4730 Mechanics 3

1 (i)	For triangle sketched with sides $(0.5)2.5$ and		
- (-)	$(0.5)6.3$ and angle θ correctly marked OR		
	Changes of velocity in i and j directions		
	$2.5\cos\theta - 6.3$ and $2.5\sin\theta$, respectively.	B1	May be implied in subsequent working.
	For sides 0.5x2.5, 0.5x6.3 and 2.6 (or 2.5, 6.3		
	and 5.2) OR		
	$-2.6\cos \alpha = 0.5(2.5\cos \theta - 6.3)$ and		
	$2.6 \sin \alpha = 0.5 (2.5 \cos \theta - 0.5)$ and $2.6 \sin \alpha = 0.5 (2.5 \sin \theta)$	B1ft	May be implied in subsequent working.
	$(5.2^2 = 2.5^2 + 6.3^2 - 2x2.5x6.3\cos\theta)$ OR		
	$[5.2 - 2.5 + 0.5 - 2.22.5x0.5c0s\theta - 0.7]$ $2.6^{2} = 0.5^{2} \{(2.5\cos\theta - 6.3)^{2} + (2.5\sin\theta)^{2}\}$		For using cosine rule in triangle or eliminating
		M1	α.
	$\cos\theta = 0.6$	A1	AG
		[4]	
(ii)			For appropriate use of the sine rule or
			substituting for θ in one of the above
		M1	equations in θ and α
	$\sin \alpha = 2.5 \times 0.8 / 5.2 \qquad \text{OR}$		
	$-2.6\cos\alpha = 0.5(2.5\times0.6 - 6.3)$	A1	
		M1	For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{\circ}$
	Impulse makes angle of 157° or 2.75° with		
	original direction of motion of P.	Al	
		[4]	SR (relating to previous 2 marks; max 1 mark
			out of 2)
			$\alpha = 23^{\circ} \text{ or } 0.395^{\circ}$ B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
			needed)
	X - Y = 35	A1	
		[2]	
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
			needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
		[4]	-

•

3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$ $T_A - T_B = 18 - 6 = 12 = W \Rightarrow P \text{ in equil'm.}$	M1 A1 [2]	For using T = λ x/L for PA or PB
(ii)	Extensions are $0.45 + x$ and $0.15 - x$ Tensions are $18 + 40x$ and $6 - 40x$	B1 B1 [2]	AG From T = λ x/L for PA and PB
(iii)	$[12 + (6 - 40x) - (18 + 40x) = 12 \ddot{x}/g]$ $\ddot{x} = -80gx/12 \Rightarrow$ SHM Period is 0.777s	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period = $2\pi \sqrt{\frac{12}{(80 g)}}$
(iv)	$[v_{max} = 0.15 \sqrt{80 g / 12} or v_{max} = 2 \pi x 0.15 / 0.777 or \frac{1}{2} (12/g) v_{max}^{2} + mg(0.15) +24 {0.45^{2} + 0.15^{2} - 0.6^{2}} / (2x0.6) = 0] Speed is 1.21 ms^{-1}$	M1 A1 [2]	For using $v_{max} = An$ or $v_{max} = 2 \pi A/T$ or conservation of energy (5 terms needed)

4 (i)	Loss in PE = mg(0.5sin θ) [$\frac{1}{2}$ mv ² - $\frac{1}{2}$ m3 ² = mg(0.5sin θ)] v ² = 9 + 9.8sin θ	B1 M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$a_{r} = 18 + 19.6\sin\theta$ $[ma_{t} = mg\cos\theta]$ $a_{t} = 9.8\cos\theta$	B1 M1 A1 [3]	Using $a_r = v^2/0.5$ For using Newton's second law tangentially
(iii)	$[T - mg \sin \theta = ma_r]$ $T - 1.96\sin \theta = 0.2(18 + 19.6\sin \theta)$ $T = 3.6 + 5.88\sin \theta$ $\theta = 3.8$	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial i components of velocity for A and B		
	are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
		M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A1	
		M1	For using NEL
	0.75(4-3) = b - a	A1	
		M1	For attempting to find a
	a = 3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
		M1	For using $\tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a ($\neq 0$) only
		[10]	
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for <i>both</i> equ's
			a = 4 M1 as scheme A1
			j component for A is 4ms ⁻¹ B1
			Angle $\tan^{-1}(4/4) = 45^{\circ}$ M1 as scheme A1

