2 in CR, needs essentially correct distribution   Not needed for final M1A1   Correct method, comparison and first conclusion   Interpreted in context acknowledging uncertainty somewhere, $\sqrt{ }$ on $p$ etc   SR: $\mathrm{P}(<2)$ [0.0134] or $\mathrm{Po}(=2)$ [0.0364]:   B2 M1 A0 B0 M0   but allow " $\mathrm{Po}(=2)=0.0498$ " etc   SR: Normal: B2 M1 A0 B0


7	(i)	(a)	$\int_{1}^{4} \frac{1}{2 \sqrt{x}} x d x=\left[\frac{1}{3} x^{\frac{3}{2}}\right]_{1}^{4}=7 / 3$ or $2.333 \ldots$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Attempt to integrate $x \mathrm{f}(x)$, correct limits Correct indefinite integral, a.e.f.   Final answer 7/3 or equiv or a.r.t. 2.33
7	(i)	(b)	$\begin{aligned} & \int_{1}^{m} \frac{1}{2 \sqrt{x}} d x=0.5 \\ & \sqrt{m}-1=0.5 \quad \\ & \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	This or complementary integral, limits needed [not "- $\infty$ "], equated to 0.5 , needn't attempt to evaluate   This equation, any equivalent simplified form   Answer 9/4 or exact equivalent only
7	(ii)		$1.5 \int_{1}^{\infty} y^{-2.5} y^{2} d x=1.5\left[\frac{y^{0.5}}{0.5}\right]_{1}^{\infty}$   Upper limit gives infinite answer	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$	Attempt to integrate $y^{2} \mathrm{f}(y)$, limits 1 and $\infty$, allow any letter Correct indefinite integral $[=3 \sqrt{ } y]$, ignore $\mu[=3]$ Give correct reason, c.w.o. apart from constant, allow "= $\infty$ "
8	(i)		Location of bacteria must be independent - the position of one does not affect that of another   Examples   $\alpha \quad$ Number of bacteria occurring in a particular volume is ind Number in one volume occurs randomly.   $\beta \quad$ Bacteria are distributed independently from one another.   $\gamma \quad$ Position of each bacterium must be independent of the po groups, they must not be influenced by the surrounding ba   $\delta \quad$ Bacteria need to be independent. The results of one canno   $\varepsilon \quad$ Bacteria must occur independently, so the state of one bac   $\varsigma \quad$ Probability of bacteria must be independent, they cannot   $\eta \quad$ Bacteria must occur independently, so if one occurs it can	M1   A1   [2]   dent   means   of ot   a or   uence   m has   the p   se m	"Found independently": M1. Allow "are independent", "singly".   Context needed somewhere in answer.   Correct explanation, not just of "singly", e.g. not "must not group together". No extra or wrong conditions, but allow both "singly" and "independently". Right explanation, not "independent": M1A0   he number in another interval of the same volume.   M1A0   at they cannot be in groups.   M1A0   bacteria. Not well modelled by Poisson if they tended to form   ain conditions (e,g, heat).   M1A0   result of another.   M1A0   effect on any other bacteria.   M1A0   ability of another bacterium occurring.   M1A1   to appear.   M1A1


8	(ii)	$\begin{aligned} & 1-\mathrm{P}(\leq 4)[=1-0.8912] \\ & \\ & \mathbf{0 . 1 0 8 8} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Allow M1 for $1-.9580$ [= 0.042] or wrong $\lambda .0 .8912$ etc: M0 0.109 or 0.1088 or better
8	(iii)	$\begin{aligned} & \operatorname{Po}(0.925) \\ & e^{-0.925} \frac{0.925^{2}}{2!} \quad=\mathbf{0 . 1 6 9}(64) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Po(0.925) stated or implied [37/40] Correct Po formula for $r=2$, any $\lambda$, can be implied by: Answer $0.17(0)$ or 0.1696 or better
8	(iv)	$\begin{aligned} & \text { Po(250) } \\ & \lambda>15 \text { or } \lambda \text { large [or } \mu \text { ] } \\ & \mathrm{N}(250,250) \\ & \begin{array}{r} \Phi\left(\frac{239.5-250}{\sqrt{250}}\right)=1-\Phi(0.664) \\ =\mathbf{0 . 2 5 3 3} \end{array} \end{aligned}$	B1 B1 M1* A1 $\sqrt{ }$ Dep*M1 A1 $\sqrt{ }$ A1 $[7]$	Po(250) stated or implied   Either of these   N , mean their $100 \times 2.5 \ldots$   ... variance (or SD) their mean   Standardise, allow wrong or no cc and/or no $\sqrt{ }$ or $\sigma^{2}$, needs A1 Continuity correction and $\sqrt{ }$ correct   Final answer a.r.t. 0.253, c.w.o.
9	(i)	$\mathrm{H}_{0}: \mu=8 ; \mathrm{H}_{1}: \mu \neq 8$   where $\mu$ is the population mean amount of sleep obtained by Year 11 pupils	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	Both, B2. One error, B1, allow $x / r / t$ here, but not $\bar{H}$   Need "population" or equivalent, but allow "average amount of sleep obtained by Year 11 pupils". Allow " $\mu$ is population mean".
9	(ii)	$\begin{aligned} & \Phi\left(\frac{0.28}{0.87 / \sqrt{64}}\right)=\Phi(2.575) \\ & 2 \times(1-\text { above }) \quad=\mathbf{0 . 0 1} \text { or } \mathbf{1 \%} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \end{gathered}$	Standardise, with $\sqrt{ } n$ or $n$, allow cc, $\sqrt{ }$ errors $z=2.575$ or 2.57 or 2.58 , can be implied by, e.g., 0.005 or 0.995 Correct handling of tails Answer 0.01 or $1 \%$ correct to 2 SF, c.w.o.
9	(iii)	Rejecting $\mathrm{H}_{0}$ when $\mu=8$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Or equivalent, some mention of context, not "probability of ..."
9	(iv)	$\begin{aligned} & \Phi\left(\frac{8.28-7.9}{0.87 / \sqrt{64}}\right)-\Phi\left(\frac{7.72-7.9}{0.87 / \sqrt{64}}\right) \\ & =\Phi(3.494)-\Phi(-1.655)[=0.99976-(1-0.951) \text { or } 1-\ldots] \\ & =\mathbf{0 . 9 5 1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Find P (between 7.72 and $8.28 \mid \mu=7.9)$, allow $1-2 \times \mathrm{P}(1$ tail) (need attempt to find correct region, not isw - i.e., not ans 0.049)   Correct handling of tails, needn't attempt to evaluate, needs 64 Final answer, a.r.t. 0.951.   SR: One tail only used: M1M0A0. 0.951 from no working: B2


