4727Mark Scheme4727 Further Pure Mathematics 3

1	METHOD 1		
1	line segment between l_1 and $l_2 = \pm [4, -3, -9]$	B1	For correct vector
	$\mathbf{n} = [1, -1, 2] \times [2, 3, 4] = (\pm)[-2, 0, 1]$	M1*	For finding vector product of direction
		A1	vectors
	distance = $\frac{[4, -3, -9] \cdot [-2, 0, 1]}{[-2, 0, 1]} = \frac{17}{17}$		
	distance = $\frac{ [4, -3, -9] \cdot [-2, 0, 1] }{\left(\sqrt{2^2 + 0^2 + 1^2}\right)} = \frac{17}{\left(\sqrt{5}\right)}$	M1 (*dep)	For using numerator of distance formula
	≠0, so skew	A1 5	For correct scalar product
			and correct conclusion
	METHOD 2 lines would intersect where		
	$\frac{1}{2} + s = -3 + 2t \qquad s - 2t = -4$	B1	For correct parametric form for either
	$ \begin{array}{c} 1 + s = -3 + 2t \\ -2 - s = 1 + 3t \\ -4 + 2s = 5 + 4t \end{array} \Longrightarrow \begin{cases} s - 2t = -4 \\ s + 3t = -3 \\ 2s - 4t = 9 \end{cases} $	M1*	line For 3 equations using 2 different
	(23 + 12) = (23 + 12) = (23 + 12)	1411	parameters
		A1	r
		M1	For attempting to solve
		(*dep)	to show (in)consistency
	\Rightarrow contradiction, so skew	A1	For correct conclusion
		5	
2 (i)	$(a+b\sqrt{5})(c+d\sqrt{5})$	M1	For using product of 2 distinct elements
	$= ac + 5bd + (bc + ad)\sqrt{5} \in H$	A1 2	For correct expression
(ii)	$(e =) 1 OR 1 + 0\sqrt{5}$	B1 1	For correct identity
(iii)			For correct inverse as $(a+b\sqrt{5})^{-1}$
	EITHER $\frac{1}{a+b\sqrt{5}} \times \frac{a-b\sqrt{5}}{a-b\sqrt{5}}$	M1	
	$OR \ \left(a+b\sqrt{5}\right)\left(c+d\sqrt{5}\right) = 1 \implies \begin{cases} ac+5bd=1\\ bc+ad=0 \end{cases}$		and multiplying top and bottom by $a-b\sqrt{5}$
	$OK \left(\frac{a+b\sqrt{3}}{c+a\sqrt{3}} \right) = 1 \implies \begin{cases} bc+ad = 0 \end{cases}$		OR for using definition and equating
	a h r		parts
	inverse = $\frac{a}{a^2 - 5b^2} - \frac{b}{a^2 - 5b^2}\sqrt{5}$	A1 2	For correct inverse. Allow as a single
	u 30 u 30		fraction
(iv)	5 is prime $OR \sqrt{5} \notin \mathbb{Q}$	B1 1	For a correct property (or equivalent)
		6	
3	$\int 2d\mathbf{r} = 2\mathbf{r}$		
٠	Integrating factor = $e^{\int 2dx} = e^{2x}$	B1	For correct IF
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \mathrm{e}^{2x} \right) = \mathrm{e}^{-x}$	M1	For $\frac{d}{dx}(y)$. their IF) = e^{-3x} . their IF
	$\Rightarrow y e^{2x} = -e^{-x}(+c)$	A1	For correct integration both sides
	$(0,1) \Longrightarrow c = 2$	M1	For substituting (0, 1) into their GS
	$(0,1) \rightarrow 0 - 2$		and solving for <i>c</i>
	2	A1√	For correct c f.t. from their GS
	$\Rightarrow y = -e^{-3x} + 2e^{-2x}$	A1 6	For correct solution
		6	
			For at least 2 roots of the
4 (i)	(z =) 2, -2, 2i, -2i	M1	form k {1, i} AEF
		A1 2	For correct values
		111 🖌	

(ii)	$\frac{w}{1-w} = 2, -2, 2i, -2i$	M1	For $\frac{w}{1-w}$ = any one solution from (i)
	$w = \frac{z}{1+z}$	M1	For attempting to solve for <i>w</i> ,
	1+z		using any solution or in general
	$w = \frac{2}{3}, 2$	B1	For any one of the 4 solutions
	$n = \frac{1}{3}, 2$	A1	For both real solutions
	$w = \frac{4}{5} \pm \frac{2}{5}i$	A1 5	For both complex solutions
			SR Allow $B1$ and one $A1$ from $k \neq 2$
		7	
5 (i)	$\mathbf{AB} = k \left[\frac{2}{3} \sqrt{3}, 0, -\frac{2}{3} \sqrt{6} \right],$	54	
		B1	For any one edge vector of ΔABC
	BC = $k \begin{bmatrix} -\sqrt{3}, 1, 0 \end{bmatrix}$, CA = $k \begin{bmatrix} \frac{1}{3}\sqrt{3}, -1, \frac{2}{3}\sqrt{6} \end{bmatrix}$	B1	For any other edge vector of ΔABC
