4726 Further Pure Mathematics 2

1
(i) $\quad \operatorname{Getf}^{\prime}(x)= \pm \sin x /(1+\cos x)$

Get f "(x) using quotient/product rule
Get $f(0)=\ln 2, f^{\prime}(0)=0, f^{\prime \prime}(0)=-1 / 2$
(ii) Attempt to use Maclaurin correctly

Get $\ln 2-1 / 4 x^{2}$
M1 Reasonable attempt at chain at any stage
M1 Reasonable attempt at quotient/product
B1 Any one correct from correct working
A1 All three correct from correct working
M1 Using their values in $a f(0)+b f^{\prime}(0) x+c f^{\prime \prime}(0) x^{2}$; may be implied
A1 $\sqrt{ }$ From their values; must be quadratic

2 (i) Clearly verify in $y=\cos ^{-1} x$
Clearly verify in $y=1 / 2 \sin ^{-1} x$
(ii) Write down at least one correct diff'al

Get gradient of -2
Get gradient of 1
B1 i.e. $x=1 / 2 \sqrt{ } 3, y=\cos ^{-1}(1 / 2 \sqrt{ } 3)=1 / 6 \pi$, or similar
B1 Or solve $\cos y=\sin 2 y$
SR Allow one B1 if not sufficiently clear detail
M1 Or reasonable attempt to derive; allow \pm
A1 cao
A1 cao

3 (i) Get y-values of 3 and $\sqrt{ } 28$
B1
Show/explain areas of two rectangles equal
y-value x 1 , and relate to $A \quad$ B1
Diagram may be used
(ii) Show $A>0.2\left(\sqrt{ }\left(1+2^{3}\right)+\sqrt{ }\left(1+2.2^{3}\right)+\ldots\right.$
.. $\downarrow(1+2.83))$
M1 Clear areas attempted below curve (5 values)
$=3.87$ (28)
Show $A<0.2\left(\sqrt{ }\left(1+2.2^{3}\right)+\sqrt{ }\left(1+2.4^{3}\right)+\ldots\right.$
$\left.\ldots+\sqrt{ }\left(1+3^{3}\right)\right)$
$=4.33(11)<4.34$

A1 To min. of 3 s.f.
M1 Clear areas attempted above curve (5 values)
A1 To min. of 3 s.f.

4 (i) Correct formula with correct r
Expand r^{2} as $\mathrm{A}+\mathrm{Bsec} \theta+\operatorname{Csec}^{2} \theta$
Get $C \tan \theta$
Use correct limits in their answer
Limits to $1 / 12 \pi+2 \ln (\sqrt{3})+2 \sqrt{3} / 3$
(ii) Use $x=r \cos \theta$ and $r^{2}=x^{2}+y^{2}$ Eliminate r and θ
Get $(x-2) \sqrt{ }\left(x^{2}+y^{2}\right)=x$
M1 May be implied
M1 Allow B $=0$
B1
M1 Must be 3 terms
A1 AEEF; simplified
B1 Or derive polar form from given equation
M1 Use their definitions
A1 A.G.

5 (i) Attempt use of product rule
Clearly get $x=1$
(ii) Explain use of tangent for next approx.

Tangents at successive approx. give $x>1$ B1
M1
A1 Allow substitution of $x=1$
(iii) Attempt correct use of $\mathrm{N}-\mathrm{R}$ with their derivative
Get $x_{2}=-1$
Get -0.6839, -0.5775, (-0.5672...)
Continue until correct to 3 d.p.
Get -0.567
6 (i) Attempt division/equate coeff.
Get $a=2, b=-9$
Derive/quote $x=1$
(ii) Write as quadratic in x

Use $b^{2} \geq 4 a c$ (for real x)
Get $y^{2}+14 y+169 \geq 0$
Attempt to justify positive/negative
Get $(y+7)^{2}+120 \geq 0-$ true for all y

M1

A1 $\sqrt{ }$
A1
M1 May be implied
A1 cao
M1 To lead to some $a x+b$ (allow $b=0$ here)
A1
B1 Must be equations
M1 $\quad\left(2 x^{2}-x(11+y)+(y-6)=0\right)$
M1 Allow <, >
A1
M1 Complete the square/sketch
A1

SC Attempt diff; quot./prod. rule M1
Attempt to solve $\mathrm{d} y / \mathrm{d} x=0 \quad$ M1
Show $2 x^{2}-4 x+17=0$ has
no real roots e.g. $b^{2}-4 a c<0$ A1
Attempt to use no t.p. M1
Justify all y e.g. consider asymptotes and approaches A1

M1 Reasonable attempt at parts
A1
B1
Include use of limits seen
(ii) Express x^{2} as $\left(1+x^{2}\right)-1$

Get $\frac{x^{2}}{\left(1+x^{2}\right)^{n+1}}=\frac{1}{\left(1+x^{2}\right)^{n}}-\frac{1}{\left(1+x^{2}\right)^{n+1}}$
Show $I_{n}=2^{-n}+2 n\left(I_{n}-I_{n+1}\right)$
Tidy to A.G.
(iii) See $2 I_{2}=2^{-1}+I_{1}$

Work out $I_{1}=1 / 4 \pi$
Get $I_{2}=1 / 4+1 / 8 \pi$

B1 Justified
M1 Clear attempt to use their first line above

B1
M1 Quote/derive $\tan ^{-1} X$

8 (i) Use correct exponential for $\sinh x$
Attempt to expand cube of this
Correct cubic
Clearly replace in terms of sinh
(ii) Replace and factorise

Attempt to solve for $\sinh ^{2} x$
Get $k>3$
(iii) Get $x=\sinh ^{-1} C$

Replace in ln equivalent
Repeat for negative root

B1
M1 Must be 4 terms
A1
B1 (Allow RHS \rightarrow LHS or RHS $=$ LHS separately)

M1 Or state $\sinh x \neq 0$
M1 $\quad(=1 / 4(k-3))$ or for k and use $\sinh ^{2} x>0$
A1 Not \geq
M1 ($c= \pm 1 / 2$); allow $\sinh x=c$
A1 $\sqrt{ }$ As $\ln (1 / 2+\sqrt{5} / 4)$; their x
A1 $\sqrt{ }$ May be given as neg. of first answer (no need for $x=0$ implied)
SR Use of exponential definitions
Express as cubic in $\mathrm{e}^{2 x}=u \quad$ M1
Factorise to $(u-1)\left(u^{2}-3 u+1\right)=0 \mathrm{~A} 1$
Solve for $x=0,1 / 2 \ln \left(3 / 2 \pm \frac{\sqrt{5}}{2}\right)$ A1

M1 Or equivalent; allow \pm
Allow use of ln equivalent with Chain Rule
A1
B1 e.g. sketch
M1 No need for c
A1
(iii) Sub. $x=k \cosh u$ M1
Replace all x to $\int k_{1} \sinh ^{2} u \mathrm{~d} u$ Replace as $\int k_{2}(\cosh 2 u-1) \mathrm{d} u$ Integrate correctly
Attempt to replace u with x equivalent Tidy to reasonable form

A1
M1 Or exponential equivalent
A1 $\sqrt{ }$ No need for c
M1 In their answer
A1 cao $\left(1 / 2 x \sqrt{ }\left(4 x^{2}-1\right)-1 / 4 \cosh ^{-1} 2 x(+c)\right)$