Question			Answer	Marks	Guidance	
1			Number CDs (sequentially)   Select using random numbers	B1   B1   [2]	List needn't be stated, but must mention CDs. Not "select numbers randomly". Hat, etc: B1B0 Systematic: 66 or 67 B1, random start B1	Assume sequential unless stated otherwise. If "number CDs randomly", B1 max unless "sort by number". Stratified: apply scheme
2	(i)		$\begin{aligned} & \left(\frac{71.2-72.0}{\sigma / \sqrt{40}}\right)=-0.3853 \\ & {[\sigma=13.13,] \operatorname{Var}(V)=\mathbf{1 7 2 . 4}} \end{aligned}$	M1   A1   B1   A1   [4]	Standardise with $\Phi^{-1} \& \sqrt{ } 40$, allow cc, $\sqrt{ }$ errors eg $\sigma^{2}$ Square roots and sign correct, no cc, no " 1 -" error $z$ in range $( \pm)$ [0.385, 0.386$]$ seen Final answer in range [172, 173], or $13.1^{2}$ cwo	RHS must be $\Phi^{-1}$, i.e. not 0.7411 or 0.2589 or 0.6368 or 0.35 . " $1-$ " error or $\times 40 / 39$ : M1A0 [ 0.674 may be from " $1-0.35=0.75$ "]   Needs variance, not SD   NB: Look out for $-13.1 \rightarrow 172$, M1A0B1A0
2	(ii)		Parent distribution not known $n$ is large	B1   B1   [2]	Or clear equivalent. Not "sample not normal" Or clear equiv, e.g. sample size > 30. Extras: max 1 " $n$ large, $n>n_{0}$ ": B1 if $n_{0} \geq 30$.	Don't bother about order of these statements. If numerical must be 30. Ignore "continuous".
3		$\alpha$ :	$\mathrm{H}_{0}: p=1 / 3$ [or 0.33 or better] $\mathrm{H}_{1}: p \neq 1 / 3$ [or 0.33 or better] $B(12,1 / 3)$ stated or implied $\begin{aligned} & \mathrm{P}(\geq 7)=1-0.9336=0.0664 \\ & >0.025 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow $\pi$, but $\mu=1 / 3$ etc B1. Any other letter, B0 One-tailed, or no symbol, B1 max $\mathrm{B}(12,1 / 3)$ stated or implied, allow for $\mathrm{N}(4,8 / 3), \mathrm{Po}(4)$ Probability in range [0.066, 0.067]   Explicit comparison with 0.025 , or $2 p$ with 0.05	Not $\mu=4$   (if in doubt, consult)   If $N$ used, or $P(\leq 7)$ or $P(=7)$, no more marks   1-tailed: A0 here regardless of value
		$\beta$ :	CR is $\geq 8,7$ not in CR Probability is 0.0188	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	Needs explicit comparison of 7 with CV   Must be $\geq 7,0.019$ or 0.0188 or better, allow 0.9812	Need to be clear that CR is being used - look for comparison with 7 . See also $\zeta$.
			Do not reject $\mathrm{H}_{0}$. Insufficient evidence that statement is false.	M1   A1 $\sqrt{ }$   [7]	Needs correct method, including like-with-like, correct tail, $\geq 7$ (or $\leq 6$ ). If CV, needs right tail A1 needs "evidence" or equivalent. "Statement" is enough context here	Allow from 1-tail. 0.9812 or 0.0188 or 0.0476 : M0 unless " $\geq 7$ " stated or clearly using $\beta$. $\sqrt{ }$ on their $p / C R$. Withhold if answer refers only to $p$.


Question		Answer	Marks	Guidance	
4	(i)	Crystals must occur independently of one another	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Allow interpreted, or "randomly" but nothing else. Must be contextualised; no other answers included.	Ignore "singly" (meaningless in this context). But allow "probability... is independent"
4	(ii)	$e^{-3.2} \frac{3.2^{5}}{5!}=\mathbf{0 . 1 1 4 ( 0 )}$	M1   A1 [2]	Formula, or .0608 or .1781 or .1075 or .1203 (tables)   Answer a.r.t. 0.114, implies both marks	
4	(iii)	$\begin{aligned} & \operatorname{Po}(2.368) \\ & 1-e^{-2.368}\left(1+2.368+\frac{2.368^{2}}{2}\right) \\ & =\mathbf{0 . 4 2 1 9} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\operatorname{Po}(0.74 \times 3.2)$ stated or implied   1 - correct Poisson terms, their $\lambda$, allow $\pm 1$ term Answer, a.r.t. 0.422 , implies all 3 marks	Allow for $0.75 \times 3.2$ etc, e.g. $\operatorname{Po}(2.4)$   Don't allow second M1 from $\lambda$ in tables, e.g. if MR, treat as $\mathrm{E}-1$.   If no working: don't give M1A0
4	(iv)	$\begin{aligned} & \operatorname{Po}(32) \approx \mathrm{N}(32,32) \\ & 1-\Phi\left(\frac{35.5-32}{\sqrt{32}}\right) \\ & =1-\Phi(.619) \quad=\mathbf{0 . 2 6 8 1} \end{aligned}$	M1   A1   M1   A1   A1   [5]	$\mathrm{N}(\lambda, \lambda)$ stated or implied, allow $\sqrt{ } \lambda$ or $\lambda^{2}$ for var $\mathrm{N}(32,32)$, allow $\sqrt{ } 32$ or $32^{2}$ for var Standardise with $\lambda$ and $\sqrt{ } \lambda$ or $\lambda$, allow cc errors but not $\sqrt{ } n$; both cc and $\sqrt{ }$ correct   Final answer, a.r.t. 0.268	Needs $\lambda \geq 15$   Can get (M0A0) M1A1 from $\lambda<15$   Typically, no cc $\rightarrow 0.2203$, or $32 \rightarrow 0.4565$, 3/5 (but needs evidence, not just answer)


Question			Answer	Marks	Guidance	
5		$\alpha$ :	$\begin{aligned} & \mathrm{H}_{0}: \mu=6.1 \\ & \mathrm{H}_{1}: \mu \neq 6.1 \\ & \hat{\mu}=\bar{x}=6.2 \\ & \hat{\sigma}^{2}=\frac{80}{79}\left(\frac{3126}{80}-6.2^{2}\right)=0.643 \\ & z=\frac{6.2-6.1}{\sqrt{0.643 / 80}}=1.115 \\ & {[1-\Phi(1.115)=0.1325>0.05]} \\ & 1.115<1.645 \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Both: B2. One error, B1, but $\bar{X}, x, r$ etc: 0.6.2: B0   6.2 [31/5] seen somewhere (other than hypotheses) Correct formula for biased estimate [0.635 or 127/200]   Divide by 79 somewhere   Variance estimate, a.r.t. 0.643, can be implied Standardise their 6.2 with reasonable variance attempt, needs 80, allow cc $\mathrm{z} \in[1.11,1.12] \text { (not }- \text { ) or } p \in[0.1323,0.1333]$   Compare $z$ with 1.645 (allow -1.645 if $z<0$ ) or $p$ ( $<0.5$ ) with 0.05	If single formula used, M2 or, if wrong, allow M1 for divisor 79 anywhere   [254/395 leading to $127 / 15800$ ] 80 needed, otherwise M0 and no more marks If clearly $\mu=6.2$ used, no more marks   A1 uses number used for comparison Withhold if inequality incorrect or if 1-tailed Must be consistent signs/tails and like-withlike
		$\beta$ :	$\begin{aligned} & \text { CV } 6.1+1.645 \times \sqrt{\frac{0.643}{80}} \\ & =6.247 \text { and } 6.2<6.247 \end{aligned}$	M1   A1   A1 $\sqrt{ }$	$6.1+z \sqrt{ }\left(\sigma^{2} / 80\right)$, allow $\pm$, $\sqrt{\text { errors }}$ CV, a.r.t. 6.25, needs $z=1.645$, allow biased $\hat{\sigma}^{2}$ Compare 6.2 with CV from + sign, $\sqrt{ }$ on $z$ (but not $\sigma$ )	Allow 6.2 - (or $\pm$ ) but no more marks afterwards   If no 79 earlier but used here, recovers M1A1 E.g. $1.96 \rightarrow 6.276$ or $1.282 \rightarrow 6.215$ [gets M1A0A1
			Do not reject $\mathrm{H}_{0}$. Insufficient evidence that pH value is not 6.1	M1   A1 $\sqrt{ }$ [11]	Needs essentially correct method and comparison, needs 80 but no need for correct variance Needs context and "evidence" or equivalent, ft on their $z / p / \mathrm{CV}$	First conclusion wrong: M0A0 even if second correct.   "1.115 > 1.645 so do not reject $\mathrm{H}_{0}$ " etc:   (A0)M1A1
	Notes:		Biased estimate used : typically B2B1 M1M0A0 M1A0A1 M1A [total 8]		$\bar{x}$ and $\mu$ interchanged: allow final M1A1 if anywher M0A0. This would typically get B0B0B1 M1M1A1 [total 5]	right, but if always wrong (in hypotheses and z) M1A0A0 M0A0


