Mark Scheme 4733 January 2007

For over-specified answers (>6SF where inappropriate) deduct 1 mark, no more than once in paper.

$\begin{gathered} \mathbf{1} \quad \frac{22-\mu}{5}=-\Phi^{-1}(0.242) \\ =-0.7 \\ \mu=\mathbf{2 5 . 5} \end{gathered}$	M1 A1 B1 A1 4	Standardise with Φ^{-1}, allow +, " 1 -" errors, cc, $\sqrt{5}$ or 5^{2} Correct equation including signs, no cc, can be wrong Φ^{-1} 0.7 correct to 3 SF , can be + Answer 25.5 correct to 3 SF
2 (i) $900 \div 12=75$	B1 1	75 only
(ii) (a) True, first choice is random (b) False, chosen by pattern	 B1 1 B1 $\mathbf{1}$	True stated with reason based on first choice False stated, with any non-invalidating reason
(iii) Not equally likely e.g. $P(1)=0$, or triangular	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$	"Not equally likely", or "Biased" stated Non-invalidating reason
3 Let R be the number of 1 s $\begin{aligned} & R \sim \mathrm{~B}(90,1 / 6) \\ & \approx \mathrm{N}(15,12.5) \\ & \frac{13.5-15}{\sqrt{12.5}} \\ & \mathbf{0 . 6 6 4 3} \end{aligned}$	B1 B1 B1 M1 A1 A1 6	$B(90,1 / 6)$ stated or implied, e.g. $\operatorname{Po}(15)$ Normal, $\mu=15$ stated or implied 12.5 or $\sqrt{12.5}$ or 12.5^{2} seen Standardise, $n p$ and $n p q$, allow errors in $\sqrt{ }$ or cc or both $\sqrt{ }$ and cc both right Final answer, a.r.t. 0.664. [Po(15): 1/6]
$\begin{array}{\|lll} \hline 4 & \text { (i) } & \bar{w}=100.8 \div 14=7.2 \\ & & \frac{938.70}{14}-\bar{w}^{2}[=15.21] \\ & & \times 14 / 13 \\ & =\mathbf{1 6 . 3 8} \end{array}$	B1 M1 M1 A1 4	7.2 seen or implied Use $\Sigma w^{2}-$ their \bar{w}^{2} Multiply by $n /(n-1)$ Answer, a.r.t. 16.4
(ii) $\quad \begin{aligned} & \mathrm{N}(7.2,16.38 \div 70) \\ & \\ & {[=\mathrm{N}(7.2,0.234)]}\end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } \sqrt{ } \\ \text { B1 } \sqrt{ } & 3 \\ \hline \end{array}$	Normal stated Mean their $\bar{w} V$ Variance [their (i) $\sqrt{ } \div 70$], allow arithmetic slip
5 (i) $\lambda=1.2$ Tables or formula used $\mathbf{0 . 6 6 2 6}$	B1 M1 A1 3	Mean 1.2 stated or implied Tables or formula [allow ± 1 term, or " 1 -"] correctly used Answer in range [0.662, 0.663] $\text { [.3012, } 6990,6268 \text { or } 8795: \text { B1M1A0] }$
(ii) $\quad \begin{aligned} & \mathrm{B}(20,0.6626 \sqrt{13} \\ & \\ & \\ & { }^{20} \mathrm{C}_{13} 0.66266^{13} \times 0.3374^{7} \\ & \mathbf{0 . 1 8 3}\end{aligned}$	M1 M1 A1 3	$\mathrm{B}(20, p), p$ from (i), stated or implied Correct formula for their p Answer, a.r.t. 0.183
(iii) Let S be the number of stars $\begin{aligned} & S \sim \operatorname{Po}(24) \\ & \approx \mathrm{N}(24,24) \\ & \frac{29.5-24}{\sqrt{24}}[=1.1227] \\ & \mathbf{0 . 8 6 9 2} \end{aligned}$	B1 B1 B1 $\sqrt{ }$ M1 A1 A1 6	Po(24) stated or implied Normal, mean 24 Variance 24 or 24^{2} or $\sqrt{ } 24$, $\sqrt{ }$ if 24 wrong Standardise with λ, λ, allow errors in cc or $\sqrt{ }$ or both $\sqrt{ } \lambda$ and cc both correct Answer, in range [0.868, 0.8694]

