4733 Probability & Statistics 2

Penalise over-specified answers (> 6 SF) first time but only once per paper. Use Or to annotate "over-assertive" or "no context" respectively

T .					
1		$\hat{\mu} = \overline{x} = 15.16$	B1		15.16 or 15.2 as answer only
		$\hat{\sigma}^2 = \frac{5}{4}s^2$	M1		Use $\frac{\Sigma x^2}{5} - \overline{x}^2$ [=1.0904]
		·	M1		Multiply by 5/4, or equiv for single formula
		= 1.363	A1	4	Final answer 1.36 or 1.363 only, <i>not</i> isw
2	(i)	Not all equally likely – those in	M1	-	Not all equally likely stated or implied
-	(1)	range 0 to 199 more likely to be	A1	2	Justified by reference to numbers, no
		chosen	111	_	spurious reasons
	(ii)	Ignore random numbers greater	B1	1	Any valid resolution of this problem, no
	()	than 799, or 399		_	spurious reasons
3		$B(60, 0.35) \approx N(21, 13.65)$	M1		B(60, 0.35) stated or implied
			M1		N(21,)
		$\Phi\left(\frac{18.5 - 21}{\sqrt{13.65}}\right) = \Phi(-0.6767)$	A1		Variance or $SD = 13.65$
		· · /	M1		Standardise, their np and \sqrt{npq} or npq ,
		=1-0.7507			wrong or no cc
			A1		Both \sqrt{npq} and cc correct
		= 0.2493	A1	6	Answer, a.r.t. 0.249
4		$H_0: \mu = 60; H_1: \mu < 60$	B2		Both correct, B2
					B1 for one error, but not x , t , \overline{x} or \overline{t}
		(α) $z = \frac{58.9 - 60}{\sqrt{5^2 / 80}} = -1.967$	M1		Standardise 58.9 & $\sqrt{80}$, allow – or $\sqrt{100}$ errors
		V3 780	A1		z, art -1.97 or p in range $[0.024, 0.025]$
		< - 1.645	B1		Explicit comparison with -1.645 or 0.05, or
					+1.645 or 0.95 if 1.967 or 0.976 used
	or:	$(\beta)_{c=60-1.645} \times \frac{5}{\sqrt{80}} = 59.08$	M1		$60 - z \times 5/\sqrt{80}$, any $z = \Phi^{-1}$, allow $\sqrt{2}$ errors or
		$\sqrt{80} = 39.08$	B1		\pm , not just +; $z = 1.645$ and compare 58.9
		58.9 < 59.08	A1		59.1 or better, \checkmark on wrong z
		Reject H ₀	M1		Correct first conclusion, needs essentially
					correct method including √80 or 80
		Significant evidence that people	A1•	7	Contextualised, uncertainty acknowledged
		underestimate time			SR: μ = 58.9: B0M1A0B1 max 2/7
					SR: 2-tail: max 5/7
5	(i)	$H_0: \lambda = 11.0$	B2		Allow μ . Both correct, B2
		$H_1: \lambda > 11.0$			One error: B1, but not C , x etc
		(α) $P(\geq 19) = 1 - 0.9823$	M1		Find $P(\ge 19)$ [or $P(< 19)$ if later 0.95]
		= 0.0177	A1		art 0.0177 [0.9823, ditto]
		< 0.05	B1		Compare 0.05 [0.95 if consistent], needs
					M1
		(β) CR ≥ 18 ,	M1		CR or CV 16/17/18/19 stated or clearly
					implied, but not <
		$P(\ge 18) = 0.0322$	A1		18 and 0.0322 both seen, allow 0.9678
		19 > 18	B1		Explicit comparison with 19, needs M1
		Reject H ₀	M1		Needs essentially correct method &
		Cionificant avidor as of as	A 1 P	7	comparison
		Significant evidence of an	A1	7	Contextualised, uncertainty acknowledged
		increase in number of customers			SR: Normal, or $P(=19)$ or $P(\le 19)$ or
	(::)	Con't daduag says and effect	D 1	1	P(> 19): First B2 only.
	(ii)	Can't deduce cause-and-effect, or	B1	1	Conclusion needed. No spurious reasons.
		there may be other factors			If "DNR" in (i), "couldn't deduce even if"
					11