Question			Answer	Marks	Guidance	
6	(i)		$\begin{aligned} & \mathrm{B}(32,0.4) \\ & \approx \mathrm{N}(12.8,7.68) \\ & \text { Valid as } 12.8 \text { and } 19.2>5 \\ & 1-\Phi\left(\frac{17.5-12.8}{\sqrt{7.68}}\right) \\ & {[=1-\Phi(1.696)]=\mathbf{0 . 0 4 4 9}} \end{aligned}$	B1 M1A1 B1 M1 A1 A1 $[7]$	$\mathrm{B}(32,0.4)$ stated or implied, e.g. by $\mathrm{Po}(12.8)$   $\mathrm{N}($ their attempt at $n p, n p q) ; \mathrm{N}(12.8,7.68)$   Or " $n$ large and $p$ close to 0.5 ". Not $n p q$ or $7.68>5$.   Standardise, their $n p, n p q$, allow wrong/no cc or no $\sqrt{ }$   17.5 and $\sqrt{ } n p q$ correct   Answer, a.r.t. 0.045	Poisson [0.09888], or exact [0.046269]:B1max SC: B(12.8, 7.68/32): M1A0   Allow $n p$ and $n q$ both asserted $>5$ $\div 32: \text { M0 }$
6	(ii)		$\begin{aligned} & \mathrm{B}(90,0.01) \\ & \approx \operatorname{Po}(0.9) \\ & e^{-0.9} \frac{0.9^{3}}{3!}=\mathbf{0 . 0 4 9 4} \end{aligned}$	B1   M1   M1   A1   [4]	$B(90,0.01)$ stated or implied.   Po(their attempt at $n p$ )   Correct formula or use of tables, e.g. 0.1646 or 0.0112   Final answer in range [0.049, 0.05) [i.e., not 0.05]	Exact [0.049003]: B1 max.   Don't treat $p=0.1$ as MR. If $n p>5$, M0M0 No working, wrong answer $\Rightarrow$ M0A0, but right answer $\Rightarrow$ M1A1 provided clearly Po SC: B(90, 0.1), N(9, 8.1), [0.015, 0.016] cwo B2
7	(i)		  Values of $X$ close to $a$ are more likely than those close to 0	M1   A1   B1   [3]	Positive parabola (only), through 0, nothing below $x$-axis   Clear truncation at ends   Withhold if concept misunderstood. Need to have probability of values (not of occurring); not just shape. Allow for U-shape but nothing else	$k<0$ : M0 even if $k>0$ as well.   Don't need any scales, vertical line at $a$ etc. Can be vertical at $A$, needn't be horizontal at $O$.   E.g.: "More likely to occur for $x$ close to $a$ ": B0.   Ignore extra comments like "exponential"
7	(ii)	(a)	$\begin{aligned} & \int_{0}^{a} k x^{2} \mathrm{~d} x=1 \Rightarrow k=\frac{3}{a^{3}} \\ & \int_{0}^{a} \frac{3}{a^{3}} x^{3} \mathrm{~d} x=\frac{9}{2} \Rightarrow a=6 \end{aligned}$	M1   A1   M1   A1   A1   A1   [6]	Attempt to integrate $k x^{2}$, ignore limits Correct limits and equate to 1   Attempt to integrate $k x^{3}$, ignore limits Correct limits and equate to 4.5   One correct equation connecting $k$ and $a$, can be implied Correctly obtain $a=6$ only	Must attempt integration   Must attempt integration Don't need $k$ in terms of $a$ here $k a^{3}=3$ or $k a^{4}=18$, a.e. simplified form   No marks explicitly for $k$ [= $1 / 72$ or 0.01388...]


Question			Answer$\begin{aligned} & \int_{0}^{6} \frac{1}{72} x^{4} \mathrm{~d} x \quad\left[=\frac{108}{5}\right] \\ & 21.6-4.5^{2}=\mathbf{1 . 3 5} \end{aligned}$	Marks   M1   A1   A1   [3]	Guidance	
7	(ii)	(b)			Attempt to integrate $k x^{4}$, their $a, k$, can be algebraic Subtract $4.5^{2}$ (given in question) 1.35 or exact equivalent only	Must attempt integration; limits 0, $a \sqrt{ }$ Somewhere $[=27 / 20]$
8	(i)		$\begin{aligned} & 30+1.645 \times \frac{8}{\sqrt{18}}=33.102 \\ & \text { so CR is } \bar{X}>33.1 \end{aligned}$	M1   A1   A1   A1 $\sqrt{ }$   [4]	```30+z\times8/\sqrt{}{18, allow }\sqrt{}{}\mathrm{ errors, cc} 1.645, requires + only 33.1 a.r.t. 33.10 their RH CVV, allow \leq their LH CV as well, allow >, allow no letter or }X\mathrm{ but no other letter```	Allow $\pm$ but not - only. No 18: 0 in this part.   Don't allow "accept if $\leq 33.1$, reject if $>33.1$ " Inequality required in final line
	(ii)		Type I [error]	B1   [1]	Nothing else unless it's just an amplification. Allow "Type 1"	
	(iii)		$\begin{aligned} & \mathrm{B}(20,0.05): \\ & \mathrm{P}(\geq 4)=0.0159 \\ & \text { so unlikely that } \mu=30 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \sqrt{ } \\ \\ {[3]} \end{gathered}$	$B(20,0.05)$ stated or implied. Not $B(20,1 / 5)$   Probability, a.r.t. 0.016   Justified conclusion, e.g. "I think $\mu=30$ as not less than 0.01 ". FT on their $p$.	No reason: A0. Not over-assertive. But "I think $\mu=30$ as probability is small" is A0.
	(iv)		$\frac{33.1-\mu}{8 / \sqrt{18}}=-0.253$ $\mu=33.58$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Needs $\Phi^{-1}$, their CV, SD right or same as in (i), allow cc   Signs correct, can be implied by answer $>$ their CV $z$ in range $( \pm)[0.25,0.26]$   Final answer $33.55 \leq \mu \leq 33.60$, 4 SF needed.	Not 30 . Allow omission of $\sqrt{ } 18$ only if omitted in (i). " 1 -" errors: can get M1A0A1   Typically 32.62 probably gets 2/4.


Question		Answer	Marks	Guidance	
1		$\begin{aligned} & n=9 \\ & C R \text { is } \leq 2 \\ & \mathbf{0 . 0 0 8 3} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \\ \text { A1 } \\ \\ {[4]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Stated explicitly } \\ & 2 \text { seen but not } \leq \text { : M1A0. Allow " } \mathrm{P}(\leq 2) \text { " } \\ & \text { Or more SF. } \\ & \text { " } n=9, \text { CR } \geq 3 ", 0.0083 \text { seen: B1M1A0A1 } \end{aligned}$	CR must be stated explicitly for A1 SR: $\leq 3$ with 0.0424: (B1)M1A0   SR: If 0 , give B1 for at least 3 of 0.0083, 0.0113, 0.0026, 0.0197, 0.0034 seen
2	(i)	$\begin{aligned} & \hat{\mu}=\bar{x}=38 \\ & \frac{\Sigma x^{2}}{10}-38^{2} \quad[=16.2] \\ & \times 10 / 9 \text { to get } 18 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	38 stated separately   Use of $\Sigma x^{2} / n-\bar{x}^{2}$   Multiply by $10 / 9$   18 or a.r.t. 18.0 only	Correct single formula: M2 If single formula, divisor of 9 seen anywhere gets second M1
2	(ii)	$\Phi\left(\frac{40-38}{\sqrt{18}}\right)=\Phi(0.4714)=\mathbf{0 . 3 1 8 7}$	M1   A1   [2]	Standardise with their $\mu$ and $\sigma$, allow cc, $\sqrt{ }$ errors   Answer, a.r.t. 0.319	10 used: M0.   Allow a.r.t. 0.311 [0.3106] from 16.2
3	(i)	Allocate 4-digit number to each DVD;   Select using random numbers Ignore random numbers outside range	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & {[3]} \end{aligned}$	"DVD" \& "4 digits/1 to 9000/sequentially" etc must be mentioned somewhere   Mention random numbers   Unbiased method, mention of "outside range" or "repeats"	Not allocate "random" numbers, unless subsequently sorted   If "pick random numbers in range 1 to 9000", must mention repeats
3	(ii)	$\begin{aligned} & \mathrm{B}(100,0.24) \approx \mathrm{N}(24,18.24) \\ & \Phi\left(\frac{19.5-24}{\sqrt{18.24}}\right)=\Phi(-1.0537) \\ &=\mathbf{0 . 1 4 6 1} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [5] } \\ \hline \end{gathered}$	N (attempt at $n p$ )   Both parameters correct   Standardise with their $n p$ and $\sqrt{ } n p q$ or $n p q$   Both cc correct and $\sqrt{ } n p q$ used   Answer, a.r.t. 0.146	Allow 18.24/100 A1 but then M0A0 Allow cc/ $\sqrt{ }$ errors.


