Mark Scheme 4733 January 2006

1		$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Po(2) tables, " 1 - " used Answer, a...t. 0.143
	$\text { (b) } \begin{aligned} \operatorname{Po}(2 / 3): & e^{-2 / 3} \frac{\left(\frac{2}{3}\right)^{2}}{2!} \\ & =0.114 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Parameter 2/3 Poisson formula correct, $r=2$, any μ Answer, a.r.t. 0.114
	(ii) $\begin{aligned} & \text { Foxes may congregate so not } \\ & \text { independent }\end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Independent/not constant rate/singly used Any valid relevant application in context
2	$\begin{aligned} & \begin{array}{l} \mathrm{N}(80 / 7,400 / 49) \\ \frac{13.5-\frac{80}{7}}{\frac{20}{7}} \\ \\ =0.725 \\ 1-\Phi(0.725) \\ =0.2343 \end{array} \\ & =1 \end{aligned}$	B1 B1 M1 A1 A1 M1 A1 7	80/7, a.e.f (11.43) $400 / 49$ or $20 / 7$ seen, a.e.f. (8.163 or 2.857) Standardise with $n p$ \& $n p q$ or $\sqrt{ } n p q$ or $n q$, no $\sqrt{ } n$ $\sqrt{ } n p q$ correct 13.5 correct Normal tables used, answer < 0.5 Answer, a.r.t. 0.234 [SR: Binomial, complete expression M1, 0.231 A1 Po(80/7) B1, complete expression M1, 0.260 A1 Normal approx to Poisson, B1B0 M1A0A1 M1A0]
3	$\mathrm{H}_{0}: p=0.3$ $\mathrm{H}_{1}: p \neq 0.3$ $\mathrm{B}(8,0.3)$ $\mathrm{P}(\leq 4)=0.9420 ; \quad \mathrm{P}(>4)=$ 0.0580 $\mathrm{P}(\leq 5)=0.9887 ; \quad \mathrm{P}(>5)=$ 0.0113 Compare 0.025 or critical value 6 Do not reject H_{0} Insufficient evidence that manufacturer's claim is wrong	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } \sqrt{ } & 7 \end{array}$	NH stated, must be this form (or π) AH stated, must be this form (or π) [μ : B1 both] B $(8,0.3)$ stated or implied Any one of these four probabilities seen Either compare $\mathrm{P}(\geq 5) \& 0.025 / \mathrm{P}(\leq 4) \&$ 0.975 Or critical region ≥ 6 with 5 H_{0} not rejected, can be implied, needs essentially correct method Correct conclusion in context [SR: Normal, Poisson: can get B2M1A0M0M1A1 $P(\leq 5)$: first 4 marks. $P(=5)$: first 3 marks only.]
4	$\text { (i) } \quad \begin{array}{ll} \mathrm{B}(80,0.02) \\ & \text { approx Po(1.6) } \\ & 1-\mathrm{P}(\leq 1)=1-0.5249 \\ & =0.4751 \end{array}$	M1 M1 M1 A1 4	$\mathrm{B}(80,0.02)$ seen or implied, e.g. $\mathrm{N}(1.6,1.568)$ $\mathrm{Po}(n p)$ used $1-\mathrm{P}(\leq 1)$ used Answer, a...t. 0.475 [SR: Exact: M1 M0 M0, 0.477 A1]
	$\begin{aligned} & \text { (ii) } \mathrm{P}(\leq 4)=0.9763, P(\geq 5)= \\ & 0.0237 \\ & 0.0060 \\ & \\ & \\ & \text { Therefore least value is } 6 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Evidence for correct method, e.g. answer 6 At least one of these probabilities seen Answer 6 only $\begin{aligned} & \text { [SR N(1.6,1.568): } 2.326=(r-1.6) / \sqrt{ } 1.568 \text { M1 } \\ & r=5 \text { or (with cc) } 6 \quad \text { A1 } \\ & \text { Exact: M1 A0 A1] } \end{aligned}$

