4733 Probability \& Statistics 2

1	$\begin{aligned} & \frac{80-\mu}{\sigma}=\Phi^{-1}(0.95)=1.645 \\ & \frac{\mu-50}{\sigma}=\Phi^{-1}(0.75)=0.674(5) \end{aligned}$ Solve simultaneously $\mu=58.7, \sigma=12.9$	M1 B1 A1 M1 A1 A1 $\mathbf{6}$	Standardise once with Φ^{-1}, allow σ^{2}, cc Both $1.645(1.64,1.65)$ and [$0.674,0.675]$, ignore signs Both equations correct apart from wrong z, not $1-1.645$ Solve two standardised equations μ, a.r.t 58.7 σ, a.r.t. $12.9\left[\right.$ not $\left.\sigma^{2}\right]$ [$\sigma^{2}:$ M1B1A0M1A1A0]
2 (i)	Let R denote the number of choices which are 500 or less. $\begin{aligned} & R \sim \mathrm{~B}\left(12, \frac{5}{6}\right) \\ & \mathrm{P}(R=12)=\left(\frac{5}{6}\right)^{12} \quad[=0.11216] \\ & =\mathbf{0 . 1 1 2} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\mathrm{B}\left(12, \frac{5}{6}\right.$) stated or implied, allow 501/600 etc p^{12} or q^{12} or equivalent Answer, a.r.t. 0.112 $\text { [SR: } \frac{500}{600} \times \frac{499}{599} \times \frac{498}{598} \times \ldots ; 0.110: \quad \text { M1A1] }$ [M1 for 0.910 or 0.1321 or vague number of terms]
(ii)	Method unbiased; unrepresentative by chance	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	State that method is unbiased Appropriate comment (e.g. "not unlikely") [SR: partial answer, e.g. not necessarily biased: B1]
3 (i)	$\begin{aligned} & \mathrm{P}(\leq 1)=0.0611 \\ & \mathrm{P}(\geq 9)=1-\mathrm{P}(\leq 8)=1-0.9597 \\ & =0.0403 \\ & 0.0611+0.0403 \quad[=0.1014] \\ & =\mathbf{1 0 . 1 \%} \end{aligned}$	B1 M1 A1 M1 A1 $\mathbf{5}$	0.0611 seen Find $P(\geq 9)$, allow 8 or 10 [$0.0866,0.0171$] 0.0403 correct Add probabilities of tails, or 1 tail $\times 2$ Answer [10.1, 10.2]\% or probability.
(ii)	$\begin{aligned} & \mathrm{P}(2 \leq G \leq 8) \\ & =0.8944-0.0266 \quad[=0.8678] \\ & =\mathbf{0 . 8 6 8} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Attempt at $\mathrm{P}(2 \leq G \leq 8)$, not isw, allow $1 \leq G \leq 9$ etc $\mathrm{Po}(5.5)$ tables, $\mathrm{P}(\leq$ top end $)-\mathrm{P}(\leq$ bottom end $)$ Answer, a.r.t. 0.868 , allow \%
4 (i)	$\begin{aligned} & \hat{\mu}=\bar{y}=\frac{3296.0}{40}=82.4 \\ & \frac{286800.4}{40}-82.4^{2}[=380.25] \\ & S^{2} \times \frac{40}{39} ;=390 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & \mathbf{4} \end{array}$	Mean 82.4, c.a.o. Use correct formula for biased estimate Multiply by $n /(n-1)$ [SR: all in one, M2 or M0] Variance 390, c.a.o.
(ii)	$\begin{aligned} & \Phi\left(\frac{60-82.4}{\sqrt{390}}\right)=\Phi(-1.134) \\ & =1-0.8716=\mathbf{0 . 1 2 8} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Standardise, allow 390 , cc or biased estimate, $+1-$, do not allow $\sqrt{ } n$ Answer in range [0.128, 0.129]
(iii)	No, distribution irrelevant	B1 1	"No" stated or implied, any valid comment
5 (i)	$\mathrm{H}_{0}: \mu=500$ where μ denotes $\mathrm{H}_{1}: \mu<500$ the population mean $\alpha: \quad z=\frac{435-500}{100 / \sqrt{4}}=-1.3$ Compare - 1.282	$\begin{array}{\|l\|} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Both hypotheses stated correctly [SR: 1 error, B1, but \bar{x} etc: B0] Standardise, use $\sqrt{ } 4$, can be + $z=-1.3 \text { (allow }-1.29 \text { from cc) or } \Phi(z)=0.0968(.0985)$ Compare $z \&-1.282$ or $p(<0.5) \& 0.1$ or equivalent
	$\begin{aligned} & 500-1.282 \times 100 / \sqrt{4} \\ & =435.9 \text { c compare } 435\end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } ; \mathrm{B} 1 \end{aligned}$	$500-z \times 100 / \sqrt{4}$, allow $\sqrt{ }$ errors, any Φ^{-1}, must be CV correct, $\sqrt{ }$ on their $z ; 1.282$ correct and compare
	Reject H_{0} Significant evidence that number of visitors has decreased	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } \sqrt{ } & 7 \end{array}$	Correct deduction, needs $\sqrt{ } 4, \mu=500$, like-with-like Correct conclusion interpreted in context
(ii)	CLT doesn't apply as n is small So need to know distribution	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	Correct reason [" n is small" is sufficient] Refer to distribution, e.g. "if not normal, can't do it"

