Mark Scheme 4730 January 2006

1	$\pm (5.4\cos 45^{\circ} - 8.7)$	M1		For attempting to find Δv in i dir'n
	$I\cos\theta = \pm 0.4(5.4\cos 45^{\circ} - 8.7)$	M1 A1		For using $I = m(\Delta v)$ in i direction $(= \mp 1.953)$
	$I\sin\theta = 0.4x5.4\sin45$	B1		(=1.527)
	$I = \sqrt{(1.527^2 + 1.953^2)} \text{ or } \theta = \tan^{-1}[1.527/(-1.953)]$	M1		For using Pythagoras or trig.
	Magnitude is 2.48 kgms ⁻¹	A1		
	Direction is 142° to original dir'n.	A1	[7]	Accept $\theta = 38.0^{\circ}$ with θ shown appropriately
OR		M1		For using Impulse = mass x Δv
		M1		For appropriate use of cosine rule
	$I = 0.4 (5.4^2 + 8.7^2 -$			• •
		A1		
	$2x5.4x8.7\cos 45^{\circ}$) ^{1/2}			
	Magnitude is 2.48 kgms ⁻¹	A1		
		M1		For appropriate use of sine rule
	$\sin \theta / 5.4 = \sin 45^{\circ} / 6.1976$	A1		
	$\theta = 38.0^{\circ}$	A1		

2	(i)	M1		For correct use of Newton's 2 nd law
	$0.5 \mathrm{dv/dt} = 1 + k \mathrm{t}^2$	A1		
	$v = 2t + 2kt^3/3$	A1	[3]	
				SR(max 1/3) for omission of mass but
				otherwise correct
				$v = t + kt^3/3$
				B1
	(ii) $x = t^2 + kt^4/6$	M1		For integration w.r.t. t
	2 = 1 + k/6	M1		For substitution and attempting to solve
				for k
	k = 6	A1		
		M1		For attempting to solve quadratic in t ² for
				t
	t = 2	A1	[5]	With no extra solutions

3	(i)	M1	For use of EE formula
	$EE = \lambda x (5-3)^2 / (2 x 3)$	A1	
	$2 \lambda / 3 = 1.6 \times 9.8 \times 5$	M1	For equating EE and PE
	$\lambda = 117.6 \text{ N}$	A1 [4]	AG
	(ii)	M1	For use of conservation of energy
	$0.5x1.6v^2 = 1.6x9.8x4.5$	A2,1,0	-1 each error
	117 (-1 52/(2-2)		
	117.6x1.5 /(2x3)		
	$117.6x1.5^{2}/(2x3)$ v = 5.75 ms ⁻¹	A1 [4]	

4	Perp. vel. of A after impact = 4	B1		
		M1		For using cons'n of m'm'tum // l.o.c
	[5x0] - 2x4 = 5a + 2b	A1		
		M1		Using N.E.L. // l.o.c.
	$0.75 \times 4 = b-a$	A 1		
		M1		For solving sim. equ.
	Speed of B is 1ms ⁻¹ ; direction			
	//l.o.c. and to the right	A 1		
	$v_A = \sqrt{(4^2 + (-2)^2)}$	M1		For method of finding the speed of A
	tan(angle) = 4/2	M1		For method of finding the direction of A
	Speed of A is 4.47 ms ⁻¹ ;			_
	direction is 63.4° to l.o.c. and to	A1	[10	
	the left]	

5	(i)	M1		For any moment equ. that includes F and all other relevant forces
	1.8F = 0.9x40 + 1.4x9	A2,1,0		-1 each error
	Magnitude is 27 N	A1 [[4]	AG
	(ii) Vertical comp. is 22 N			
	downwards	B1		
		M1		For any moment equ. that includes X and all other relevant forces
	1.2X = (40+9-27)x(3.8-1.8) + 64	A2,1,0	ft	-1 each error.
	x1 (1.2X = 44 + 64)			ft wrong vert. comp.
	Horizontal comp. is 90 N to the	A1 [[5]	
	left			
	(iii) $\mu = 27/[90]$	M1		For use of $\mu = F/R$
	Coefficient of friction is 0.3	A1 ft	[2]	ft wrong answer in (ii)

6	(i)	M1		For use of conservation of energy
	$0.5 \times 0.3 \text{ v}^2 - 0.5 \times 0.3 \times 2^2 =$			
	0.3x9.8x0.5cos60 -			
		A2,1,	0	-1 each error
	0.3 x 9.8 x 0.5 cos θ			
	$v^2 = 8.9 - 9.8\cos\theta$	A1	[4]	AG
	(ii)	M1		For using Newton's 2 nd law radially
	$T + 0.3x9.8\cos\theta = 0.3v^2/0.5$	A1		
	$T + 2.94\cos\theta =$	M1		For correct substitution for v ²
	$0.6(8.9 - 9.8\cos\theta)$			
	Tension is $(5.34 - 8.82\cos\theta)$ N	A 1	[4]	Accept any correct form
	(iii)	M1		For using $T = 0$
	Basic value $\theta = 52.7^{\circ}$	A1 ft		ft any T of the form a - b $\cos \theta$
	Angle = $(360-52.7) - 60$	M1		
	Angle turned through is 247°	A1	[4]	

7	(i)	M1		For using $T = \lambda e/L$ once
	For 180e/1 or 360(0.8-e)/1.2 or			
	$T_A = 180 \times 0.5/1 \text{ or}$			
	$T_{B} = 360 \text{ x}$	A1		
	0.3/1.2			
	$480e = 240 \text{ or } T_A = 90, T_B = 90$	M1		For using $T_A(e) = T_B(e)$ or attempting to show $T_A = T_B$ when $BQ = 1.5$
	$BQ = 1 + 0.5 = 1.5 \text{ m or } T_A = T_B$	A1	[4]	
	(ii) $T_B = 360(0.3 - x)/1.2$	B1		
	$T_A = 180(0.5 + x)$	B 1		
	$1.2d^2x/dt^2 =$	M1		For using Newton's 2 nd
	300(0.3-x) - 180(0.5+x)			law
	$d^2x/dt^2 = -400x$	A1		
	Period is $2\pi / \sqrt{[400]} = 0.314 \text{ s}$	A1	[5]	AG
	(iii)	M1		For using $T_B = 0$
	Max amplitude = $1.5 - 1.2 = 0.3$	A1		-
	m			
	amplitude = $u/\sqrt{400}$ or	M1		For using Amp. = u/ω or 'energy at
	$180 \times 0.5^2 / (2 \times 1) +$			equil. pos'n = energy at max. displ.'
	$360 \times 0.3^2 / (2 \times 1.2)$			
	$+\frac{1}{2}1.2u_{\text{max}}^{2} =$			
	$180 \times 0.8^2 / (2 \times 1)$			
	Maximum value of u is 6	A1	[4]	AG
	(iv) $-0.2 = 0.3\sin 20t$	M1		For relevant trig. equation
	20t = 0.7297 + 3.142	M1		For method of obtaining relevant solution
	Time taken is 0.194s	A1	[3]	-