6	$\begin{align*} & {\left[a x+\frac{b x^{2}}{2}\right]_{0}^{2}=1} \tag{i}\\ & 2 a+2 b=1 \end{align*}$	M1 B1 A1 3	Use total area $=1$ Correct indefinite integral, or convincing area method Given answer correctly obtained, " 1 " appearing before last line [if $+c$, must see it eliminated]
(ii)	$\begin{aligned} & {\left[\frac{a x^{2}}{2}+\frac{b x^{3}}{3}\right]_{0}^{2}=\frac{11}{9}} \\ & 2 a+\frac{8 b}{3}=\frac{11}{9} \end{aligned}$ Solve simultaneously $a=\frac{1}{6}, \quad b=\frac{1}{3}$	M1 B1 A1 M1 A1 A1 6	Use $\int_{x f}(x) \mathrm{d} x=11 / 9$, limits 0,2 Correct indefinite integral Correct equation obtained, a.e.f. Obtain one unknown by correct simultaneous method a correct, $1 / 6$ or a.r.t 0.167 b correct, $1 / 3$ or a.r.t. 0.333
	$\begin{aligned} & \text { e.g. } \mathrm{P}(<11 / 9)=0.453 \text {, or } \\ & {\left[a x+\frac{b x^{2}}{2}\right]_{0}^{m}=0.5, m=1.303 \text { or } \frac{\sqrt{13}-1}{2}} \end{aligned}$ Hence median > mean	M1 M1 A1 A1 $\sqrt{ } 4$	Use $\mathrm{P}(x<11 / 9)$, or integrate to find median m Substitute into $\int \mathrm{f}(x) \mathrm{d} x, \sqrt{ }$ on a, b, limits 0 and $11 / 9$ or m [if finding m, need to solve 3 -term quadratic] Correct numerical answer for probability or m Correct conclusion, cwo ["Negative skew", M2; median > mean, A2]
$7 \quad$ (i) α : β :	$\begin{aligned} & \left.\hline \mathrm{H}_{0}: p=0.35 \quad \text { or } p \geq 0.35\right] \\ & \mathrm{H}_{1}: p<0.35 \\ & \mathrm{~B}(14,0.35) \\ & \mathrm{P}(\leq 2) \quad=0.0839>0.025 \\ & \mathrm{CR} \leq 1 \text {, probability } 0.0205 \\ & \text { Do not reject } \mathrm{H}_{0} \text {. Insufficient } \\ & \text { evidence that proportion that can } \\ & \text { receive Channel } \mathrm{C} \text { is less than } 35 \% \end{aligned}$	B1 B1 M1 A1 B1 M1 A1 $\sqrt{ } 7$	Each hypothesis correct, B1+B1, allow $p \geq .35$ if .35 used [Wrong or no symbol, B1, but r or x or \bar{x} : B0] Correct distribution stated or implied, can be implied by $\mathrm{N}(4.9, \ldots)$, but not $\mathrm{Po}(4.9)$ 0.0839 seen, or $\mathrm{P}(\leq 1)=0.0205$ if clearly using CR Compare binomial tail with 0.025 , or $R=2$ binomial CR Do not reject $\mathrm{H}_{0}, \sqrt{ }$ on their probability, not from N or Po or $\mathrm{P}(<2)$; Contextualised conclusion $\sqrt{ }$
(ii)	$\begin{aligned} & \mathrm{B}(8,0.35): \mathrm{P}(0)=0.0319 \\ & \mathrm{~B}(9,0.35): \mathrm{P}(0)=0.0207 \end{aligned}$ Hence largest value of n is 8	M1 A1 A1 A1 4	Attempt to find $\mathrm{P}(0)$ from $\mathrm{B}(n, 0.35)$ One correct probability $\quad[\mathrm{P}(\leq 2)=.0236, n=18$: M1A1] Both probabilities correct Answer 8 or ≤ 8 only, needs minimum M1A1
or	$\begin{aligned} & 0.65^{n}>0.025 ; n \ln 0.65>\ln 0.025 \\ & 8.56 ; \quad \text { largest value of } n=8 \end{aligned}$	$\begin{aligned} & \text { M1M1 } \\ & \text { A1A1 } \end{aligned}$	$p^{n}>0.025$, any relevant p; take \ln, or T\&I to get 1 SF In range [8.5, 8.6]; answer 8 or ≤ 8 only
8 (i) α :	$\frac{100.7-102}{5.6 / \sqrt{80}}=-2.076$ Compare with -2.576	M1 A1 B1 3	Standardise 100.7 with $\sqrt{ } 80$ or 80 a.r.t. -2.08 obtained, must be - , not from $\mu=100.7$ -2.576 or -2.58 seen and compare z, allow both +
$\text { or } \beta \text { : }$	$\begin{gathered} \Phi(-2.076)=0.0189 \\ \text { [or } \Phi(2.076)=0.981] \\ \text { and compare with } 0.005 \text { [or } 0.995 \text {] } \end{gathered}$	M1 A1 B1 (3)	Standardise 100.7 with $\sqrt{ } 80$ or 80 a.r.t. 0.019 , allow 0.981 only if compared with 0.995 Compare correct tail with 0.005 or 0.995
$\text { or } \gamma \text { : }$	$\begin{aligned} & 102-\frac{k \times 5.6}{\sqrt{80}} \\ & k=2.576, \text { compare } 100.7 \\ & 100.39 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 (3) } \end{aligned}$	This formula, allow,+ 80 , wrong SD, any k from Φ^{-1} $k=2.576 / 2.58$, - sign, and compare 100.7 with CV CV a.r.t. 100.4
	Do not reject H_{0} Insufficient evidence that quantity of SiO_{2} is less than 102	M1 A1 2	Reject/Do not reject, $\sqrt{ }$, needs normal, 80 or $\sqrt{80}, \Phi^{-1}$ or equivalent, correct comparison, not if clearly $\mu=100.7$ Correct contextualised conclusion
(ii) (a)	$\begin{align*} & \frac{c-102}{5.6 / \sqrt{n}}=-2.326 \\ & 102-c=\frac{13.0256}{\sqrt{n}} \tag{AG} \end{align*}$	M1 B1 A1 3	One equation for c and n, equated to Φ^{-1}, allow cc, wrong sign, $\sigma^{2} ; \quad 2.326$ or 2.33 Correctly obtain given equation, needs in principle to have started from $c-102,-2.326$
(b)	$\frac{c-100}{5.6 / \sqrt{n}}=1.645 \quad \text { or } \quad c-100=\frac{9.212}{\sqrt{n}}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	Second equation, as before Completely correct, aef
(c)	Solve simultaneous equations $\begin{aligned} & V_{n}=11.12 \\ & n_{\text {min }}=124 \\ & c=100.83 \end{aligned}$	M1 A1 A1 A1 4	Correct method for simultaneous equations, find c or \sqrt{n} \sqrt{n} correct to 3 SF $n_{\min }=124 \text { only }$ Critical value correct, 100.8 or better

