Mark Scheme 4726 January 2007

1 (i) f(O) = In 3 f $f'(O) = \frac{1}{3}$ $f''(O) = -\frac{1}{3} A.G.$

(ii) Reasonable attempt at Maclaurin

$$f(x) = \ln 3 + \frac{1}{3}x^{-1}/_{18}x^{2}$$

2 (i) f(0.8) = -0.03, f(0.9) = +0.077 (accurately e.g. accept -0.02 t0 -0.04) Explain (change of sign, graph etc.)

(ii) Differentiate two terms
Use correct form of Newton-Ra ph son with
0.8, using their f '(x)
Use their N-R to give one more approximation to 3 d.p. minimum
Get x = 0.835

3 (i) Show area of rect. = ${}^{1}/_{4}(e^{1/16} + e^{1/4} + e^{9/16} + e^{1})$ Show area = 1.7054 Explain the < 1.71 in terms of areas

(ii) Identify areas for > sign Show area of rect. = 1 /₄ (e^{o} + e^{ll16} + $e^{1/4}$ + $e^{9/16}$) Get A > 1.27

4 (i)

(ii) Correct definition of sinh *x* Invert and mult. by eXto AG.

Sub.
$$u = e^{x}$$
 and $du = e^{x} dx$

Replace to $2/(u^2 - 1) du$ Integrate to aln((u - I)/(u + 1)Replace u Bl Bl B1 Clearly derived

Ml Form In3 + $ax + bx^2$, with a,brelated to f "f" $Al\sqrt{J}$ On their values off' and f" SR Use ln(3+x) = In3 + In(1 + 1/3) x) Ml Use Formulae Book to get In3 + Y3X - Y2(VJX)2 = In3 + Y3X - 1/1/9X2 Al

B1
B1
SR Use $x = \sqrt{J(tan^{-1}x)}$ and compare x to $\sqrt{J(tan^{-1}x)}$ for x=0.8, 0.9
Explain "change in sign"
B 1

B1 Get $2x - I I(1 + x^2)$

M1 0.8 - f(0.8)/f '(0.8)

Ml√

Al 3d.p. - accept answer which rounds Ml Or numeric equivalent Al At least 3 d.p. correct Bl AG. Inequality required

B1 Inequality or diagram required Ml Or numeric evidence Al cao; or answer which rounds down

BI Correct shape for $\sinh x$

B1 Correct shape for cosech x

B1 Obvious point $(dy/dx \neq 0)$ /asymptotes clear

B1 May be implied

B1 Must be clear; allow 2/(eX-e -X) as mimimum simplification
M1 Or equivalent, all x eliminated and

not dx = du

Al

A1 $\sqrt{}$ Use formulae book, PT, or atanh⁻¹u Al No need for c

- 5 (i) Reasonable attempt at parts Get xnsin $x \int \sin x$. $nx^{n-1} dx$ Attempt parts again Accurately Clearly derive AG.
 - (ii) Get $I_4 = (^1/_2\pi)^4 12I_2$ or $I_2 = (^1/_2\pi)^2 2I_0$ Show clearly $I_0 = 1$ Replace their values in relation Get $I_4 = ^1/_{16}\pi^4 - 3\pi^2 + 24$
- M1 Involving second integral Al M1 Al Al Indicate $(^1/_2\pi)^n$ and 0 from limits
- B1
 B1 May use *I*₂
 M1
 A1 cao

- 6 (i) $x = \pm a$, y = 2
- (ii) $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$
- B1, B1, B1 Must be =; no working needed
 - B1 Two correct labelled asymptotes $\parallel Ox$ and approaches
 - B1 Two correct labelled asymptotes $\square Oy$ and approaches
 - B1 Crosses at $(\frac{3}{2}a,0)$ (and (0,0) may be implied
 - B1 90° where it crosses Ox; smoothly
 - B1 Symmetry in *Ox*
- 7 (i) Write as $A/t + B/t^2 + (Ct + D)/(t^2 + 1)$

Equate $At(t^2+1) + B(t^2+1) + (Ct+D)t^2$ to $1 - t^2$

Insert t values I equate coeff.

(ii) Derive or quote $\cos x$ in terms of t

Derive or quote $dx = 2 \frac{dt}{(1 + t^2)}$

Get A = C = 0, B = L D = -2

M1 Allow $(At+B)/t^2$; justify $B/t^2 + D/(l + t^2)$ if only used

M1√

M1 Lead to at least two constant values

Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong

Bl

B1

M1 Allow $k(I-t^2)/((t^2(I+t^2)))$ or equivalent Al $\sqrt{1}$ From their k

Al

8 (i) Get $(e^y - e^{-y})/(e^y + e^{-y})$

Sub. in to correct P.F.

Integrate to -1/t -2 $tan^{-1}t$

Use limits to clearly get AG.

(ii) Attempt quad. in e^{γ} Solve for e^{γ} Clearly get AG.

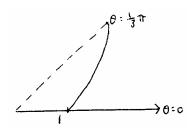
- (iii) Rewrite as $\tanh x = k$ Use (ii) for $x = \sqrt{1} \ln 7$ or equivalent
- (iv) Use of log laws Correctly equate $\ln A = \ln B$ to A = BGet $x = \pm \frac{3}{5}$

B1 Allow $(e^{2Y}-1)/(e^{2y}+1)$ or if x used

M1 Multiply by e^y and tidy

M1

A1


M1 SR Use hyp defⁿ to get quad. in e^X M I Al Solve $e^{2x} = 7$ for x to $\frac{1}{2}$ 1n 7 A

Bl One used correctly

M1 Or $1n(^{A}I_{B}) = 0$

Al

9 (i)

- (ii) U se correct formula with correct r $f \sec^2 x \, dx = \tan x \text{ used}$ Quote $f2 \sec x \tan x \, dx = 2 \sec x$ Replace $\tan^2 x \, \text{by } \sec^2 x 1$ to integrate
 Reasonable attempt to integrate 3 terms And to use limits correctly $Get \, \sqrt{3} + 1 \frac{1}{6}\pi$
- (iii) Use $x = r \cos\theta$, $y = r \sin\theta$, $r = (x^2 + y^2)^{1/2}$ Reasonable attempt to eliminate r, θ Get $y = (x-1)\sqrt{(x^2 + y^2)}$

B1 Shape for correct θ ; ignore other θ Used; start at (r,0)

B1 θ =0, r=1 and increasing r

B1 B1

B1 Or sub. correctly

M1

M1

Al Exact only

M1

M1

A1 Or equivalent