6 (i)	(a) $\quad \begin{aligned} & 1-0.8153 \\ & =0.1847\end{aligned}$ (b) $\quad \begin{aligned} & 0.8153-0.6472 \\ & =\mathbf{0 . 1 6 8}\end{aligned}$		Po(3) tables, " 1 -" used, e.g. 0.3528 or 0.0839 Answer 0.1847 or 0.185 Subtract 2 tabular values, or formula $\left[e^{-3} 3^{4} / 4\right.$!] Answer, a.r.t. 0.168
(ii)	$\begin{aligned} & \mathrm{N}(150,150) \\ & 1-\Phi\left(\frac{165.5-150}{\sqrt{150}}\right) \\ & =1-\Phi(1.266)=\mathbf{0 . 1 0 3} \end{aligned}$	B1 B1 M1 A1 A1 5	Normal, mean 3×50 stated or implied Variance or SD $=3 \times 50$, or same as μ Standardise 165 with λ, $\sqrt{ } \lambda$ or λ, any or no cc $\sqrt{ } \lambda$ and 165.5 Answer in range [0.102, 0.103]
(iii)	(a) The sale of one house does not affect the sale of any others (b) The average number of houses sold in a given time interval is constant	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \quad 2 \end{aligned}$	Relevant answer that shows evidence of correct understanding [but not just examples] Different reason, in context [Allow "constant rate" or "uniform" but not "number constant", "random", "singly", "events".]
7 (i)	$\begin{aligned} & \int_{0}^{2} k x d x=\left[\frac{k x^{2}}{2}\right]_{0}^{2}=2 k \\ & =1 \text { so } k=1 / 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use $\int_{0}^{2} k x d x=1$, or area of triangle Correctly obtain $k=1 / 2$ AG
(ii)		$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Straight line, positive gradient, through origin Correct, some evidence of truncation, no need for vertical
(iii)	$\begin{aligned} & \int_{0}^{2} \frac{1}{2} x^{2} d x=\left[\frac{1}{6} x^{3}\right]_{0}^{2}=\frac{4}{3} \\ & \int_{0}^{2} \frac{1}{2} x^{3} d x=\left[\frac{1}{8} x^{4}\right]_{0}^{2}[=2] \\ & 2-\left(\frac{4}{3}\right)^{2}=\frac{2}{9} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{5} \end{array}$	Use $\int_{0}^{2} k x^{2} d x ; \frac{4}{3}$ seen or implied Use $\int_{0}^{2} k x^{3} d x$; subtract their mean ${ }^{2}$ Answer $\frac{2}{9}$ or a.r.t. 0.222 , c.a.o.
(iv)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \quad 2 \end{aligned}$	Translate horizontally, allow stated, or " 1,2 " on axis One unit to right, 1 and 3 indicated, nothing wrong seen, no need for vertical or emphasised zero bits [If in doubt as to \rightarrow or \downarrow, M0 in this part]
(v)		$\begin{array}{ll} \mathrm{B} 1 \sqrt{ } \\ \mathrm{~B} 1 \sqrt{ } & 2 \end{array}$	Previous mean +1 Previous variance [If in doubt as to \rightarrow or \downarrow, B1B1 in this part]

8 (i)	$\begin{aligned} & \mathrm{H}_{0}: p=0.65 \text { OR } p \geq 0.65 \\ & \mathrm{H}_{1}: p<0.65 \\ & \mathrm{~B}(12,0.65) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \text { M1 } \end{aligned}$	Both hypotheses correctly stated, in this form [One error (but not r, x or \bar{x}): B1] $B(12,0.65)$ stated or implied				
	$\alpha: \quad \begin{array}{ll} \mathrm{P}(\leq 6)=0.2127 \\ & \text { Compare } 0.10 \end{array}$	$\begin{array}{\|l\|} \hline \text { A1 } \\ \text { B1 } \end{array}$	Correct probability from tables, not $\mathrm{P}(=6)$ Explicit comparison with 0.10				
	β : \quad Critical region $\leq 5 ; 6>5$ Probability 0.0846	$\begin{aligned} & \mathrm{B} 1 \\ & \text { A1 } \end{aligned}$	Critical region ≤ 5 or ≤ 6 or $\{\leq 4\} \cap\{\geq 11\}$ \& compare 6 Correct probability				
	Do not reject H_{0} Insufficient evidence that proportion of population in favour is not at least 65\%	M1V $\mathrm{A} 1 \sqrt{ }$ 7	Correct comparison and conclusion, needs correct distribution, correct tail, like-with-like Interpret in context, e.g. "consistent with claim" [SR: N(7.8, 2.73): can get B2M1A0B1M0: 4 ex 7]				
(ii)	Insufficient evidence to reject claim; test and p / q symmetric	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Same conclusion as for part (i), don't need context Valid relevant reason, e.g. "same as (i)"				
(iii)	$\begin{aligned} & R \sim \mathrm{~B}(2 n, 0.65), \mathrm{P}(R \leq n)>0.15 \\ & \mathrm{~B}(18,0.65), p=0.1391 \end{aligned}$ Therefore $n=9$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	$\mathrm{B}(2 n, 0.65), \mathrm{P}(R \leq n)>0.15$ stated or implied Any probability in list below seen $p=0.1391$ picked out (i.e., not just in a list of >2) Final answer $n=9$ only [SR $<n$: M1A0, $n=4,0.1061$ A1A0] [SR 2-tail: M1A1A0A1 for 15 or 14] [SR: 9 only, no working: M1A1] [MR B(12, 0.35): M1A0, $n=4,0.1061$ A1A0]				
			3 0.3529 4 0.2936 5 0.2485 6 0.2127	7 8 9 10	$\begin{aligned} & 0.1836 \\ & 0.1594 \\ & 0.1391 \\ & 0.1218 \end{aligned}$	12 13 14 15	$\begin{aligned} & 0.0942 \\ & 0.0832 \\ & 0.0736 \\ & 0.0652 \end{aligned}$

