## ADVANCED GCE UNIT <br> MATHEMATICS (MEI)

Applications of Advanced Mathematics (C4)
Paper A

## TUESDAY 23 JANUARY 2007

## Additional materials:

Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

## INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- $\quad$ The total number of marks for this paper is 72 .


## ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.


## NOTE

- This paper will be followed by Paper B: Comprehension.


## Section A (36 marks)

1 Solve the equation $\frac{1}{x}+\frac{x}{x+2}=1$.

2 Fig. 2 shows part of the curve $y=\sqrt{1+x^{3}}$.


Fig. 2
(i) Use the trapezium rule with 4 strips to estimate $\int_{0}^{2} \sqrt{1+x^{3}} \mathrm{~d} x$, giving your answer correct to 3 significant figures.
(ii) Chris and Dave each estimate the value of this integral using the trapezium rule with 8 strips. Chris gets a result of 3.25 , and Dave gets 3.30 . One of these results is correct. Without performing the calculation, state with a reason which is correct.

3 (i) Use the formula for $\sin (\theta+\phi)$, with $\theta=45^{\circ}$ and $\phi=60^{\circ}$, to show that $\sin 105^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$.
(ii) In triangle ABC , angle $\mathrm{BAC}=45^{\circ}$, angle $\mathrm{ACB}=30^{\circ}$ and $\mathrm{AB}=1$ unit (see Fig. 3).


Fig. 3
Using the sine rule, together with the result in part $(\mathbf{i})$, show that $\mathrm{AC}=\frac{\sqrt{3}+1}{\sqrt{2}}$.

4 Show that $\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=\sec 2 \theta$.
Hence, or otherwise, solve the equation $\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}=2$, for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

5 Find the first four terms in the binomial expansion of $(1+3 x)^{\frac{1}{3}}$.
State the range of values of $x$ for which the expansion is valid.

6 (i) Express $\frac{1}{(2 x+1)(x+1)}$ in partial fractions.
(ii) A curve passes through the point $(0,2)$ and satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{(2 x+1)(x+1)}
$$

Show by integration that $y=\frac{4 x+2}{x+1}$.

## Section B (36 marks)

7 Fig. 7 shows the curve with parametric equations

$$
x=\cos \theta, y=\sin \theta-\frac{1}{8} \sin 2 \theta, 0 \leqslant \theta<2 \pi .
$$

The curve crosses the $x$-axis at points $\mathrm{A}(1,0)$ and $\mathrm{B}(-1,0)$, and the positive $y$-axis at $\mathrm{C} . \mathrm{D}$ is the maximum point of the curve, and $E$ is the minimum point.

The solid of revolution formed when this curve is rotated through $360^{\circ}$ about the $x$-axis is used to model the shape of an egg.


Fig. 7
(i) Show that, at the point $\mathrm{A}, \theta=0$. Write down the value of $\theta$ at the point B , and find the coordinates of C .
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\theta$.

Hence show that, at the point D ,

$$
\begin{equation*}
2 \cos ^{2} \theta-4 \cos \theta-1=0 \tag{5}
\end{equation*}
$$

(iii) Solve this equation, and hence find the $y$-coordinate of D , giving your answer correct to 2 decimal places.

The cartesian equation of the curve (for $0 \leqslant \theta \leqslant \pi$ ) is

$$
y=\frac{1}{4}(4-x) \sqrt{1-x^{2}} .
$$

(iv) Show that the volume of the solid of revolution of this curve about the $x$-axis is given by

$$
\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x-15 x^{2}+8 x^{3}-x^{4}\right) \mathrm{d} x .
$$

Evaluate this integral.

8 A pipeline is to be drilled under a river (see Fig. 8). With respect to axes Oxyz, with the $x$-axis pointing East, the $y$-axis North and the $z$-axis vertical, the pipeline is to consist of a straight section AB from the point $\mathrm{A}(0,-40,0)$ to the point $\mathrm{B}(40,0,-20)$ directly under the river, and another straight section $B C$. All lengths are in metres.


Fig. 8
(i) Calculate the distance AB .

The section BC is to be drilled in the direction of the vector $3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$.
(ii) Find the angle $A B C$ between the sections $A B$ and $B C$.

The section BC reaches ground level at the point $\mathrm{C}(a, b, 0)$.
(iii) Write down a vector equation of the line BC. Hence find $a$ and $b$.
(iv) Show that the vector $6 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}$ is perpendicular to the plane $A B C$. Hence find the cartesian equation of this plane.