6	(i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
		(b) $P(>70)$ must be $< P(>50)$	B1	1	Equivalent statement
		(c) $P(>50) = 0.3 \Rightarrow \mu < 50$	B1	1	Any relevant valid statement, e.g. "P(< 50)
		$P(<70) = 0.3 \Rightarrow \mu > 70$			= 0.7 but P(< 50) must be $<$ P(< 70)"
	(ii)	$\mu = 60$ by symmetry	B1		$\mu = 60$ obtained at any point, allow from Φ
		$\frac{10}{\sigma} = \Phi^{-1}(0.7) = 0.524(4)$	M1		One standardisation, equate to Φ^{-1} , not
		$\sigma = \Phi (0.7) = 0.324(4)$			0.758
		$\sigma = 10/0.5243$	B1		$\Phi^{-1} \in [0.524, 0.5245]$ seen
		= 19.084	A1	4	σ in range [19.07, 19.1], e.g. 19.073
7	(i)	A	M1		Horizontal line
			A1	2	Evidence of truncation
					[no need for labels]
		5 11			
	(ii)	$\mu = 8$	B1		8 only, cwd
		$\int_{5}^{11} \frac{1}{6} t^2 dt = \left[\frac{1}{18} t^3 \right]_{5}^{11} \qquad [=67]$	M1		Attempt $\int kt^2 dt$, limits 5 and 11 seen
		♥ 3	B1		k = 1/6 stated or implied
		-8^2	M1	_	Subtract their (non-zero) mean ²
		= 3	A1	5	Answer 3 only, <i>not</i> from MF1
	(iii)	N(8, 3/48)	M1		Normal stated or implied
		$1 - \Phi\left(\frac{8.3 - 8}{\sqrt{3/48}}\right) = 1 - \Phi(1.2)$	A1		Mean 8
		$\left(\frac{1-\Phi}{\sqrt{3/48}}\right)^{-1}$	A1		Variance their (non-zero) (ii)/48
		= 1 - 0.8848	M1		Standardise, \sqrt{n} , ignore sign or \sqrt{n} errors. cc:
		0.1151			MO
		= 0.1151	A1		Answer, art 0.115
	(*)	Normal distribution only approx.	B1	6	Any equivalent comment, e.g. CLT used
8	(i)	$P(\le 4) = 0.0473$	M1		$P(\le r)$ from B(10, 0.7), $r = 3/4/5$, not N
		Therefore CR is ≤ 4	B1	2	"≤ 4" stated, not just "4", nothing else
		P(Type I error) = 4.73%	A1	3	Answer, art 0.0473 or 4.73%, must be stated
	(ii)	B(10, 0.4) and find $P(>4)$	M1		Must be this, <i>not</i> isw, fon (i)
		$1 - P(\leq 4)$	M1	,	Allow for 0.6177 or 0.1622
		= 0.3669	A1	3	Answer, art 0.367
	(iii)	0.5×0.3669	M1	2	$0.5 \times (ii)$
		= 0.18345	A1	2	Ans correct to 3 SF, e.g. 0.184 from 0.367

9	(i)	$1 - P(\le 7) = 1 - 0.9881$	M1		Allow for 0.0038 or 0.0335
	()	= 0.0119	A1	2	Answer, a.r.t. 0.0119
	(ii)	Po(12)	M1		Po(12) stated or implied
	(11)	$P(\le 14) - P(\le 12)$	M1		Formula, 2 consecutive correct terms, or
		[0.7720 - 0.5760]	1711		tables, e.g0905 or .3104 or .1629
		= 0.196	A1	3	Answer, art 0.196
	(iii)	$Po(60) \approx N(60, 60)$	M1		N(60,)
	(111)	$FO(00) \approx IN(00, 00)$	A1		Variance or SD 60
		$\Phi\left(\frac{69.5-60}{\sqrt{60}}\right) = \Phi(1.226)$	M1		Standardise, $\lambda \& \sqrt{\lambda}$, allow λ or wrong or no
		$\left(\frac{\Phi}{\sqrt{60}}\right)$			cc
			A1		$\sqrt{\lambda}$ and cc both correct
		= 0.8899	A1	5	Answer 0.89 or a.r.t. 0.890
	(iv)	(a) $1 - e^{-3m}(1 + 3m)$	M1		M1 for one error, e.g. no "1 –", or extra term,
			A1	2	or 0 th term missing; answer, aesf
		(b) $m = 1.29$,	M1		Substitute 1.29 or 1.3 into appropriate fn
		p = 0.89842	A1		Comp 0.9 0.1 0
		m = 1.3, p = 0.9008	A1		1.29 0.898 0.1015800158
		-			1.3 0.901 0.09918 .0008146
		Straddles 0.9, therefore solution	A 1	4	Explicit comparison with relevant value, &
		between 1.29 and 1.3	A1	4	conclusion, needs both ps correct
	or	Method for iteration; 1.296	M1A1		Can be implied by at least 1.296
		1.2965or better; conclusion	A1A1		Need at least 4 dp for M1A2
		stated	11111		1,000 at least 1 ap 101 militiz
		stated			