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INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the spaces provided on the answer
booklet.

• Read each question carefully and make sure you know what you have to do before starting
your answer.

• Answer all the questions.

• Give non-exact numerical answers correct to 3 significant figures unless a different degree of
accuracy is specified in the question or is clearly appropriate.

• You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.

• The total number of marks for this paper is 72.

• You are reminded of the need for clear presentation in your answers.
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1 The transformation S is a shear with the y-axis invariant (i.e. a shear parallel to the y-axis). It is given
that the image of the point (1, 1) is the point (1, 0).

(i) Draw a diagram showing the image of the unit square under the transformation S. [2]

(ii) Write down the matrix that represents S. [2]

2 Given that
n

∑
r=1

(ar2 + b) ≡ n(2n2 + 3n − 2), find the values of the constants a and b. [5]

3 The cubic equation 2x3 − 3x2 + 24x + 7 = 0 has roots α, β and γ .

(i) Use the substitution x = 1
u

to find a cubic equation in u with integer coefficients. [2]

(ii) Hence, or otherwise, find the value of
1

αβ
+ 1

βγ
+ 1

γ α
. [2]

4 The complex number 3 − 4i is denoted by �. Giving your answers in the form x + iy, and showing
clearly how you obtain them, find

(i) 2� + 5�*, [2]

(ii) (� − i)2, [3]

(iii)
3� . [3]

5 The matrices A, B and C are given by A = ( 3
1
2
), B = ( 4

0
3
) and C = (2 4 −1). Find

(i) A − 4B, [2]

(ii) BC, [4]

(iii) CA. [2]

6 The loci C1 and C2 are given by

|�| = |� − 4i| and arg � = 1
6
π

respectively.

(i) Sketch, on a single Argand diagram, the loci C1 and C2. [5]

(ii) Hence find, in the form x + iy, the complex number represented by the point of intersection of C1
and C2. [3]
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7 The matrix A is given by A = ( a 3−2 1
).

(i) Given that A is singular, find a. [2]

(ii) Given instead that A is non-singular, find A−1 and hence solve the simultaneous equations

ax + 3y = 1,

−2x + y = −1. [5]

8 The sequence u1, u2, u3, . . . is defined by u1 = 1 and un+1 = un + 2n + 1.

(i) Show that u4 = 16. [2]

(ii) Hence suggest an expression for un. [1]

(iii) Use induction to prove that your answer to part (ii) is correct. [4]

9 (i) Show that α3 + β3 = (α + β)3 − 3αβ(α + β). [2]

(ii) The quadratic equation x2 − 5x + 7 = 0 has roots α and β . Find a quadratic equation with roots
α3 and β3. [6]

10 (i) Show that
2
r
− 1

r + 1
− 1

r + 2
= 3r + 4

r(r + 1)(r + 2) . [2]

(ii) Hence find an expression, in terms of n, for

n

∑
r=1

3r + 4
r(r + 1)(r + 2) . [6]

(iii) Hence write down the value of
∞
∑
r=1

3r + 4
r(r + 1)(r + 2) . [1]

(iv) Given that
∞
∑

r=N+1

3r + 4
r(r + 1)(r + 2) = 7

10
, find the value of N. [4]
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