Question		Answer	Marks	Guidance	
4	(i)	Values taken by $X$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	This answer only	Not "values taken by f"
4	(ii)	$\int_{0}^{a} k x d x=1 \Rightarrow k=\frac{2}{a^{2}}$	M1   A1   [2]	Use definite integral and equate to 1 , Correctly obtain $2 / a^{2}$	Or clear argument from triangle area
4	(iii)	$\begin{aligned} & \int_{0}^{a} k x^{2} d x=\left[k \frac{x^{3}}{3}\right]_{0}^{a}=\frac{2}{3} a \\ & \int_{0}^{a} k x^{3} d x=\left[k \frac{x^{4}}{4}\right]_{0}^{a}=\frac{a^{2}}{2} \\ & \frac{a^{2}}{2}-\left(\frac{2}{3} a\right)^{2}=\frac{1}{18} a^{2} \end{aligned}$	M1 B1 A1 $\sqrt{ }$ M1* depM1 A1 $[6]$	Attempt to integrate $x \mathrm{f}(x)$, limits 0 and $a$ Correct indefinite integral seen   Correct mean or correct $\mathrm{E}\left(X^{2}\right)\left[=a^{2} / 2\right]$, $\sqrt{ }$ on $k$   Attempt to integrate $x^{2} \mathrm{f}(x)$, limits $0, a$   Subtract their $\mu^{2}$   Correct final answer, ae exact f , no $k$ now	either here or for $x^{2} \mathrm{f}(x)$ Can be in terms of $k$   Or decimal, $0.056 a^{2}$ or better
5	(i)	$\begin{aligned} & \operatorname{Po}(4200) \approx \mathrm{N}(4200,4200) \\ & 1-\Phi\left(\frac{4350.5-4200}{\sqrt{4200}}\right) \\ & =1-\Phi(2.322) \quad=\mathbf{0 . 0 1 0}(1) \end{aligned}$	M1   M1   M1   A1   A1   [5]	Po(60 $\lambda$ ) stated or implied $\mathrm{N}(60 \lambda, 60 \lambda)$   Standardise with their $60 \lambda$ and $\sqrt{ } 60 \lambda$ or $60 \lambda$ 4350.5 explicitly seen and $\sqrt{ } 60 \lambda$ not wrong Answer, allow a.r.t. 0.010	Allow wrong or no cc, or no $\sqrt{ }$ $\sqrt{ } 60 \lambda$ needn't be explicit   Allow [0.0103, 0.0106] from no CC, but not 0.0105 from wrong CC
5	(ii)	$\begin{aligned} & \mathrm{B}(30,0.010(1)) \\ & \approx \operatorname{Po}(0.30(3)) \\ & 1-0.9997 \\ & \text { or: } 1-\left(q^{30}+30 q^{29} p+435 q^{28} p^{2}+4060 q^{27} q^{3}\right) \\ & \quad=1-(.7397+.2242+.0328+.0031) \\ & \quad=1-.999777=0.0002226 \end{aligned}$	M1   A1   A1 [3]	$\mathrm{B}(30$, their (i)) stated or implied   $\mathrm{Po}(0.3)$ or 0.303 etc   Final answer a.r.t. 0.0003   Exact binomial: 1 - (3,4 or 5 terms) (M1)M1   Answer a.r.t. 0.0002: A1   Normal (0.3, 0.297)   (M1)M1   Answer 0 (4 dp) ( $z=5.87$ ) A1	$\begin{aligned} & {[0.30 \rightarrow 0.000266 .0 .303 \rightarrow 0.000276 \text {. }} \\ & 0.309 \rightarrow 0.000297] \\ & \text { Needs clear }{ }^{n} \mathrm{C}_{r} \text { or right answer } \\ & \text { No mention of dist: assume exact } \end{aligned}$


Question		Answer	Marks	Guidance	
6	(i)	$\begin{aligned} & \mathrm{H} \mathrm{H}_{0}: \mu=28.0 \\ & \mathrm{H}_{1}: \mu>28.0 \\ & \alpha: \quad \frac{28.98-28}{12 / \sqrt{30}}=0.4473[p=0.3274] \\ & \\ & \quad \begin{array}{l} z<1.645, \text { or } p>0.05 \\ \text { OR: } \\ \text { CC: } 28.98-\frac{1}{60} \rightarrow 0.4397, p=0.33 \end{array} \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	One error, e.g. p, or $\mu_{0}, \mu_{1}$, or 2-tail: B1.   Standardise with $\sqrt{ } 30$, allow $\sqrt{ }$ errors, cc Correct value of $z$ or $p: z=$ art 0.447 or $p$ in range [0.327, 0.328]   Compare $z$ (incl 30) with 1.645 , or $p$ with 0.05 , or with 0.95 if correct tail	But $\bar{X}$ etc: B0   CC is CORRECT here   Not -0.447 but can be recovered if 0.327 used. Not $0.455 / 0.3246$ Needs $\mu$ and $\bar{x}$ right way round
		$\begin{array}{ll} \beta: & 28+1.645 \times 12 / \sqrt{ } 30 \\ & =31.6 \\ 28.98<31.6 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \sqrt{2} \\ \text { A1 } \end{gathered}$	$28+z \times 12 / \sqrt{30}$, allow $\sqrt{\text { errors, cc }}$ Correct CV, $\sqrt{ }$ on $z$ (only)   Explicitly compare 28.98	Ignore $28-\ldots$, do not allow $28.98-\ldots$
		$\gamma: \quad$ Totals used: $\frac{869.4-840}{12 \sqrt{30}}=0.4473$		Same scheme	NB: If totals used, allow ANY plausible CC or none
		Do not reject $\mathrm{H}_{0}$. Insufficient evidence of an increase in mean score   SD unchanged, or random sample/indept	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[8]} \\ & \hline \end{aligned}$	Consistent first conclusion   Contextualised, "evidence" or exact equivalent somewhere   One of these seen, nothing irrelevant	Needs correct method \& comparison, 30 used, $\mu$ and $\bar{x}$ right way round "Evidence" in either part of conclusion
6	(ii)	Yes because population not stated to be normal	B2 [2]	Partial answer: B1   "Yes as parent distribution not normal" (i.e., "stated to be" omitted): B2   SR: "No as assumed normal" if in (i): B1	"Yes, because $n$ large": B1   "Yes, as not normal and $n$ large": B1   "Yes as not normal, but can be used as $n$ large": B2
7	(i)	$\frac{\mu-20}{\sigma / \sqrt{n}}=1.0 ; \frac{35-\mu}{\sigma / \sqrt{n}}=2.0$   Solve to get $\sigma=5 \sqrt{ } n$	M1 A1 B1 M1 A1 [5]	Standardise either 20 or 35 , equate to $\Phi^{-1}$   Both equations completely correct   Both correct $z$-values seen (to 3 SF at least)   Correctly obtain $\sigma=k \sqrt{ } n$ or $\sigma^{2}=k n$ $\sigma=5 \sqrt{ } n$ or $\sqrt{25 n}$ only.	With $\sqrt{ } n$ or $n$ and $z$, allow " 1 -", cc Including signs, but can have wrong $z$ Independent of previous marks Allow $\sqrt{ }$ errors, ALLOW from not $\Phi^{-1}$ [only mark from $0.7998 \& 0.8358]$
7	(ii)	Binya is right $\begin{aligned} & \mu=25 \\ & 1-\Phi\left(\frac{32-\mu}{5}\right)=1-\Phi(1.4) \\ & =1-0.9192 \quad=\mathbf{0 . 0 8 0 8} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Binya stated   $\mu=25$ following no wrong working   Standardise with their $\sigma / \sqrt{ } n$ and their numerical $\mu$   Answer, a.r.t. 0.081, CWO.	"Aidan" used: max B0B1M0 But allow if $\sqrt{ } n$ omitted or wrong   NB: use of 1.282 probably implies "Aidan"


