Mark Scheme 4733 January 2007 For over-specified answers (> 6SF where inappropriate) deduct 1 mark, no more than once in paper.

1	22 11		M 1		(1, 1, 1) $(1, 3, -1, 1)$ $(1, 2)$ $(1, 2)$
1	$\frac{22-\mu}{5}$	$= -\Phi^{-1}(0.242)$	M1		Standardise with Φ^{-1} , allow +, "1 –" errors, cc, $\sqrt{5}$ or 5^2
	5	= -0.7	A1		Correct equation including signs, no cc, can be wrong Φ^{-1}
	$\mu = 25.$		B1		0.7 correct to 3 SF, can be +
	$\mu - 23.$		A1	4	Answer 25.5 correct to 3 SF
2	(i)	900 ÷ 12 = 75	B1	1	75 only
	(ii) (a)) True, first choice is random	B1	1	True stated with reason based on first choice
	(b) False, chosen by pattern	B1	1	False stated, with any non-invalidating reason
	(iii)	Not equally likely	M1		"Not equally likely", or "Biased" stated
		e.g. $P(1) = 0$, or triangular	A1	2	Non-invalidating reason
3	Let R b	e the number of 1s	B1		B(90, 1/6) stated or implied, e.g. Po(15)
		$R \sim B(90, 1/6)$	B1		Normal, $\mu = 15$ stated or implied
		≈ N(15, 12.5)	B1		12.5 or $\sqrt{12.5}$ or 12.5^2 seen
		13.5-15 [= -0.424]	M1		Standardise, <i>np</i> and <i>npq</i> , allow errors in $$ or cc or both
		$\sqrt{12.5}$	A1		$\sqrt{\text{and cc both right}}$
		0.6643	A1	6	Final answer, a.r.t. 0.664. [Po(15): 1/6]
4	(i)	$\overline{w} = 100.8 \div 14 = 7.2$	B1		7.2 seen or implied
	(-)		M1		Use Σw^2 – their \overline{w}^2
		$\frac{938.70}{14} - \overline{w}^2 \ [= 15.21]$			
		× 14/13	M1		Multiply by $n/(n-1)$
		= 16.38	A1	4	Answer, a.r.t. 16.4
	(ii)	N(7.2, 16.38 ÷ 70)	B1		Normal stated
		[= N(7.2, 0.234)]	B1√		Mean their \overline{w}
			B1√	3	Variance [their (i) $\sqrt{\div 70}$], allow arithmetic slip
5	(i)	$\lambda = 1.2$	B1		Mean 1.2 stated or implied
		Tables or formula used	M1		Tables or formula [allow ± 1 term, or "1 –"] correctly used
		0.6626	A1	3	Answer in range [0.662, 0.663]
					[.3012, .6990, .6268 or .8795: B1M1A0]
	(ii)	B(20, 0.6626√)	M1		B(20, p), p from (i), stated or implied
		$^{20}C_{13} 0.6626^{13} \times 0.3374^{7}$	M1		Correct formula for their <i>p</i>
		0.183	A1	3	Answer, a.r.t. 0.183
	(iii)	Let <i>S</i> be the number of stars	B1		Po(24) stated or implied
	. /	$S \sim Po(24)$	B1		Normal, mean 24
		≈ N(24, 24)	B1√		Variance 24 or 24^2 or $\sqrt{24}$, $\sqrt{124}$ if 24 wrong
			M1		Standardise with λ , λ , allow errors in cc or $$ or both
		$\frac{29.5 - 24}{\sqrt{24}} [= 1.1227]$	A1		$\sqrt{\lambda}$ and cc both correct
		0.8692	A1	6	Answer, in range [0.868, 0.8694]
L					

6	(i)	$\left[ax + \frac{bx^2}{2}\right]_{2}^{2} = 1$	M1		Use total area $= 1$
	(-)	$\left \frac{ax+2}{2} \right _{0} = 1$	B 1		Correct indefinite integral, or convincing area method
		$2a + 2b = 1 \qquad \mathbf{AG}$	A1	3	Given answer correctly obtained, "1" appearing before
					last line [if $+ c$, must see it eliminated]
	(ii)	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]_0^2 = \frac{11}{9}$	M1		Use $\int xf(x)dx = 11/9$, limits 0, 2
		$\begin{bmatrix} 2 & 3 \end{bmatrix}_0^{-9}$	B 1		Correct indefinite integral
		$2a + \frac{8b}{3} = \frac{11}{9}$	A1		Correct equation obtained, a.e.f.
