Mark Scheme 4727 January 2007

1	(i) Attempt to show no closure	M1		For showing operation table or otherwise
	$3 \times 3 = 1, 5 \times 5 = 1 OR 7 \times 7 = 1$	A1		For a convincing reason
	OR Attempt to show no identity	M1		For attempt to find identity OR for showing operation
	Show $a \times e = a$ has no solution	A1	2	For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
	(ii) (<i>a</i> =) 1	B1	1	For value of <i>a</i> stated
	(iii) EITHER:			
	$\{e, r, r^2, r^3\}$ is cyclic, (ii) group is not cyclic	B1*		For a pair of correct statements
	$OR: \{e, r, r^2, r^3\}$ has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*		For a pair of correct statements
	$OR: \{e, r, r^2, r^3\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*		For a pair of correct statements
	$OR: \{e, r, r^2, r^3\}$ has element(s) of order 4 (ii) group has no element of order 4	B1*		For a pair of correct statements
	Not isomorphic	B1 (dep 5	*) 2]	For correct conclusion
2	<i>EITHER</i> : $[3, 1, -2] \times [1, 5, 4]$	M1		For attempt to find vector product of both normals
	$\Rightarrow \mathbf{b} = k[1, -1, 1]$	A1		For correct vector identified with b
	e.g. put $x OR y OR z = 0$	M 1		For giving a value to one variable
	and solve 2 equations in 2 unknowns	M1		For solving the equations in the other variables
	Obtain [0, 2, -1] OR [2, 0, 1] OR [1, 1, 0]	A1		For a correct vector identified with a
	<i>OR</i> : Solve $3x + y - 2z = 4$, $x + 5y + 4z = 6$			
	e.g. $y + z = 1$ OR $x - z = 1$ OR $x + y = 2$	M1		For eliminating one variable between 2 equations
	Put $x OR y OR z = t$	M 1		For solving in terms of a parameter
	[x, y, z] = [t, 2-t, -1+t] OR [2-t, t, 1-t] OR [1+t, 1-t, t]	M1		For obtaining a parametric solution for x , y , z
	Obtain [0, 2, -1] OR [2, 0, 1] OR [1, 1, 0]	A1		For a correct vector identified with a
	Obtain $k[1, -1, 1]$	A1	5	For correct vector identified with b
		5		
3	(i) $z = \frac{6 \pm \sqrt{36 - 144}}{\frac{2}{5}}$	M1		For using quadratic equation formula or completing the square
	$z = 3 \pm 3\sqrt{3} i$	AI		For obtaining cartesian values AEF
	Obtain $(r =) 6$	A1		For correct modulus
	Obtain $(\theta =) \frac{1}{3}\pi$	A1	4	For correct argument
	(ii) <i>EITHER</i> : $6^{-3} OR \frac{1}{216}$ seen	B1√		f.t. from their r^{-3}
	$Z^{-3} = 6^{-3}(\cos(-\pi)\pm i\sin(-\pi))$	M1		For using de Moivre with $n = \pm 3$
	Obtain $-\frac{1}{216}$	A1		For correct value
	$OR: \ z^3 = 6z^2 - 36z = 6(6z - 36) - 36z$	M1		For using equation to find z^3
	216 seen	B1		Ignore any remaining z terms
	Obtain $-\frac{1}{216}$	A1	3	For correct value
	2.0	7]	

4 (i) $(y = xz \Rightarrow) \frac{dy}{dx} = x\frac{dz}{dx} + z$	B1	For a correct statement
$x\frac{dz}{dx} + z = \frac{x^2(1-z^2)}{x^2z} = \frac{1}{z} - z$	M1	For substituting into differential equation and attempting to simplify to a variables separable form
$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z} - 2z = \frac{1 - 2z^2}{z}$	A1 3	For correct equation AG
(ii) $\int \frac{z}{1-2z^2} dz = \int \frac{1}{x} dx \Rightarrow -\frac{1}{4} \ln(1-2z^2) = \ln cx$	M1 M1* A1	For separating variables and writing integrals For integrating both sides to ln forms For correct result (<i>c</i> not required here)
$1 - 2z^2 = (cx)^{-4}$	A1√	For exponentiating their ln equation including a constant (this may follow the next M1)
$\frac{x^2 - 2y^2}{x^2} = \frac{c^{-4}}{x^4}$	M1 (dep*)	For substituting $z = \frac{y}{x}$
$x^2(x^2 - 2y^2) = k$	A1 6	For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
5 (i) (a) e, p, p^2	B1	For correct elements
(b) e, q, q^2	B1 2	For correct elements
		SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
(ii) $p^3 = q^3 = e \Rightarrow (pq)^3 = p^3 q^3 = e$	M1	For finding $(pq)^3$ or $(pq^2)^3$
\Rightarrow order 3	A1	For correct order
$(pq^2)^3 = p^3q^6 = p^3(q^3)^2 = e \Rightarrow \text{order } 3$	A1 3	For correct order
		SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv)	B1	For stating <i>e</i> and either pq or p^2q^2
$e, pq, p^2q^2 OR e, pq, (pq)^2$	B1	For all 3 elements and no more
	B1	For stating <i>e</i> and either pq^2 or p^2q
$e, pq^2, p^2q \ OR \ e, pq^2, (pq^2)^2$ $OR \ e, p^2q, (p^2q)^2$	B1 4	For all 3 elements and no more