Question		Answer	Marks	Guidance	
8	(i)	Failures do not occur at regular or predictable intervals	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Not equivalent of "independent". Not "equally likely at any moment"	Both right and wrong: B0
8	(ii)	Failures occur independently;   Might not happen if a power cut   $\ldots$ and at constant average rate;   Might not happen if manipulated to change more rapidly at peak times	B1   B1   B1   B1   [4]	"Failures" needed in one reason, else B0(B3) Plausible reason   Exact equivalents only   Must be during one day and not week/year   Allow any answers that show correct statistical understanding, however implausible	Not "randomly", allow "singly" only if also "independent" in this part   Not "equal probability", not "constant rate", but allow second mark if OK. Extra wrong reason loses explanation mark
8	(iii)	$e^{-\lambda} \frac{\lambda^{7}}{7!}=e^{-\lambda} \frac{\lambda^{8}}{8!} \Rightarrow \lambda=8$ $0.1396$	M1   A1   M1   A1   B1 $\sqrt{ }$   [5]	At least one correct formula   Both sides correct   Cancel exp and some $\lambda$   Obtain $\lambda=8$ only, CWO   Answer in range [0.139, 0.14], $\sqrt{ }$ on their $\lambda$	[before rounding]
9	(i)	$4.81 \%$ or 0.0481	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	One of these only, or more SF	$\mathrm{N}(18,7.2) \rightarrow 0.0468: \mathrm{B} 1$
9	(ii)	$\mathrm{P}(\geq 14)=0.7077$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	Allow M1 for answer 0.5722 or 0.8192 0.708 or 0.7077 or more SF	$0.2923: ~$    $\mathrm{~N}(15,7.5) \rightarrow 0.78:$ M1A1;   0.8194 or $0.7674:$ M1A0
9	(iii)	Only way that $p=0.5$ for second test is if Type II error on first, where $\begin{array}{r} 0.2 \times 0.7077=0.14154 \text {. Therefore } \\ 0.14154 \times 0.2923+0.85846 \times 0.0481 \\ =\mathbf{0 . 0 8 2 7} \end{array}$	M1   M1   M2   A1   [5]	$0.2 \times 0.7077 \times 0.2923[=0.04137]$   Consider $1-0.14154$ $\begin{gathered} 0.2 \times(\mathrm{ii}) \times(1-(\mathrm{ii}))+(1-[0.2 \times(\mathrm{ii})]) \times(\mathrm{i}) \\ {[=0.04137+0.04127]} \end{gathered}$   Answer, a.r.t. 0.083	$\begin{aligned} & \text { Normal: } \\ & \begin{array}{c} 0.1416 \times 0.292+0.8584 \times 0.0468 \text { or } \\ 0.00175+0.03569+0.00273+0.04135 \\ =0.0815: \text { full marks } \end{array} \end{aligned}$ $\begin{array}{ll} \text { Any two of these three } & \text { M1 } \\ \text { Third of these three } & \text { M1 } \\ \text { This one } & \text { M1 } \end{array}$   SR: No 0.8 or 0.2 but 2 products: M1   4 products: M2


Question			Answer	Marks	Guidance	
1	(i)		89, 90, 91, 91, 92	$\begin{gathered} \text { B2 } \\ 2 \end{gathered}$	All correct; B2; one error (e.g. all -1 ), B1	Allow 088, etc
	(ii)		Not all equally likely ( 91 more than 90 etc) Multiply by 1000 and ignore if $>853$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \\ \hline 2 \\ \hline \end{gathered}$	Imply different likelihood/probability Or equivalent method. Not "ignore repeats". Ignore extras.	Not "same pupil is selected twice"   Number students, use random numbers and ignore outside range: B1
2			$\begin{aligned} & \operatorname{Po}\left(2 \times 10^{6}\right) \\ & \approx \mathrm{N}\left(2 \times 10^{6}, 2 \times 10^{6}\right) \\ & \Phi\left(\frac{1998999.5-2 \times 10^{6}}{\sqrt{2 \times 10^{6}}}\right)= \\ & \\ & =\mathbf{0 . 2 3 9 6} \end{aligned}$	M1   A1   A1   A1   4	N (their 40 $\lambda$ )   Both parameters correct, allow $\sqrt{ }$ here   Standardise, mean $40 \lambda$, sd $\sqrt{ } 40 \lambda$ (not $40 \lambda$ )   Answer, a.r.t. 0.240   (no cc: M1A1A0A1)	Correct cc must be seen for this A1   NB: no cc gives $\Phi(-0.7071), 0.23975$, wrong cc gives $\Phi(-0.70675), 0.23986$
3	(i)		$\frac{\mu-157.18}{\sigma / \sqrt{80}}=1.282 ; \frac{\mu-164.76}{\sigma / \sqrt{80}}=0.5244$ $\begin{array}{ll} \text { Solve simultaneously: } & \mu=\mathbf{1 7 0} \\ & \sigma=\mathbf{8 9 . 4 4} \end{array}$	M1   A1   B1   B1   A1   A1   6	Standardise once with $\sqrt{ } 80$ or 80 and $z$, signs may be wrong, allow " $1-$ " errors   Both correct including signs, no cc   $1.28(155)$ seen anywhere, correct to 3 SF [0.524, 0.525] seen anywhere   $\mu$, a.r.t. 170 to 3 SF   (169.98)   $\sigma$, in range [89, 90], not isw   Don't allow surds, e.g. $40 \sqrt{ } 5$	Allow cc, but not 0.1, 0.7, 0.9, 0.3 or $\Phi$ (these) [= .5398, .758, .8159, .6179]   $z$ may be wrong (provided it is z)   Ignore signs   Ignore signs   CWO $\times 2$ but allow from inaccurate $z$ if answer(s) within limits. Look out for -89.44: A0A0
	(ii)	(a)   (b) (c)	In using normal tables   Parent distribution not known   $n$ large, nothing wrong seen   [must be in correct order, no repeats]	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ 3 \end{gathered}$	Or equiv, e.g. "standardising", "dist of $\bar{Y}$ " Allow "it is not normal", etc If numerical, must be of the form " $n>n_{0}$ " or " $n \geq n_{0}$ " with $30 \leq n_{0} \leq 60$	Any reference to $\sigma \sqrt{ } 80$ : B0   No extras   Not " $\geq 80$ ".