5	$\begin{array}{ll} \hline \text { (i) } \quad \frac{0-\mu}{\mu / 2}=-2, \\ & \text { independent of } \mu \\ & 1-\Phi(2)=1-0.9772= \\ 0.0228 \end{array}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \end{array}$	Standardise, allow -, allow $\mu^{2} / 4$ $z=2 \text { or }-2$ z-value independent of μ and any relevant statement Answer, a.r.t. 0.023
	(ii) $\Phi[(9-6) / 3]$ $\Phi(1.0)=0.8413$ $[\Phi(1.0)]^{3}$ $=0.59546$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Standardise and use Φ [no ri] 0.8413 [not 0.1587] Cube previous answer Answer, in range [0.595, 0.596]
	(iii) $\begin{aligned} & \text { Annual increases not } \\ & \text { independent }\end{aligned}$	B1	Independence mentioned, in context. Allow "one year affects the next" but not "years not random"
6	$\mathrm{H}_{0}: \mu=32 ; \mathrm{H}_{1}: \mu>32$, where μ is population mean waist measurement $\begin{aligned} & \bar{W}=32.3 \\ & s^{2}=52214.50 / 50-\bar{W}^{2} \quad[=1] \\ & \hat{\sigma}^{2}=50 / 49 \times s^{2} \quad[=50 / 49 \text { or } 1.0204] \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	One hypothesis correctly stated, not x or \bar{x} or \bar{w} Both completely correct, μ used Sample mean 32.3 seen Correct formula for s^{2} used Multiply by 50/49 or $\sqrt{ }$
	α : $\quad z=(32.3-32) \times \sqrt{49}$ $=2.1$ Compare 2.1 with 3.09 or 0.0179 with 0.001	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Correct formula for z, can use s, aef, need $\mu=32$ $z=2.1$ or $1-\Phi(z)=0.0179$, not -2.1 Explicitly compare their 2.1 with $3.09(0)$ or their 0.0179 with 0.001
	$\begin{aligned} \beta: \mathrm{CV} & =32+3.09 \div \sqrt{49} \\ & =32.44 \\ & \text { Compare CV with } 32.3 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \sqrt{2} \\ \hline \end{array}$	$32+z \times \sigma / \sqrt{n} \quad$ [allow \pm, s, any z] $z=3.09$ and (later) compare \bar{X} CV in range [32.4, 32.5], $\sqrt{ }$ on k
	Do not reject H_{0} Insufficient evidence that waists are actually larger	M1V A1 $\sqrt{ }$ 10	Correct conclusion, can be implied, needs essentially correct method including $\sqrt{ } n$, any reasonable σ, but not from $\mu=32.3$ Interpreted in context
7	$\begin{aligned} & \text { (i) } \frac{80-c}{8 / \sqrt{12}}=2.326 \\ & c=74.63 \end{aligned}$	M 1 A 1 4 B 1 A 1 	Equate standardised variable to Φ^{-1}, allow $\sqrt{ } 12,8$ correct 2.326 or a.r.t 2.33 seen, signs must be correct Answer, a...t. 74.6, cwo, allow \leq or \geq
	(ii) (a) Type I error (b) Correct	$\begin{array}{ll} \mathrm{B} & \mathbf{1} \\ 1 \sqrt{ } & \mathbf{1} \\ \mathrm{~B} & \\ 1 \sqrt{ } & \end{array}$	"Type I error" stated, needs evidence "Correct" stated or clearly implied Wrong c : $74<c<75$, B1 $\sqrt{ }$ B1 $\sqrt{ }$ $c<74$, both "correct", B1. $75<c<80$, both "Type I", B1 Also allow if only one is answered
	(iii) $\frac{74.63-\mu}{8 / \sqrt{12}}=-1.555$ Solve for μ $\mu=78.22$	$\begin{aligned} & \text { M1*d } \\ & \text { ep } \\ & \text { A1 } \sqrt{ } \\ & \text { dep* } \\ & \text { M1 } \\ & \text { A1 } \\ & 4 \\ & \hline \end{aligned}$	$\frac{c-\mu}{8 / \sqrt{12}}=(\pm) \Phi^{-1}$, allow no $\sqrt{12}$ but not 80 , not 0.8264 Correct including sign, $\sqrt{ }$ on their c Solve to find μ, dep, answer consistent with signs Answer, a.r.t. 78.2

8	$\text { (i) } \quad \begin{aligned} & \int_{0}^{1} x^{n} d x=\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1}=\frac{1}{n+1} \\ & k /(n+1)=1 \text { so } k=n+1 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Integrate χ^{n}, limits 0 and 1 Equate to 1 and solve for k Answer $n+1$, not 1^{n+1}, c.w.o.
	$\text { (ii) } \quad \begin{aligned} & \int_{0}^{1} x^{n+1} d x=\left[\frac{x^{n+2}}{n+2}\right]_{0}^{1}=\frac{1}{n+2} \\ & \mu=\frac{k}{n+2}=\frac{n+1}{n+2} \mathbf{A G} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \quad 3 \end{aligned}$	Integrate x^{n+1}, limits 0 and 1 , not just $x \cdot x^{n}$ Answer $\frac{1}{n+2}$ Correctly obtain given answer
	$\begin{aligned} & \text { (iii) } \quad \int_{0}^{1} x^{5} d x=\left[\frac{x^{6}}{6}\right]_{0}^{1}\left[=\frac{1}{6}\right] \\ & \sigma^{2}=\frac{4}{6}-\left(\frac{4}{5}\right)^{2}=\frac{2}{75} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \end{array}$	Integrate x^{5}, limits 0 and 1 , allow with n Subtract $\left(\frac{4}{5}\right)^{2}$ Answer $\frac{2}{75}$ or a.r.t. 0.027
	(iv) $\mathrm{N}\left(\frac{4}{5}, \frac{2}{7500}\right)$	B1 B1 B1 $\sqrt{ } 3$	Normal stated Mean $\frac{4}{5}$ or $\frac{n+1}{n+2}$ Variance their (iii)/100, a.e.f., allow $\sqrt{ }$
	(v) Same distribution, translated Mean 0 Variance $\frac{2}{75}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \sqrt{ } \\ & \text { B1 } \sqrt{ } \\ & 3 \end{aligned}$	Can be negative translation; or integration, must include correct method for integral (Their mean) - $\frac{4}{5}$, c.w.d. Variance same as their (iii), or $\frac{2}{75}$ by integration