Mark Scheme

6 (i) (CF $m = -3 \Rightarrow$) Ae^{-3x}	B1 1	For correct CF
(ii) $(y =) px + q$	B1	For stating linear form for PI (may be implied)
$\Rightarrow p+3(px+q)=2x+1$	M1	For substituting PI into DE (needs y and $\frac{dy}{dx}$)
$\Rightarrow p = \frac{2}{3}, q = \frac{1}{9}$	A1 A1	For correct values
$\Rightarrow \mathbf{GS} y = A \mathrm{e}^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√	For correct GS. f.t. from their $CF + PI$
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $e^{3x} \implies \frac{d}{dx}(ye^{3x}) = (2x+1)e^{3x}$	B1	For stating integrating factor
$\Rightarrow y e^{3x} = \frac{1}{3}e^{3x}(2x+1) - \int \frac{2}{3}e^{3x}dx$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y e^{3x} = \frac{2}{3}x e^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
$\Rightarrow \mathbf{GS} y = A \mathrm{e}^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√ 5	For correct GS. f.t. from their * with constant
(iii) <i>EITHER</i> $\frac{dy}{dx} = -3Ae^{-3x} + \frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow -3A + \frac{2}{3} = 0$	M1	For putting $\frac{dy}{dx} = 0$ when $x = 0$
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct solution
$OR \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ x = 0 \implies 3y = 1$	M1	For using original DE with $\frac{dy}{dx} = 0$ and $x = 0$ to find y
$\Longrightarrow \frac{1}{3} = A + \frac{1}{9}$	M1	For using their GS with y and $x = 0$ to find A
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1 3	For correct solution
(iv) $y = \frac{2}{3}x + \frac{1}{9}$	B1√ 1 10	For correct function. f.t. from linear part of (iii)