		M1	For attempting to find vector product of
	$\mathbf{n} = k_1 \left[\frac{2}{3} \sqrt{6}, \frac{2}{3} \sqrt{18}, \frac{2}{3} \sqrt{3} \right] = k_2 \left[1, \sqrt{3}, \frac{1}{2} \sqrt{2} \right]$	1011	any two edges
		M1	For substituting A, B or C into $\mathbf{r.n}$
	substitute A B or $C \rightarrow u + \sqrt{2}u + 1/\sqrt{2} = 2/\sqrt{2}$		C C
	substitute A, B or $C \implies x + \sqrt{3}y + \frac{1}{2}\sqrt{2}z = \frac{2}{3}\sqrt{3}$	A1 5	For correct equation AG
			SR For verification only allow M1, then
			A1 for 2 points and A1 for the third
			point
(ii)	Symmetry	B1*	For quoting symmetry or reflection
	in plane <i>OAB</i> or <i>Oxz</i> or $y = 0$	B1	For correct plane
		(*dep)2	
			SR For symmetry implied by reference
			to opposite signs in y coordinates of C
			and <i>D</i> , award B1 only
(iii)	$\cos\theta = \frac{\left\ \left[1, \sqrt{3}, \frac{1}{2}\sqrt{2} \right] \cdot \left[1, -\sqrt{3}, \frac{1}{2}\sqrt{2} \right] \right\ }{\sqrt{1+3+\frac{1}{2}}\sqrt{1+3+\frac{1}{2}}}$	M1	For using scalar product of normal
(111)	$\cos\theta = \frac{1}{1+3+\frac{1}{2}} \frac{1}{1+3+\frac{1}{2}}$		vectors
	$\sqrt{2}$	A1	For correct scalar product
	$\left 1-3+\frac{1}{2}\right = \frac{3}{2} = 1$	M1	For product of both moduli in
	$=\frac{\left 1-3+\frac{1}{2}\right }{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}$		denominator
	2 2	A1 4	For correct answer. Allow $-\frac{1}{3}$
		11	
6 (i)	$\left(m^2 + 16 = 0 \Longrightarrow\right) m = \pm 4i$	M1	For attempt to solve correct auxiliary
. /	· · · · · · · · · · · · · · · · · · ·		equation (may be implied by correct
	$CF = A\cos 4x + B\sin 4x$	A 1 3	CF) For correct CF
	$\mathbf{C}\mathbf{\Gamma} = A\cos 4x + D\sin 4x$	A1 2	
			(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)
(ii)	dy dy	M1	For differentiating PI twice,
	$\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$		using product rule
		A1	For correct $\frac{dy}{dy}$
		111	For correct $\frac{dy}{dx}$
	$d^2 y$		$d^2 y$ dy
	$\frac{d^2 y}{dx^2} = 8p\cos 4x - 16px\sin 4x$	A1	For unsimplified $\frac{d^2 y}{dx^2}$. f.t. from $\frac{dy}{dx}$
	u.	M1	
	$\Rightarrow 8p\cos 4x = 8\cos 4x$	M1	For substituting into DE
	$\Rightarrow p = 1$	A1	For correct <i>p</i>
	\rightarrow (y =) $A \cos 4x + B \sin 4x + x \sin 4x$	B1√ 6	For using $GS = CF + PI$, with 2 arbitrary
	$\Rightarrow (y =)A\cos 4x + B\sin 4x + x\sin 4x$	DIVU	constants in CF and none in PI

(iii)	$(0,2) \Longrightarrow A = 2$	B1v	7	For correct A. f.t. from their GS
	$\frac{dy}{dx} = -4A\sin 4x + 4B\cos 4x + \sin 4x + 4x\cos 4x$	M1		For differentiating their GS
	$x = 0, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies B = 0$	M1		For substituting values for <i>x</i> and $\frac{dy}{dx}$
	$\Rightarrow y = 2\cos 4x + x\sin 4x$	A1	4	to find <i>B</i> For stating correct solution CAO including $y =$
		12	2	
7 (i)	$\cos 6\theta = 0 \Longrightarrow 6\theta = k \times \frac{1}{2}\pi$	M1		For multiples of $\frac{1}{2}\pi$ seen or implied
	$\Rightarrow \theta = \frac{1}{12}\pi\{1, 3, 5, 7, 9, 11\}$	A1 A1	3	A1 for any 3 correct A1 for the rest, and no extras in $0 < \theta < \pi$
(ii)	METHOD 1			
	$\operatorname{Re}(c+\mathrm{i}s)^{6} = \cos 6\theta = c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6}$	M1		For expanding $(c+is)^6$ at least 4 terms and 2 binomial coefficients needed
		A1		For 4 correct terms
	$\cos 6\theta = c^6 - 15c^4(1 - c^2) + 15c^2(1 - c^2)^2 - (1 - c^2)^3$	M1		For using $s^2 = 1 - c^2$
