4726 Further Pure Mathematics 2

4726

1	(i)	Get f '(x) = $\pm \sin x/(1+\cos x)$ Get f "(x) using quotient/product rule Get f(0) = ln2, f '(0) = 0, f"(0) = $-\frac{1}{2}$	M1 M1 B1 A1	Reasonable attempt at chain at any stage Reasonable attempt at quotient/product Any one correct from correct working All three correct from correct working
	(ii)	Attempt to use Maclaurin correctly Get $\ln 2 - \frac{1}{4} x^2$	M1 A1√	Using their values in $af(0)+bf'(0)x+cf''(0)x^2$; may be implied From their values; must be quadratic
2	(i)	Clearly verify in $y = \cos^{-1}x$ Clearly verify in $y = \frac{1}{2}\sin^{-1}x$	B1 B1 SR	i.e. $x=\frac{1}{2}\sqrt{3}$, $y=\cos^{-1}(\frac{1}{2}\sqrt{3})=\frac{1}{6}\pi$, or similar Or solve $\cos y = \sin 2y$ Allow one B1 if not sufficiently clear detail
	(ii)	Write down at least one correct diff'al Get gradient of -2 Get gradient of 1	M1 A1 A1	Or reasonable attempt to derive; allow ± cao cao
3	(i)	Get <i>y</i> - values of 3 and $\sqrt{28}$ Show/explain areas of two rectangles eq <i>y</i> - value x 1, and relate to <i>A</i>	B1 ual B1	Diagram may be used
	(ii)	Show $A > 0.2(\sqrt{(1+2^3)} + \sqrt{(1+2.2^3)} + \dots \\\sqrt{(1+2.83)}) = 3.87(28)$ Show $A < 0.2(\sqrt{(1+2.2^3)} + \sqrt{(1+2.4^3)} + \dots \\ \dots + \sqrt{(1+3^3)}) = 4.33(11) < 4.34$	M1 A1 M1 A1	Clear areas attempted below curve (5 values) To min. of 3 s.f. Clear areas attempted above curve (5 values) To min. of 3 s.f.
4	(i)	Correct formula with correct <i>r</i> Expand r^2 as A + Bsec θ + Csec ² θ Get C tan θ Use correct limits in their answer Limits to ${}^{1}/_{12}\pi$ + 2 ln($\sqrt{3}$) + ${}^{2\sqrt{3}}/_{3}$	M1 M1 B1 M1 A1	May be implied Allow B = 0 Must be 3 terms AEEF; simplified
	(ii)	Use $x=r\cos\theta$ and $r^2 = x^2 + y^2$ Eliminate r and θ Get $(x-2)\sqrt{x^2 + y^2} = x$	B1 M1 A1	Or derive polar form from given equation Use their definitions A.G.

19

Mark Scheme

5	(i)	Attempt use of product rule
		Clearly get $x = 1$

- (ii) Explain use of tangent for next approx. B1 Tangents at successive approx. give x>1 B1
- (iii) Attempt correct use of N-R with their derivative Get $x_2 = -1$ Get -0.6839, -0.5775, (-0.5672...)Continue until correct to 3 d.p. Get -0.567
- 6 (i) Attempt division/equate coeff. Get a = 2, b = -9Derive/quote x = 1
 - (ii) Write as quadratic in x Use $b^2 \ge 4ac$ (for real x) Get $y^2 + 14y + 169 \ge 0$ Attempt to justify positive/negative Get $(y+7)^2 + 120 \ge 0$ – true for all y

- 7 (i) Get $x(1+x^2)^{-n} \int x \cdot (-n(1+x^2)^{-n-1} \cdot 2x) dx$ Accurate use of parts Clearly get A.G.
 - (ii) Express x^2 as $(1+x^2) 1$ Get $x^2 = \frac{1}{(1+x^2)^{n+1}} - \frac{1}{(1+x^2)^{n+1}}$ Show $I_n = 2^{-n} + 2n(I_n - I_{n+1})$ Tidy to A.G.
 - (iii) See $2I_2 = 2^{-1} + I_1$ Work out $I_1 = \frac{1}{4}\pi$ Get $I_2 = \frac{1}{4} + \frac{1}{8}\pi$

- M1 A1 Allow substitution of *x*=1
 - 1 Not use of G.C. to show divergence
 - Relate to crossing *x*-axis; allow diagram
- M1 A1√
- A1 To 3 d.p. minimum
- M1 May be implied
- A1 cao
- M1 To lead to some ax+b (allow b=0 here)
- A1 B1 Must be equations
- M1 $(2x^2 x(11 + y) + (y 6) = 0)$
- M1 Allow <, >
- A1
 - M1 Complete the square/sketch
- A1
- SC Attempt diff; quot./prod. rule M1 Attempt to solve dy/dx = 0 M1 Show $2x^2 - 4x + 17 = 0$ has no real roots e.g. $b^2 - 4ac < 0$ A1 Attempt to use no t.p. M1 Justify all y e.g. consider asymptotes and approaches A1
- M1 Reasonable attempt at parts
- A1
- B1 Include use of limits seen
- B1 Justified
- M1 Clear attempt to use their first line above
- A1
- **B**1
- M1 Quote/derive $\tan^{-1}x$
- A1

4726

Mark Scheme

8	(i)	Use correct exponential for sinh <i>x</i> Attempt to expand cube of this Correct cubic Clearly replace in terms of sinh	B1 M1 A1 B1	Must be 4 terms (Allow RHS→ LHS or RHS = LHS separately)
	(ii)	Replace and factorise Attempt to solve for $\sinh^2 x$ Get $k>3$	M1 M1 A1	Or state sinh $x \neq 0$ (= $\frac{1}{4}(k-3)$) or for k and use sinh ² x>0 Not \geq
	(iii)	Get $x = \sinh^{-1}c$ Replace in ln equivalent Repeat for negative root	$M1 \\ A1 \\ 1 \\ SR$	$(c=\pm \frac{1}{2})$; allow sinh $x = c$ As $\ln(\frac{1}{2}+\sqrt{\frac{5}{4}})$; their x May be given as neg. of first answer (no need for $x=0$ implied) Use of exponential definitions Express as cubic in $e^{2x} = u$ M1 Factorise to $(u-1)(u^2-3u+1)=0$ A1 Solve for $x = 0$, $\frac{1}{2}\ln(\frac{3}{2} \pm \frac{\sqrt{5}}{2})$ A1
9	(i)	Get sinh $y^{dy}_{dx} = 1$ Replace sinh $y = \sqrt{(\cosh^2 y - 1)}$ Justify positive grad. to A.G.	M1 A1 B1	Or equivalent; allow ± Allow use of ln equivalent with Chain Rule e.g. sketch
	(ii)	Get $k \cosh^{-1}2x$ Get $k=\frac{1}{2}$	M1 A1	No need for c
	(iii)	Sub. $x = k \cosh u$ Replace all $x \operatorname{to} \int k_1 \sinh^2 u du$ Replace as $\int k_2 (\cosh 2u - 1) du$ Integrate correctly Attempt to replace u with x equivalent Tidy to reasonable form	M1 A1 M1 A1√ M1 A1	Or exponential equivalent No need for <i>c</i> In their answer cao $(\frac{1}{2}x\sqrt{4x^2-1} - \frac{1}{4}\cosh^{-1}2x (+c))$