Mark Scheme 4733 January 2006

1	$(\mathbf{b}, \mathbf{c}) = \mathbf{D} (\mathbf{a}) + \mathbf{D} (\mathbf{c})$	N/1		$\mathbf{P}_{-}(2) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $
1	(i) (a) Po(2): $1 - P(\le 3)$	M1	~	Po(2) tables, "1 – " used
	= 0.1429	A1	2	Answer, a.r.t. 0.143
	(b) Po(2/3): $e^{-2/3} \frac{\left(\frac{2}{3}\right)^2}{2!}$	M1		Parameter 2/3
	(0) 10(2/3): e	M1		Poisson formula correct, $r = 2$, any μ
	= 0.114	A1	3	Answer, a.r.t. 0.114
	(ii) Foxes may congregate so not	B1		Independent/not constant rate/singly used
	independent	B1	2	Any valid relevant application in context
2	N(80/7, 400/49)	B1		80/7, a.e.f (11.43)
4	$13.5 - \frac{80}{7}$	B1		400/49 or 20/7 seen, a.e.f. (8.163 or 2.857)
	$\frac{13.3 - 7}{7}$			1
		M1		Standardise with $np \& npq$ or \sqrt{npq} or nq , no
	= 0.725	A1		\sqrt{n}
	$1 - \Phi(0.725)$	A1		\sqrt{npq} correct
	= 0.2343	M1		13.5 correct
		A1	7	Normal tables used, answer < 0.5
				Answer, a.r.t. 0.234
1				[SR: Binomial, complete expression M1, 0.231
				A1
				Po(80/7) B1, complete expression M1, 0.260
				A1
				Normal approx to Poisson, B1B0 M1A0A1
-				M1A0]
3	$H_0: p = 0.3$	B1		NH stated, must be this form (or π)
	$H_1: p \neq 0.3$	B1		AH stated, must be this form (or π) [μ : B1
	B(8, 0.3)	M1		both]
	$P(\le 4) = 0.9420;$ $P(>4) =$	A1		B(8, 0.3) stated or implied
	0.0580	M1		Any one of these four probabilities seen
	$P(\le 5) = 0.9887;$ $P(> 5) =$			<i>Either</i> compare $P(\geq 5) \& 0.025 / P(\leq 4) \&$
	0.0113	M1		0.975
	Compare 0.025 or critical value 6	A1√	7	<i>Or</i> critical region ≥ 6 with 5
	Do not reject H ₀	AIV	/	H_0 not rejected, can be implied, needs
	Insufficient evidence that			essentially correct method
	manufacturer's claim is wrong			Correct conclusion in context
				[SR: Normal, Poisson: can get
				B2M1A0M0M1A1
				$P(\leq 5)$: first 4 marks. $P(= 5)$: first 3 marks
				only.]
4	(i) B(80, 0.02)	M1		B(80, 0.02) seen or implied, e.g. N(1.6, 1.568)
1	approx Po(1.6)	M1		Po(np) used
	$1 - P(\le 1) = 1 - 0.5249$	M1		
			4	$1 - P(\leq 1)$ used
	= 0.4751	A1	4	Answer, a.r.t. 0.475
				[SR: Exact: M1 M0 M0, 0.477 A1]
	(ii) $P(\le 4) = 0.9763, P(\ge 5) =$	M1		Evidence for correct method, e.g. answer 6
	0.0237	A1		At least one of these probabilities seen
	$P(\le 5) = 0.9940, P(\ge 6) =$	A1	3	Answer 6 only
	0.0060			[SR N(1.6,1.568): $2.326 = (r - 1.6)/\sqrt{1.568}$ M1
	Therefore least value is 6			r = 5 or (with cc) 6 A1
	Therefore least value is 0			Exact: $M1 A0 A1$]
		L		EAdul MII AU AIJ