Initial speed in medium is $\sqrt{2 g \times 10}$ (= 14)	B1	
·		For using Newton's second law with
	M1	a = dv/dt (3 terms required)
[0.125 dv/dt = 0.125 g - 0.025 v]	1,11	
r 5dv r.		For separating variables and attempt to
$\frac{1}{z} = dt$	M1	integrate
5g-v		
$-5 \ln(5g - v) = t (+A)$	A1	
		For using $v(0) = 14$
		1 of using $V(0) = 14$
$t = 5 \ln\{35/(49 - v)\}$	AI	
	M1	For method of transposition
$v = 49 - 35e^{-0.2t}$	A1	AG
	[8]	
	M1	For integrating to find x(t)
$x = 49t + 175e^{-0.2t}$ (+B)	A1	
× /		For using limits 0 to 3 or for using
$[x(2) - (40x^2 + 175e^{-0.6}) - (0 + 175)]$	M1	÷
		x(0) = 0 and evaluating $x(3)$
Distance is 68.0m	A1	
	[4]	
	[0.125 dv/dt = 0.125g - 0.025v] $\int \frac{5dv}{5g - v} = \int dt$ -5 ln(5g - v) = t (+A) [-5 ln35 = A] t = 5 ln{35/(49 - v)} v = 49 - 35e^{-0.2t} x = 49t + 175e^{-0.2t} (+B) [x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)] Distance is 68.0m	$\int \frac{5dv}{5g - v} = \int dt$ $\int \frac{5dv}{5g - v} = \int dt$ $\begin{bmatrix} -5 \ln(5g - v) = t (+A) \\ [-5 \ln35 = A] \\ t = 5 \ln\{35/(49 - v)\} \\ v = 49 - 35e^{-0.2t}$ $\begin{bmatrix} M1 \\ M1 $

7(i)	Gain in $EE = 20x^2/(2x2)$	B1	
			Accept 0.8gx if gain in KE is
	Loss in GPE = $0.8g(2 + x)$	B1	$\frac{1}{2}$ 0.8(v ² - 19.6)
	$\begin{bmatrix} \frac{1}{2} \ 0.8 v^2 = (15.68 + 7.84 x) - 5 x^2 \end{bmatrix}$ v ² = 39.2 + 19.6x - 12.5x ²	M1	For using the p.c.energy
	$v^2 = 39.2 + 19.6x - 12.5x^2$	A1	AG
		[4]	
(ii)	(a)	M1	For attempting to solve $v^2 = 0$
	Maximum extension is 2.72m	A1	
		[2]	
	(b)		For solving $20x/2 = 0.8g$ or for
			differentiating and attempting to solve
	[19.6 - 25x = 0,		$d(v^2)/dx = 0$ or $dv/dx = 0$ or for
	$v^2 = 46.8832 - 12.5(x - 0.784)^2$]	M1	expressing v^2 in the form $c - a(x - b)^2$.
	x = 0.784 or c = 46.9	A1	
		24	For substituting $x = 0.784$ in the
	$[v_{max}^2 = 39.2 + 15.3664 - 7.6832]$	M1	expression for v^2 or for evaluating \sqrt{c}
	Maximum speed is 6.85ms ⁻¹	A1	
		[4]	
	(c)	N/1	For using Newton's second law (3 terms
	$\pm (0.82 - 20\pi/2) = 0.82$	M1	required) or $a = v dv/dx$
	$\pm (0.8g - 20x/2) = 0.8a$ or 2v dv/dx = 19.6 - 25x	A1	
	$a = \pm (9.8 - 12.5x)$	AI	
	× ,	A1	
	or $\ddot{y} = -12.5y$ where $y = x - 0.784$		Easy substituting $y = ang(ii)(a)$ into $g(x) = a$
	$[a _{\max} = 9.8 - 12.5 \times 2.72 $	M1	For substituting $x = ans(ii)(a)$ into $a(x)$ or
	or $ \ddot{y}_{max} = -12.5(2.72 - 0.784]$	A1	$y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$
	Maximum magnitude is 24.2ms ⁻²	[5]	