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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided

on the Answer Booklet.
• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.

• Do not write in the bar codes.
• Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is

specified in the question or is clearly appropriate.
• You are permitted to use a graphical calculator in this paper.
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• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are reminded of the need for clear presentation in your answers.
• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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1 The matrix A is given by A = ( a 2

3 4
) and I is the 2 × 2 identity matrix.

(i) Find A − 4I. [2]

(ii) Given that A is singular, find the value of a. [3]

2 The cubic equation 2x
3 + 3x − 3 = 0 has roots α, β and γ .

(i) Use the substitution x = u − 1 to find a cubic equation in u with integer coefficients. [3]

(ii) Hence find the value of (α + 1)(β + 1)(γ + 1). [2]

3 The complex number ß satisfies the equation ß + 2iß* = 12 + 9i. Find ß, giving your answer in the

form x + iy. [5]

4 Find
n

∑
r=1

r(r + 1)(r − 2), expressing your answer in a fully factorised form. [6]

5 (i) The transformation T is represented by the matrix ( 0 −1

1 0
). Give a geometrical description

of T. [2]

(ii) The transformation T is equivalent to a reflection in the line y = −x followed by another

transformation S. Give a geometrical description of S and find the matrix that represents S. [4]

6 One root of the cubic equation x
3 + px

2 + 6x + q = 0, where p and q are real, is the complex number

5 − i.

(i) Find the real root of the cubic equation. [3]

(ii) Find the values of p and q. [4]

7 (i) Show that
1

r
2
−

1

(r + 1)2
≡

2r + 1

r
2(r + 1)2

. [1]

(ii) Hence find an expression, in terms of n, for

n

∑
r=1

2r + 1

r
2(r + 1)2

. [4]

(iii) Find

∞

∑
r=2

2r + 1

r
2(r + 1)2

. [2]

8 The complex number a is such that a
2 = 5 − 12i.

(i) Use an algebraic method to find the two possible values of a. [5]

(ii) Sketch on a single Argand diagram the two possible loci given by |ß − a | = |a |. [4]
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9 The matrix A is given by A =
 2 −1 1

0 3 1

1 1 a

, where a ≠ 1.

(i) Find A−1. [7]

(ii) Hence, or otherwise, solve the equations

2x − y + ß = 1,

3y + ß = 2,

x + y + aß = 2. [4]

10 The matrix M is given by M = ( 1 2

0 1
).

(i) Find M2 and M3. [3]

(ii) Hence suggest a suitable form for the matrix Mn. [1]

(iii) Use induction to prove that your answer to part (ii) is correct. [4]

(iv) Describe fully the single geometrical transformation represented by M10. [3]
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