4727

7 (i) <i>EITHER</i> : (AG is $\mathbf{r} =$) [6, 4, 8] + t k[1, 0, 1] or [3, 4, 5] + t k[1, 0, 1]	B1	For a correct equation
Normal to <i>BCD</i> is	M1	For finding vector product of any two of $\pm [1, -4, -1], \pm [2, 1, 1], \pm [1, 5, 2]$
$\mathbf{n} = k [1, 1, -3]$	A1	For correct n
Equation of <i>BCD</i> is $\mathbf{r} \cdot [1, 1, -3] = -6$	A1	For correct equation (or in cartesian form)
Intersect at $(6+t)+4+(-3)(8+t) = -6$	M1	For substituting point on AG into plane
$t = -4 \ (t = -1 \text{ using } [3, 4, 5]) \Rightarrow \mathbf{OM} = [2, 4, 4]$	A1	For correct position vector of M AG
<i>OR</i> : (AG is $\mathbf{r} =$) [6, 4, 8] + tk [1, 0, 1] <i>or</i> [3, 4, 5] + tk [1, 0, 1]	B1	For a correct equation
$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}, \text{ where}$ $\mathbf{u} = [2, 1, 3] \text{ or } [1, 5, 4] \text{ or } [3, 6, 5]$ $\mathbf{v}, \mathbf{w} = \text{ two of } [1, -4, -1], [1, 5, 2], [2, 1, 1]$	M1 A1	For a correct parametric equation of <i>BCD</i>
$\begin{array}{rcl} (x =) & 6+t & = & 2+\lambda+\mu\\ \text{e.g.} & (y =) & 4 & = & 1-4\lambda+5\mu\\ & (z =) & 8+t & = & 3-\lambda+2\mu \end{array}$	M1	For forming 3 equations in t , λ , μ from line and plane, and attempting to solve them
$t = -4 \text{ or } \lambda = -\frac{1}{2}, \ \mu = \frac{1}{2}$	A1	For correct value of t or λ , μ
\Rightarrow OM = [2, 4, 4]	A1 6	For correct position vector of M AG
(ii) A, G, M have $t = 0, -3, -4$ OR $AG = 3\sqrt{2}, AM = 4\sqrt{2}$ OR AG = [-3, 0, -3], AM = [-4, 0, -4] $\Rightarrow AG : AM = 3:4$	B1 1	For correct ratio AEF
(iii) $\mathbf{OP} = \mathbf{OC} + \frac{4}{3}\mathbf{CG}$	M1	For using given ratio to find position vector of P
$= \left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]$	A1 2	For correct vector
(iv) <i>EITHER</i> : Normal to <i>ABD</i> is	M1	For finding vector product of any two of $\pm[4, 3, 5], \pm[1, 5, 2], \pm[3, -2, 3]$
$\mathbf{n} = k [19, 3, -17]$	A1	For correct n
Equation of <i>ABD</i> is $r.[19, 3, -17] = -10$	M1	For finding equation (or in cartesian form)
$19.\frac{11}{3} + 3.\frac{11}{3} - 17.\frac{16}{3} = -10$	A1	For verifying that <i>P</i> satisfies equation
<i>OR</i> : Equation of <i>ABD</i> is $\mathbf{r} = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$ (etc.)	M1	For finding equation in parametric form
$\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$	M1	For substituting <i>P</i> and solving 2 equations for λ , μ
$\lambda = -\frac{2}{3}, \mu = \frac{1}{3}$	A1	For correct λ , μ
	A1	For verifying 3rd equation is satisfied
<i>OR</i> : AP = $\begin{bmatrix} -\frac{7}{3}, -\frac{1}{3}, -\frac{8}{3} \end{bmatrix}$	M1	For finding 3 relevant vectors in plane <i>ABDP</i>
$\Delta \mathbf{B} = \begin{bmatrix} -4 & -3 & -5 \end{bmatrix} \Delta \mathbf{D} = \begin{bmatrix} -3 & 2 & -3 \end{bmatrix}$	AI M1	For correct AP or BP or DP For finding AB AD or DA DD or DP DA
$\Rightarrow AB + AD = [-7, -1, -8]$	1011	For moning AD, AD OF DA, DD OF DD, DA
$\rightarrow \Delta \mathbf{P} - \frac{1}{2} (\Delta \mathbf{R} + \Delta \mathbf{D})$	A1 4	For varifying linear relationship
$\rightarrow AI - \frac{1}{3}(AD \cap AD)$	13	

8 (i) $\cos 4\theta + i \sin 4\theta =$ $c^4 + 4ic^3s - 6c^2s^2 - 4ics^3 + s^4$ $\Rightarrow \sin 4\theta = 4c^3s - 4cs^3$	M1	For using de Moivre with $n = 4$
and $\cos 4\theta = c^4 - 6c^2s^2 + s^4$	A1	For both expressions
$\Rightarrow \tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$	M1 A1 4	For expressing $\frac{\sin 4\theta}{\cos 4\theta}$ in terms of <i>c</i> and <i>s</i> For simplifying to correct expression
(ii) $\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$	B1 1	For inverting (i) and using $\cot \theta = \frac{1}{\tan \theta}$ or $\tan \theta = \frac{1}{\cot \theta}$. AG
(iii) $\cot 4\theta = 0$	B1	For putting $\cot 4\theta = 0$
Put $x = \cot^2 \theta$ $\theta = \frac{1}{8}\pi \Rightarrow x^2 - 6x + 1 = 0$ $OR x^2 - 6x + 1 = 0 \Rightarrow \theta = \frac{1}{8}\pi$	B1 B1 3	(can be awarded in (iv) if not earned here) For putting $x = \cot^2 \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta = \frac{1}{8}\pi$ <i>OR</i> For deducing $\theta = \frac{1}{8}\pi$ from (ii) and quadratic
(iv) $4\theta = \frac{3}{2}\pi OR \frac{1}{2}(2n+1)\pi$	M1	For attempting to find another value of θ
2nd root is $x = \cot^2\left(\frac{3}{8}\pi\right)$	A1	For the other root of the quadratic
$\Rightarrow \cot^2\left(\frac{1}{8}\pi\right) + \cot^2\left(\frac{3}{8}\pi\right) = 6$	M1	For using sum of roots of quadratic
$\Rightarrow \csc^2\left(\frac{1}{8}\pi\right) + \csc^2\left(\frac{3}{8}\pi\right) = 8$	M1 A1 5 13	For using $\cot^2 \theta + 1 = \csc^2 \theta$ For correct value