Question		Answer	Marks	Guidance	
4		$\mathrm{H}_{0}: \lambda=3.2($ or 0.32$)$ [Allow $\mu$ ]   $\mathrm{H}_{1}: \lambda>3.2($ or 0.32$)$ [Allow $\mu$ ]   $R \sim \operatorname{Po}(3.2)$    $\alpha: \quad$$\mathrm{P}(R \geq 6)=0.1054$     $>0.01$	$\begin{gathered} \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Both correct, B2. One error, e.g. wrong/ no/different symbols, or two-tail, B1   Stated or implied, e.g. $\mathrm{N}(3.2,3.2)$   [0.105, 0.106] before rounding   Explicit comparison with 0.01	But $x, \bar{x}, r, t$ etc: $\mathrm{B} 0 . \mathrm{E}(X)$, words: B 1 E.g. $\mathrm{H}_{0}: \lambda_{0}=3.2, \mathrm{H}_{1}: \lambda_{1}>3.2: \mathrm{B} 1$ $\mathrm{P}(=6)$ or $(\leq 6)$ or $>6$ or normal: no more marks, maximum B2M1.
		$\beta: \quad \mathrm{CR} \geq 9$   and $6<9$, with probability 0.0057	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\mathrm{CR} \geq 9$ stated; allow $\mathrm{CV}=9$ if comparison ft 0.0057 or 0.9943 seen, and 6 compared	
		Do not reject $\mathrm{H}_{0}$. Insufficient evidence of an increase in the number of floods.	M1   A1 ft $7$	Consistent first conclusion   Conclusion, mentions "floods", "evidence"   Not "evidence of no increase" $\begin{aligned} & \mathrm{P}(R \leq 6)=0.9554 ; \mathrm{P}(R>6)=0.0446 ; \mathrm{P}(R=6 \\ & \mathrm{P}(R<6)=0.8946 \text { and compare } 0.99 \text { etc: can } \end{aligned}$	needs correct method and like-withlike comparison, but 0.01 needn't be explicit $=0.0608: \max \text { B2 M1 }$   et full marks. Else A0A0M0A0
5	(i)		M1   A1   B1   3	Upwards parabola, not below $x$-axis Correct place, not extending beyond limits, ignore pointed at $a$ Horizontal straight line, not beyond limits, $y$-intercept below curve (unless curve makes this meaningless)	[scales/annotations not needed] Touching axes (not asymptotic)   Don't need vertical lines   i.e., $3 / 3$ only if wholly right
	(ii)	$\begin{aligned} & \int_{0}^{a} \frac{3}{a^{3}} x(x-a)^{2} \mathrm{~d} x \\ & =\int_{0}^{a} \frac{3}{a^{3}}\left(x^{3}-2 a x^{2}+a^{2} x\right) \mathrm{d} x \\ & =\left[\frac{3}{a^{3}}\left(\frac{x^{4}}{4}-\frac{2 a x^{3}}{3}+\frac{a^{2} x^{2}}{2}\right)\right]_{0}^{a} \\ & =\frac{a}{4} \end{aligned}$	M1   M1   A1   B1   A1   5	Attempt this integral, correct limits seen somewhere   Method for $\int_{x f}(x)$, e.g. multiply out or parts, independent of first M1   Correct form for integration, e.g. multiplied out correctly, or correct first stage of parts Correct indefinite integral $\frac{a}{4} \text { or exact equivalent (e.g. } 0.25 a \text { ) only }$	Multiplication: needs 3 terms   E.g. $\frac{3}{a^{3}} x \frac{(x-a)^{3}}{3}-\int \frac{3}{a^{3}} \frac{(x-a)^{3}}{3} \mathrm{~d} x$   E.g. $\frac{3}{a^{3}} x \frac{(x-a)^{3}}{3}-\frac{3}{a^{3}} \frac{(x-a)^{4}}{12}$   Limits not seen anywhere: can get M0M1A0B1A0


Question		Answer	Marks	Guidance	
5	(iii)	$S$ is concentrated more towards 0 Therefore $T$ has bigger variance	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ 2 \end{gathered}$	Reason that shows understanding of PDF Correct conclusion	Not, e.g., " $T$ is constant"
6		$\begin{aligned} & \mathrm{H}_{0}: \mu=38.4 \quad \text { [Allow } \mathrm{E}(X) \text { both times] } \\ & \mathrm{H}_{1}: \mu \neq 38.4 \\ & \hat{\mu}=\bar{x}=36.68 \\ & \hat{\sigma}^{2}=\frac{50}{49}\left(\frac{70027.37}{50}-36.68^{2}\right)=56.25 \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Both correct: B2. One error e.g. no or different symbols, one-tail etc, B1 36.68 seen anywhere   Use biased variance formula [55.125] Multiply by 50/49 56.25	But $\bar{x}, x, t$ etc B0.   E.g. $\mathrm{H}_{0}: \mu_{0}=38.4, \mathrm{H}_{1}: \mu_{1} \neq 38.4$ : B1   $\mathrm{H}_{0}: \mu=36.68, \mathrm{H}_{1}: \mu \neq 36.68:$ B0B0B1   See below and exemplars   Single formula: M2 or M0. If M0, a   divisor of 49 seen anywhere gets M1   Allow rounded if clearly correct
		$\begin{aligned} & \alpha: \quad z=\frac{36.68-38.4}{\sqrt{56.25 / 50}}=-1.62 \\ & >-2.576 \quad[\text { or } 0.0525>.005] \end{aligned}$	M1   A1   A1ft	Standardise using $\sqrt{50}$ or 50   z, a.r.t. -1.62 or $p=0.0525$   Compare $-z$ with -2.576 or $+z$ with 2.576	If 50 missing, no more marks   $p$ in range [0.052, 0.053]   Ft on $z$. Or $p$ explicitly with 0.005
		$\begin{aligned} & \beta: \mathrm{CV} \text { is } 38.4-2.576 \sqrt{\frac{56.25}{50}}=35.6677 \\ & 36.68>35.6677 \end{aligned}$	M1   A1   A1ft	CV $38.4-z \sigma / \sqrt{50}$, ignore $38.4+$ anything A.r.t 35.7   CV ft and correct comparison	$36.68+z \sigma / \sqrt{ } 50: \text { M1A0A0, M0A0 }$   Ft on wrong $z$ or on $\sqrt{ }$ only
		Do not reject $\mathrm{H}_{0}$.   Insufficient evidence of a change in crop yield	M1   A1ft	Correct first conclusion, needs correct method \& comparison if seen   Contextualised, "evidence" somewhere Not "evidence of no change"	Like-with-like, needs $\mu$ and $\bar{X}$ right way round, needs 50   Ft on wrong TS and/or CV
			Biased $\sigma^{2}$ used No $\sqrt{50}$ $\mathrm{H}_{0} / \mathrm{H}_{1}$ in   11	ariance [55.125; -1.638 or 0.0508 ] can get [-1.529 or 0.0632 , or -0.12162 or 0.4144$]$ : [-0.2293 or 0.4092]: terms of 36.68: can get last 4 marks only if	M1M0A0 M1A0A1M1A1 (max 8) M1M1A1 M1A0A1M1A1 (max 10) M1M1A1M0 (max 6) $68-38.4)$ seen, and not (38.4-36.68)



Question		Answer	Marks   B1	Guidance	
	(ii)	(a) Decreases   (b) Decreases; increased prob (Type I) $\Leftrightarrow$ decreased prob (Type II)	B1   B1   2	One correct answer \& one correct reason or two correct answers   Two correct answers and one correct reason, e.g. "CR becomes larger", etc	Allow from numerical calculation   Allow equivalent or similar reason   Allow from numerical calculation
9	(i)	Constant average rate; or [*] same statement plus "breakdowns independent"   Otherwise it means that they occur at exactly regular intervals	B1   B1   2	State "average" or equiv, "random" or "uniform".   Correct explanation	No extras apart from independence (ignore "singly")   Can't get from [*]
	(ii)	No because breakdowns more likely in rush hours, etc	B1 $\mathbf{1}$	Any plausible reason for either "yes" or "no" that shows understanding of what the statistical concept means	Not "equally likely". Not reason for (in)dependence, unless [*], which needs both conditions if affirmed
	(iii)	$\begin{aligned} & 13 \\ & 0.0739 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ 2 \\ \hline \end{gathered}$	0.074 or a.r.t. 0.0739. Marks independent	
	(iv)	$\begin{array}{ll} e^{-\lambda} \frac{\lambda^{2}}{2!}=0.0072 & \\ \lambda=\sqrt{ }\left(0.0144 e^{\lambda}\right) & \\ & =0.12 e^{\lambda / 2} \\ 8.5 \rightarrow 8.4126 ; & 8.6 \rightarrow 8.8440 \end{array}$   Therefore solution between 8.5 and 8.6	$\begin{gathered} \hline \text { M1* } \\ \text { M1dep } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ \mathbf{5} \\ \hline \end{gathered}$	Correct formula $=$ their 0.0072 seen   Rearrange $e^{-\lambda}$ and square root, to get $\lambda=\mathrm{f}(\lambda)$   Correctly obtain AG, with $k=0.5$   Two correct evaluations to 4 dp at least   All completely correct and deduction stated	Allow even if left with $\mathrm{e}^{\lambda}$ or $\mathrm{e}^{-\lambda}$ or exact equivalent   4 dp explicitly required CWO, except allow if only 3 SF