5	(1) 0 - 11 2	M1	Standardica allow $a^{11}a^{11}w^{1/4}$
Э	(i) $\frac{0-\mu}{\mu/2} = -2,$	A1	Standardise, allow –, allow $\mu^2/4$
	independent of μ	AI A1	z = 2 or -2
	$1 - \Phi(2) = 1 - 0.9772 =$		<i>z</i> -value independent of μ and any relevant statement
	$1 - \Phi(2) = 1 - 0.9772 = 0.0228$	AI	statement
			Answer, a.r.t. 0.023
	(ii) $\Phi[(9-6)/3]$	M1	Standardise and use Φ [no \sqrt{n}]
	$\Phi(1.0) = 0.8413$	A1	0.8413 [not 0.1587]
	$[\Phi(1.0)]^3$	M1	Cube previous answer
	= 0.59546		4 Answer, in range [0.595, 0.596]
	(iii) Annual increases not	B1	1 Independence mentioned, in context. Allow
	independent		"one year affects the next" but not "years not
			random"
6	H ₀ : $\mu = 32$; H ₁ : $\mu > 32$, where μ is	B1	One hypothesis correctly stated, <i>not</i> x or \overline{x} or \overline{w}
	population mean waist measurement	B1	Both completely correct, μ used
	$\overline{W} = 32.3$	B1	Sample mean 32.3 seen
	$s^2 = 52214.50/50 - \overline{W}^2$ [= 1]	M1	Correct formula for s^2 used
	$\hat{\sigma}^2 = 50/49 \times s^2$ [= 50/49 or 1.0204]	M1	Multiply by 50/49 or $$
		N/1	
	$\alpha: z = (32.3 - 32) \times \sqrt{49}$	M1	Correct formula for z, can use s, aef, need $\mu = 32$
	= 2.1	A1 D1	$z = 2.1 \text{ or } 1 - \Phi(z) = 0.0179, not -2.1$
	Compare 2.1 with 3.09	B1	Explicitly compare their 2.1 with 3.09(0) or their
	or 0.0179 with 0.001	N/1	0.0179 with 0.001
	$\beta: CV = 32 + 3.09 \div \sqrt{49}$	M1	$32 + z \times \sigma/\sqrt{n}$ [allow \pm , s, any z]
	= 32.44	B1	$z = 3.09$ and (later) compare \overline{x}
	Compare CV with 32.3	A1√	CV in range [32.4, 32.5], $\sqrt{\text{ on } k}$
	Do not reject H ₀	M1√	Correct conclusion, can be implied, needs
			essentially correct method including \sqrt{n} ,
	Insufficient evidence that waists are		any reasonable σ , but not from $\mu = 32.3$
	actually larger	A1√	Interpreted in context
-	(b) <u>90</u> -	10	
7	(i) $\frac{80-c}{8/\sqrt{12}} = 2.326$	M	Equate standardised variable to Φ^{-1} , allow –
	8/ 12	1	$\sqrt{12}$, 8 correct
	- 74.62	A	2.326 or a.r.t 2.33 seen, signs must be correct
	<i>c</i> = 74.63	1 4 B	Answer, a.r.t. 74.6, cwo, allow \leq or \geq
		Б 1	
		A	
		A 1	
	(ii) (a) Type I error	B 1	"Type I error" stated, needs evidence
	(b) Correct	$1 \sqrt{1}$	"Correct" stated or clearly implied
		B	Wrong <i>c</i> : $74 < c < 75$, $B1\sqrt{B1}$
		$1\sqrt{1}$	c < 74, both "correct", B1. 75 < $c < 80$, both
		1 1	"Type I", B1
			Also allow if only one is answered
	(iii) $\frac{74.63 - \mu}{2} = -1.555$	M1*d	
	(iii) $\frac{74.63 - \mu}{8/\sqrt{12}} = -1.555$	ep	$\frac{c-\mu}{8/\sqrt{12}} = (\pm)\Phi^{-1}$, allow no $\sqrt{12}$ but not 80, not
		~P	0.8264
	Solve for μ	A1√	Correct including sign, $$ on their <i>c</i>
	$\mu = 78.22$	dep*	Solve to find μ , dep, answer consistent with signs
	• • • • •	M1	Answer, a.r.t. 78.2
		A1	
		4	
L			

Mark Scheme

8	(i)	$\int_{0}^{1} x^{n} dx = \left[\frac{x^{n+1}}{n+1}\right]_{0}^{1} = \frac{1}{n+1}$	M1		Integrate x^n , limits 0 and 1
		k/(n+1) = 1 so $k = n+1$	M1		Equate to 1 and solve for k
		K/(n+1) = 1 SO $K = n+1$	A1	3	Answer $n + 1$, not 1^{n+1} , c.w.o.
	(::)	$\int_{0}^{1} x^{n+1} dx = \left[\frac{x^{n+2}}{n+2}\right]_{0}^{1} = \frac{1}{n+2}$	M1		Integrate x^{n+1} , limits 0 and 1, not just $x \cdot x^n$
	(ii)		A1		Answer $\frac{1}{n+2}$
		$\mu = \frac{k}{n+2} = \frac{n+1}{n+2} \mathbf{AG}$			
		n+2 $n+2$	A1	3	Correctly obtain given answer
	(iii)	$\int_{0}^{1} x^{5} dx = \left[\frac{x^{6}}{6}\right]_{0}^{1} [=\frac{1}{6}]$	M1		Integrate x^5 , limits 0 and 1, allow with <i>n</i>
			M1		Subtract $\left(\frac{4}{5}\right)^2$
		$\sigma^2 = \frac{4}{6} - \left(\frac{4}{5}\right)^2 = \frac{2}{75}$	A1	3	Answer $\frac{2}{75}$ or a.r.t. 0.027
	(iv)	$N(\frac{4}{5}, \frac{2}{7500})$	B1		Normal stated
		(5 / 500 /	B1		Mean $\frac{4}{5}$ or $\frac{n+1}{n+2}$
			B1√	3	n+2
					Variance their (iii)/100, a.e.f., allow $$
	(v)	Same distribution, translated	M1		Can be negative translation; or integration, must
					include correct method for integral
		Mean 0	A1√		(Their mean) $-\frac{4}{5}$, c.w.d.
		Variance $\frac{2}{75}$	B1√		Variance same as their (iii), or $\frac{2}{75}$ by integration
			3		