		5 /	M1		Obtain one unknown by correct simultaneous method
		Solve simultaneously	A1		a correct, $1/6$ or a.r.t 0.167
		$a = \frac{1}{6}, b = \frac{1}{3}$	A1	6	<i>b</i> correct, 1/3 or a.r.t. 0.333
	(iii)	e.g. $P(<11/9) = 0.453$, or	M1		Use P($x < 11/9$), <i>or</i> integrate to find median <i>m</i>
	(111)		M1		Substitute into $\int f(x) dx$, $\sqrt{\text{ on } a, b}$, limits 0 and 11/9 or m
		$\left[ax + \frac{bx^2}{2}\right]_{m}^{m} = 0.5, m = 1.303 \text{ or } \frac{\sqrt{13} - 1}{2}$			[if finding <i>m</i> , need to solve 3-term quadratic]
			A1		Correct numerical answer for probability or m
		Hence median > mean	Alv	4	Correct conclusion, cwo
				_	["Negative skew", M2; median > mean, A2]
7	(i)	$H_0: p = 0.35$ [or $p \ge 0.35$]	B 1		Each hypothesis correct, B1+B1, allow $p \ge .35$ if .35 used
	(1)	$H_0: p = 0.05$ [or $p = 0.05$] $H_1: p < 0.35$	B1		[Wrong or no symbol, B1, but <i>r</i> or <i>x</i> or \overline{x} : B0]
		B(14, 0.35)	M1		Correct distribution stated or implied, can be implied by
	α:	$P(\le 2) = 0.0839 > 0.025$			N(4.9,), but <i>not</i> Po(4.9)
	α. β:	$CR \le 1$, probability 0.0205	A1		0.0839 seen, or $P(\le 1) = 0.0205$ if clearly using CR
	p.	Do not reject H_0 . Insufficient	B 1		Compare binomial tail with 0.025, or $R = 2$ binomial CR
		evidence that proportion that can	M1		Do not reject H_0 , $$ on their probability, <i>not</i> from N or Po
		receive Channel C is less than 35%	A1v	7	or P(< 2); Contextualised conclusion $$
	(ii)	B(8, 0.35): P(0) = 0.0319	M1		Attempt to find P(0) from $B(n, 0.35)$
	(11)	B(9, 0.35): P(0) = 0.0317 B(9, 0.35): P(0) = 0.0207	A1		One correct probability $[P(\le 2) = .0236, n = 18: M1A1]$
		$\mathbf{B}(3, 0.35)$. $\mathbf{I}(0) = 0.0207$	A1		Both probabilities correct
		Hence largest value of <i>n</i> is 8	A1	4	Answer 8 or \leq 8 only, needs minimum M1A1
	or	$0.65^n > 0.025; n \ln 0.65 > \ln 0.025$	MIN		$p^n > 0.025$, any relevant p; take ln, or T&I to get 1 SF
	07	8.56; largest value of $n = 8$	A1A1		In range [8.5, 8.6]; answer 8 or \leq 8 only
8	(*)		M1	11	Standardise 100.7 with $\sqrt{80}$ or 80
0	(i) α:	$\frac{100.7 - 102}{5.6 / \sqrt{80}} = -2.076$	A1		
			B1	3	a.r.t. -2.08 obtained, must be $-$, <i>not</i> from $\mu = 100.7$ -2.576 or -2.58 seen and compare <i>z</i> , allow both +
	0.	Compare with -2.576	M1		Standardise 100.7 with $\sqrt{80}$ or 80
	or β :	$\Phi(-2.076) = 0.0189$	A1		
		$[or \Phi(2.076) = 0.981]$	B1	(2)	a.r.t. 0.019, allow 0.981 only if compared with 0.995
		and compare with 0.005 [or 0.995]		(3)	Compare correct tail with 0.005 or 0.995
	or γ :	$102 - \frac{k \times 5.6}{\sqrt{90}}$	M1		This formula, allow +, 80, wrong SD, any <i>k</i> from Φ^{-1}
		$\sqrt{80}$	B1		h 0.57(/0.59) sign and a man 100.7 with CV
		k = 2.576, compare 100.7	BI A1	(2)	k = 2.576/2.58, - sign, and compare 100.7 with CV
		100.39		(\mathbf{J})	CV a.r.t. 100.4
		Do not reject H_0	M1		Reject/Do not reject, $$, needs normal, 80 or $\sqrt{80}$, Φ^{-1} or
		Insufficient evidence that quantity	A 1	•	equivalent, correct comparison, <i>not</i> if clearly $\mu = 100.7$
		of SiO_2 is less than 102	A1	2	Correct contextualised conclusion
	(ii) (a)	$\frac{c - 102}{5.6/\sqrt{n}} = -2.326$	M1		One equation for c and n, equated to Φ^{-1} , allow cc,
		$5.6/\sqrt{n}$	B1	-	wrong sign, σ^2 ; 2.326 or 2.33
		$102 - c = \frac{13.0256}{\sqrt{n}}$ AG	A1	3	Correctly obtain given equation, needs in principle to
					have started from $c - 102, -2.326$
	(b)	$\frac{c-100}{5.6/\sqrt{n}} = 1.645$ or $c-100 = \frac{9.212}{\sqrt{n}}$	M1	-	Second equation, as before
		$5.6/\sqrt{n}$ \sqrt{n}	A1	2	Completely correct, aef
	(c)	Solve simultaneous equations	M1		Correct method for simultaneous equations, find <i>c</i> or \sqrt{n}
		$\sqrt{n} = 11.12$	A1		\sqrt{n} correct to 3 SF
		$n_{min} = 124$	A1		$n_{min} = 124$ only
		<i>c</i> = 100.83	A1	4	Critical value correct, 100.8 or better