Question		Answer/Indicative content	Marks	Guidance
1		$\begin{aligned} & \mathrm{N}(35,10.5) \\ & 1-\Phi\left(\frac{40.5-35}{\sqrt{10.5}}\right)=1-\Phi(1.697) \\ & =1-0.9552=\mathbf{0 . 0 4 4 8} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { [5] } \\ \hline \end{gathered}$	Normal, mean 35   Both parameters correct, allow $\sqrt{ } 10.5$ or $10.5^{2}$   Standardise, their $n p$, $n p q$, allow no $\sqrt{ }$ or $10.5^{2}$, allow wrong or no сс   Both 40.5 and $\sqrt{ } n p q$   [Ans 0.0448 or 0.9552 can imply first 4 marks]   Answer, a.r.t. 0.045.   [Exact binomial (0.040232): 0/5]
2	(i)	$\begin{aligned} & n p=147>5 \text { so not Poisson } \\ & n q=3<5 \text { so not normal } \end{aligned}$	M1   A1   A1   [3]	Consider any two conditions, out of $n p, n q$ (allow $n p q$ ), size of $n$, size of $p$ 147 stated, or " $p$ not small", no wrong conditions for Poisson seen 3 [not just 2.94] stated, or " $p$ not close to $1 / 2$ ", no wrong conditions for normal seen (apart from $n p q$ )   If spurious extra reasons seen ("not independent" etc), max 2/3
2	(ii)	$\begin{aligned} & A \sim \mathrm{~B}(150,0.98) \text { so } 150-A \sim \mathrm{~B}(150,0.02) \\ & \approx \mathrm{Po}(3) \\ & \mathrm{P}(\mathrm{~A}<146)=\mathrm{P}(150-A>4)=1-0.8153 \\ & =\mathbf{0 . 1 8 4 7} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	Clearly consider complement, with $p=0.02$ $\operatorname{Po(3)~stated~or~implied~}$ $1-\operatorname{Po}(3)$ probability, e.g. 0.3528 or 0.0839 0.185 or better $\quad$ [Exact binomial ( 0.1830 ): $0 / 4 . \mathrm{N}(3,2.94)$ : M1A0M0A0]
3	(i)	$\frac{\mu-40}{\sigma}=0.9544$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { [2] } \\ & \hline \end{aligned}$	Standardise with $\mu$ and $\sigma$ and equate to $\Phi^{-1}$, allow $\sigma^{2}$ but not $\sqrt{ }$ n, allow 1-, cc, wrong signs. $\mathrm{P}(\ldots)$ : M0 here. But can recover both marks from part (ii). [0.954, 0.955] seen
3	(ii)	$\begin{aligned} & \frac{60-\mu}{\sigma}=0.674(5) \\ & \text { Solve to get } \sigma=12.3 \\ & \mu \end{aligned} \quad[12.278] \text { (18) }$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Standardise as in (i) but do not give if "1-" or wrong signs in either equation [0.674, 0.675] seen. (Other errors lead to loss of A marks.)   $\sigma$, a.r.t. 12.3, cwo   $\mu$, a.r.t. 51.7, cwo [NB: CARE! either or both can be obtained from wrong equns.]   \{note for scoris zoning - (i) to be visible in marking (ii)\}
3	(iii)	Based on a sample/small sample, etc	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Any similar comment, e.g. "frequencies not probabilities" (but not just " $n$ is small") and no wrong comments. Not "because data is grouped". No scattergun.


4	(i)	Snakes must occur independently of one another	B1 [1]	Contextualised ("snakes" must be mentioned); not just "singly" but allow both independent and singly. Allow explanation, e.g. "Occurrence of one snake doesn't affect occurrences of others". Allow "snakes must occur randomly". Otherwise, more than one condition, "e.g. "randomly, independently, singly and at constant rate": 0.
4	(ii)	$\begin{array}{ll} 1-\mathrm{P}(\leq 5) & \\ =1-0.7851 & =\mathbf{0 . 2 1 4 9} \end{array}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1[2] \\ \hline \end{gathered}$	Give M1 for $0.3712,0.1107$ or 0.2307 . Answer 0.7851 is M0. Answer, a.r.t. 0.215
4	(iii)	$\begin{aligned} & \operatorname{Po(3.08)} \\ & \begin{array}{r} e^{-3.08}\left(\frac{3.08^{2}}{2!}+\frac{3.08^{3}}{3!}\right) \quad[=0.2180+0.2238] \\ =\mathbf{0 . 4 4 1 8} \end{array} \end{aligned}$	M1   M1   A1ft   A1   [4]	Po(3.08) stated or implied. [Just $\lambda=3.08$ is M0 unless Poisson later.] Correct formula for Po ( $r>0$ ) used at least once, can be implied Completely correct formula for their $\lambda$ (not 4), can be implied   Final answer, a.r.t. 0.442   No working: last 3 marks either 0 or 3 , no "nearly right".
5	(i)	$\int_{0}^{1} \frac{\pi}{2} \sin (\pi x) \mathrm{d} x=\left[-\frac{1}{2} \cos (\pi x)\right]_{0}^{1}=\frac{1}{2}-\left(-\frac{1}{2}\right)=1$   and function non-negative for all $x$ in range	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[4]} \\ & \hline \end{aligned}$	Attempt to integrate $\mathrm{f}(x)$, limits $(0,1)$ somewhere, evidence e.g. "from calculator" Correctly integrate $\sin (\pi x)$ to $-1 / 2 \cos (\pi x)$   Fully correct, need to see $-1 / 2 \cos (\pi x)$ and final 1 , no wrong working seen Non-negative asserted explicitly, allow positive or equivalent. Not just graph drawn.   (Most will not get this mark!)
5	(ii)	$\mathrm{E}(X)=1 / 2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	Correct shape, through 0, allow below axis outside range. Allow partial curve if clearly part of sine curve.   Fully correct including no extension beyond [0, 1]. Don't worry about grads at ends. Ignore labelling of axes $1 / 2$ or 0.5 , needs to be simplified, no working needed, no ft
5	(iii)	$\begin{aligned} & \int_{q}^{1} \frac{1}{2} \pi \sin (\pi x) \mathrm{d} x=0.75 ;\left\{\left[-\frac{1}{2} \cos (\pi x)\right]_{q}^{1}=0.75\right\} \\ & \cos (\pi q)=0.5 \end{aligned}$   Solve to get $q=1 / 3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Equate integral to correct probability, correct limits somewhere allow complementary probability $(=0.25)$ only if limits $(0, q)$ $\cos (\pi q)=0.5$ or exact equivalent $q=1 / 3$ or a.r.t. 0.333 .   SR: Numerical (no working needed): 0.333 B3, 0.33 B2
5	(iv)	$\int_{0}^{1} \frac{\pi}{2} x^{2} \sin (\pi x) \mathrm{d} x-\left(\frac{1}{2}\right)^{2}$	M1   A1ft   [2]	Integral part correct, allow limits omitted, ignore $d x$ Subtract their $[\mathrm{E}(X)]^{2}$, allow $\mu$ in form of integral, correct limits needed, not just " $\mu^{2}$ " \{note for scoris zoning - (ii) needs to be visible here\}
5	(v)	Values of $x$ in range close to $\mathrm{E}(X)$ are more likely than those further away	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Need to see "values of $x$ " or equivalent, and probably not "occur" Not "the probability of $x$ is greater when $x$ is close to $\mathrm{E}(X)$ " etc. Not "PDF greater ..."