	$\Rightarrow \cos 6\theta = 32c^6 - 48c^4 + 18c^2 - 1$	A1		For correct expression for $\cos 6\theta$
	$\Rightarrow \cos 6\theta = (2c^2 - 1)(16c^4 - 16c^2 + 1)$	A1	5	For correct result AG (may be written down from correct $\cos 6\theta$)
	METHOD 2			· · · · · · · · · · · · · · · · · · ·
	$\operatorname{Re}(c+\mathrm{i} s)^3 = \cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	M1		For expanding $(c+is)^3$ at least 2 terms and 1 binomial coefficient needed
	(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	A1		For 2 correct terms
	$\Rightarrow \cos 6\theta = \cos 2\theta \left(\cos^2 2\theta - 3\sin^2 2\theta\right)$	M1		For replacing θ by 2θ
	$\Rightarrow \cos 6\theta = \left(2\cos^2 \theta - 1\right) \left(4\left(2\cos^2 \theta - 1\right)^2 - 3\right)$	A1		For correct expression in $\cos\theta$ (unsimplified)
	$\Rightarrow \cos 6\theta = (2c^2 - 1)(16c^4 - 16c^2 + 1)$	A1		For correct result AG
(iii)	METHOD 1			
	$\cos 6\theta = 0$	M1		For putting $\cos \theta = 0$
	$\Rightarrow 6 \text{ roots of } \cos 6\theta = 0 \text{ satisfy}$ 16c ⁴ -16c ² +1=0 and 2c ² -1=0	A1		For association of roots with quartic and quadratic
	But $\theta = \frac{1}{4}\pi, \frac{3}{4}\pi$ satisfy $2c^2 - 1 = 0$	B1		For correct association of roots with
	<i>EITHER</i> Product of 4 roots <i>OR</i> $c = \pm \frac{1}{2}\sqrt{2 \pm \sqrt{3}}$	M1		quadratic For using product of 4 roots <i>OR</i> for solving quartic
	$\Rightarrow \cos\frac{1}{12}\pi \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cos\frac{11}{12}\pi = \frac{1}{16}$	A1	5	For correct value (may follow A0 and B0)

	METHOD 2		
	$\cos 6\theta = 0$	M1	For putting $\cos \theta = 0$
	\Rightarrow 6 roots of cos6 θ = 0 satisfy	A1	For association of roots with sextic
	$32c^6 - 48c^4 + 18c^2 - 1 = 0$		
	Product of 6 roots \Rightarrow	M1	For using product of 6 roots
	$\cos\frac{1}{12}\pi \cdot \frac{1}{\sqrt{2}} \cdot \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos\frac{11}{12}\pi = -\frac{1}{32}$	B1	For using $\cos\left\{\frac{3}{12}\pi, \frac{9}{12}\pi\right\} = \left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$
	$\cos\frac{1}{12}\pi\cos\frac{5}{12}\pi\cos\frac{7}{12}\pi\cos\frac{11}{12}\pi = \frac{1}{16}$	A1	For correct value
		13	
8 (i)	$g(x) = \frac{1}{2-2 \cdot \frac{1}{2-2x}} = \frac{2-2x}{2-4x} = \frac{1-x}{1-2x}$	M1	For use of $ff(x)$
	$2-2.{2-2x}$	A1	For correct expression AG
	$gg(x) = \frac{1 - \frac{1 - x}{1 - 2x}}{1 - 2 \cdot \frac{1 - x}{1 - 2x}} = \frac{-x}{-1} = x$	M1	For use of $ag(x)$
	$gg(x) = \frac{1-2x}{1-x} = \frac{x}{-1} = x$	A1 4	For use of gg(x) For correct expression AG
	$1-2.\frac{1}{1-2x}$	A1 4	For confect expression AG
(ii)	Order of $f = 4$	B1	For correct order
	order of $g = 2$	B1 2	For correct order
(iii)	METHOD 1		
	$y = \frac{1}{2 - 2x} \Longrightarrow x = \frac{2y - 1}{2y}$	M1	For attempt to find inverse
	$\Rightarrow f^{-1}(x) = h(x) = \frac{2x-1}{2x} OR \ 1 - \frac{1}{2x}$	A1 2	For correct expression
	METHOD 2		
	$f^{-1} = f^3 = fg \text{ or } gf$	M1	For use of $fg(x)$ or $gf(x)$
	f g(x) = h(x) = $\frac{1}{2 - 2\left(\frac{1 - x}{1 - 2x}\right)} = \frac{1 - 2x}{-2x}$	A1	For correct expression
(iv)			
	e f g h	M1	For correct row 1 and column 1
	e e f g h	A1	For e, f, g, h in a latin square
	f f g h e g g h e f	A1	For correct diagonal e - g - e - g
	g g h e f h h e f g	A1 4	For correct table
		12	