4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$
		Get $1 + 2x + 2x^2$

(ii)
$$\ln((1+2x+2x^2))$$
 M1
+ $(1-2x+2x^2)) =$
 $\ln(2+4x^2) =$ A1 $\sqrt{1}$
 $\ln(2 + \ln(1 + 2x^2))$ M1
 $\ln(2 + 2x^2)$ A1

2 (i)
$$x_2 = 1.8913115$$
 B
 $x_3 = 1.8915831$ B
 $x_4 = 1.8915746$ B

(ii) $e_3/e_2 = -0.031(1)$ N

$$e_4/e_3 = -0.036(5)$$

State f '(α) $\approx e_3/e_2 \approx e_4/e_3$

3 (i) Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +

(ii) Get
$$2/(\sqrt{1-4x^2})$$

+ $1/(\sqrt{1-y^2}) \frac{dy}{dx} = 0$

 Find $y = \sqrt{3}/2$ M1

 Get $-2\sqrt{3}/3$ A1

M1 A1	Reasonable 3 term attempt e.g. allow 2 cao SC Reasonable attempt at $f'(0)$ and $f''(0)$ Get $1+2x+2x^2$ cao	x ² /2) M1 A1
M1	Attempt to sub for e^{2x} and e^{-2x}	
A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f '(x) and f"(x) One correct Attempt f(0), f '(0) and f"(0) Get cao	M1 A1 M1 A1
B1 B1√ B1	x_2 correct; allow answers which round For any other from their working For all three correct	
M1 A1 B1√	Subtraction and division on their values allow \pm Or answers which round to -0.031 and Using their values but only if approx. ec allow differentiation if correct conclusion allow gradient for f'	; -0.037 qual; on;
M1 A1 B1	Implicit diff. to $dy/dx = \pm(1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values	
M1 A1 M1 A1√	Attempt implicit diff. and chain rule; all e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$ Method leading to y AEEF; from their <i>a</i> above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ Attempt to diff. as above Replace <i>x</i> in reasonable dy/dx and	b B1 M1
	attempt to tidy Get result above	M1 A1

4	(i)	Let $x = \cosh \theta$ such that $dx = \sinh \theta d\theta$	M1
		Clearly use $\cosh^2 - \sinh^2 = 1$	A1
	(ii)	Replace $\cosh^2 \theta$	M1
		Attempt to integrate their	M1
		expression	
		Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta (+c)$	A1
		Clearly replace for <i>x</i> to A.G.	B1

5 (i) (a) State
$$(x=) \alpha$$
 B1
None of roots B1

B1 B1

B1

B1

B1

B1

B1

M1 A1

M1

M1

A1

M1 A1

A1

6 (i) Correct definitions used
Attempt at
$$(e^{x}-e^{-x})^{2}/4 + 1$$

Clearly derive A.G.

(ii) Form a quadratic in sinh x Attempt to solve Get sinh $x = -\frac{1}{2}$ or 3 Use correct ln expression Get $\ln(-\frac{1}{2}+\frac{\sqrt{5}}{2})$ and $\ln(3+\sqrt{10})$

7 (i)
$$OP=3+2\cos \alpha$$

 $OQ=3+2\cos(\frac{1}{2}\alpha+\alpha)$ M1
 $=3-2\sin \alpha$
Similarly $OR=3-2\cos \alpha$ M1

$$OS=3 + 2\sin\alpha$$

Sum = 12

(ii) Correct formula with attempt at r^2 M1 Square *r* correctly A1 Attempt to replace $\cos^2\theta$ with M1 $a(\cos 2\theta \pm 1)$ Integrate their expression A1 $\sqrt{}$ Get $^{11\pi}/_4 - 1$ A1

Clearly de	erive A.G.		
Allow <i>a</i> (Allow <i>b</i> si	$\cosh 2\theta \pm 1$) nh $2\theta \pm a\theta$		
Condone SC Use ex Attem Get ¹ / ₂ Clearl	no + <i>c</i> spo. def ⁿ ; three to pt to integrate ${}_{8}(e^{2\theta}-e^{-2\theta}) + {}_{2}{}_{2}\theta$ (or y replace for x to	erms (+ <i>c</i>) o A.G.	M1 M1 A1 B1
No explar	nation needed		
Some disc central lea	cussion of values ading to correct	s close to 1 o conclusion	r 2 or
Correct <i>x</i>	for y=0; allow 0	.591, 1.59, 2	.31
Turning a	t (1,0.8) and/or	(1,-0.8)	
Meets <i>x</i> -a	xis at 90°		
Symmetry	/ in <i>x</i> -axis; allow	V	
Allow (e^{x}	+e ^{-x}) ² +1; allow /	2	
Factors or	formula		
On their a	nswer(s) seen o	nce	
Any other	unsimplified va	alue	
Attempt a correct ex	t simplification pressions	of at least tw	0
cao			
Need not	be expanded, bu	t three terms	if it is
Need thre	e terms		

cao

8	(i)	Area = $\int 1/(x+1) dx$ Use limits to ln(<i>n</i> +1) Compare area under curve to areas of rectangles Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$ Clear detail to A.G.	B1 B1 B1 M1 A1
	(ii)	Show or explain areas of rectangles above curve Areas of rectangles (as above) >	M1 A1
		area under curve	711
	(iii)	Add 1 to both sides in (i) to make $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{$	B1
		Add $\frac{1}{(n+1)}$ to both sides in (ii) to make $\sum \binom{1}{r}$	B1
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1
9	(i)	Require denom. = 0 Explain why denom. $\neq 0$	B1 B1
	(ii)	Set up quadratic in x Get $2yx^2-4x+(2a^2y+3a) = 0$ Use $b^2 \ge 4ac$ for real x	M1 A1 M1
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1

(iii)	Split into two separate integrals	M 1
	Get $k \ln(x^2 + a^2)$	A1
	Get $k_1 \tan^{-1}(x/a)$	A1
	Use limits and attempt to simplify	M1
	Get $\ln 2.5 - 1.5 \tan^{-1}2 + 3\pi/8$	
		A1

Justify inequality
Sum seen or implied as 1 x y values
Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
First and last heights seen or implied; A.G

Include or imply correct limits

- Must be clear addition
- Must be clear addition; A.G.
- Allow not convergent

Attempt to solve, explain always > 0 etc.

Produce quadratic inequality in *y* from their quad.; allow use of = or < Factors or formula Justified from graph SC Attempt diff. by quot./product rule M1 Solve dy/dx = 0 for two values of *x* M1 Get x=2a and x=-a/2 A1 Attempt to find two *y* values M1 Get correct inequalities (graph used to justify them) A1

Or $p \ln(2x^2+2a^2)$ k_1 not involving a

AEEF

SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta d\theta$	M 1
Reduce to $\int p \tan \theta - p_1 \mathrm{d}\theta$	A1
(ignore limits here)	
Integrate to $p\ln(\sec\theta)-p_1\theta$	A1
Use limits (old or new) and	
attempt to simplify	M 1
Get answer above	A1