6	(i)	Sample is random	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	Indicate random sample. Allow "unbiased sample" or "randomly selected" or "all equally likely". Allow "representative" provided it’s clearly "of company" (not city) Not just "independent". Withhold if extra wrong bits.
6	(ii)	List population, number sequentially Select using random numbers	B1   B1   [2]	List can be implied; must imply employees or people. "Sequential" can be assumed. Not "select numbers randomly", Don’t need "ignore outside range" etc.   Number randomly and select randomly, B1, but "assign random nos \& arrange", B2   SC: Put names into hat/lottery machine and take them out: $\underline{B 2}$   SC: Systematic: B1 for list, can get second B1 if starting-point random
6	(iii) $\begin{array}{r} \\ \\ \alpha \text { : } \\ \beta \text { : }\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 ; \mathrm{H}_{1}: p<0.4 \\ & \mathrm{~B}(12,0.4) \\ & \\ & \mathrm{P}(\leq 2)=\mathbf{0 . 0 8 3 4} \\ & \quad>0.05 \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Both correct, B2. Allow $\pi$. One error, e.g, $\mu$ or no symbol, B1, but $\bar{x}, z$ etc: B 0 . $\mathrm{B}(12,0.4)$ stated or implied. Can be implied by $\mathrm{N}(4.8,2.88)$ but no further marks. $0.1673,0.0398,0.1513,0.0421:$ M1A0(A1M1A1) $\mathrm{P}(\leq 2)=0.0834 \text {, or } \mathrm{P}(>2)=0.9166$   Compare numerical $\mathrm{P}(\leq 2)$ with 0.05 , or $\mathrm{P}(>2)$ with 0.95
		$\begin{aligned} & \text { CR is } \leq 1 \\ & 0.0196 \text { seen and compare } 2 \text { with } \leq 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	CR is $\leq 1$ stated.   Explicitly compare 2 with CR, probability 0.0196 must be seen
		Do not reject $\mathrm{H}_{0}$. Insufficient evidence that proportion of employees from group $Z$ is less.	M1   A1ft   [7]	Correct first conclusion, needs $\mathrm{P}(\leq 2 \mid p=0.4)$ or fully consistent equivalent   In context (mention "employees", "city" etc), acknowledge uncertainty ("evidence")   Not "there is evidence that the proportion of employees is 0.4 "   FT on wrong $p$-value or wrong critical value if previous mark gained   SC: Normal: B2 M1 max   SC: $\mathrm{P}(=2)$ or $\mathrm{P}(\geq 2)$ or $\mathrm{P}(<2)$ : B2 M1 max   SC: two-tailed: can get B1B0 M1A1A0 M1A1 (don't give second A1 for 0.05)
6	(iv)	Yes as $\mathrm{H}_{0}$ is rejected	$\begin{gathered} \text { M1 } \\ \text { A1 [2] } \\ \hline \end{gathered}$	Realise this changes conclusion (FT!), or "more likely to reject $\mathrm{H}_{0}$ ", "larger CR" More supportive [just "more supportive" without evidence is M0A0]
7	(i)	$\begin{aligned} & \hat{\mu}=\bar{x}=81 \\ & \frac{329800}{50}-81^{2} \quad[=35] \\ & \times \frac{50}{49} ; \quad=35.71 \\ & \begin{aligned} 1-\Phi\left(\frac{90-81}{\sqrt{35.71}}\right)= & 1-\Phi(1.506)=1-0.9339 \\ & =\mathbf{6 . 6 1 \%} \text { or } \mathbf{0 . 0 6 6 1} \end{aligned} \end{aligned}$	B1   M1   M1   A1   M1   A1   [6]	81 only, can be implied   Correct formula for biased estimate, their " 81 ", can be implied   Multiply by 50/49. SC: single formula: M2, or M1 if wrong but divisor 49 anywhere   [can be recovered if correctly done in part (ii)]   A.r.t. 35.7 - can't be recovered from part (ii). Can be implied   Standardise with their $\mu$ and $\sigma$, allow $\sigma^{2}$, cc but not $\sqrt{ } 50$   Answer, a.r.t. $6.6 \%$ or 0.066


7	(ii) $\begin{aligned} & \\ & \\ & \alpha\end{aligned}$	$\begin{aligned} & \mathrm{H}_{0}: \mu=80 \\ & \mathrm{H}_{1}: \mu \neq 80 \\ & \left.z=\frac{81-80}{\sqrt{35.71 / 50}}=1.183 \quad \text { [or } p=0.1183\right] \\ & <1.645 \end{aligned}$	$\begin{gathered} \hline \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	Correct, B2. One error, e.g. wrong or no symbol, >, B1, but $x$ or $\bar{X}$ or $t$ etc, or 81, B0. NB: If both hypotheses involve 81, can't get final M1   Standardise, with $\sqrt{ } 50$, allow $\sqrt{ }$, sign or cc errors, allow from biased variance $z$, a.r.t. 1.18, or $p$, a.r.t. 0.118 . Allow -1.18 .   Their $z<1.645$ or $p>0.05$, not if one-tail. Allow $-1.18>-1.645$. Not just 1.645 seen.
	$\beta$ :	$\begin{aligned} & \text { CV } 80+1.645 \sqrt{\frac{35.71}{50}}=81.39 \\ & 81<81.39 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	$80+z s / \sqrt{ } 50$, allow $\sqrt{ }$ or cc errors, ignore - (no marks for - alone);   $z=1.645$ used in this expression (not just seen), not from one-tail   Compare CV with 81, allow 81.08 from one-tailed $(z=1.282)$ (but not on their $\sigma$ )   SC: $81-1.645 \sqrt{\frac{35.71}{50}}$ : If $\mathrm{H}_{0}: \mu=80$ : (B2) M1B1A0M0A0.   If $\mathrm{H}_{0}: \mu=81$ : (B0) M1B1A1 (79.61) M0A0
		Do not reject $\mathrm{H}_{0}$.   Insufficient evidence that the mean time is not 80 minutes.	M1   A1ft   [7]	Correct first conclusion, needs $\sqrt{ } 50$, correct comparison type, $\mu$ and $\bar{X}$ not consistently wrong way round (thus $\mathrm{H}_{0}: \mu=81$ can get B0 M1A1A1 M0A0, max 3/7)   In method $\beta$, it needs to be clear that comparison involves $\bar{X}$.   Contextualised (mention "time"), acknowledge uncertainty ("evidence that...")   Not "significant evidence that mean time is 80 "   FT on wrong $z$-value or wrong critical value if previous mark gained   SC: One-tailed: can get B1B0 M1A1B0 M1A1, max 5/7   No $\sqrt{5}$ 0: can get B2 M0 B1 M0, max 3/7
7	(iii)	(a) Yes (single observation only)   (b) No, CLT applies to large sample	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	No reason needed, but withhold if wrong reason seen. Allow "yes, no dist ${ }^{\text {n }}$ given" "No" and refer to central limit theorem or "large sample"   \{note for scoris zoning - (a) and (b) to be in single zone \}
8	(i)	$\begin{aligned} & \mathrm{P}(W=0 \mid \lambda=3.6) \\ &=\mathbf{0 . 0 2 7 3} \text { or } 2.73 \% \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Use this conditional probability. Not 0.9727 , not just $2.5 \%$ etc Answer a.r.t. 0.0273 or $2.73 \%$. ISW if appropriate (e.g. " $0.0273, \therefore 2.5 \%$ ")
8	(ii)	$\begin{aligned} & 1-e^{-\lambda_{0}}=0.8 \\ & e^{-\Lambda_{0}}=0.2 \\ & \lambda_{0}=-\ln (0.2) \quad=\mathbf{1 . 6 0 9} \end{aligned}$	M1   A1   M1   A1   [4]	Use $\mathrm{P}\left(W>0 \mid \lambda=\lambda_{0}\right)$, formula needed but allow if wrong   This exact equation, or $e^{\lambda_{0}}=5$, or exact equivalent RHS   Solve using ln or otherwise [independent of first M1, e.g. $-\ln (0.8)=0.223$ is M1 here]   Final answer, exact or a.r.t. 1.61, cwo   SC: No working: 1.60 (tables etc): B0. 1.61 (T\&I): SC B4.

