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• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.

• Do not write in the bar codes.
• Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is

specified in the question or is clearly appropriate.
• You are permitted to use a graphical calculator in this paper.
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1 It is given that f(x) = x2 − sin x.

(i) The iteration x
n+1

= √
sin x

n
, with x

1
= 0.875, is to be used to find a real root, α, of the equation

f(x) = 0. Find x
2
, x

3
and x

4
, giving the answers correct to 6 decimal places. [2]

(ii) The error e
n

is defined by e
n
= α − x

n
. Given that α = 0.876 726, correct to 6 decimal places,

find e
3

and e
4
. Given that g(x) = √

sin x, use e
3

and e
4

to estimate g′(α). [3]

2 It is given that f(x) = tan−1(1 + x).
(i) Find f(0) and f ′(0), and show that f ′′(0) = −1

2
. [4]

(ii) Hence find the Maclaurin series for f(x) up to and including the term in x2. [2]

3

O

y

x

( )x x1 1, f( )

x1 x2

y x= f( )

A curve with no stationary points has equation y = f(x). The equation f(x) = 0 has one real root α, and

the Newton-Raphson method is to be used to find α. The tangent to the curve at the point (x
1
, f(x

1
))

meets the x-axis where x = x
2

(see diagram).

(i) Show that x
2
= x

1
− f(x

1
)

f ′(x
1
) . [3]

(ii) Describe briefly, with the help of a sketch, how the Newton-Raphson method, using an initial

approximation x = x
1
, gives a sequence of approximations approaching α. [2]

(iii) Use the Newton-Raphson method, with a first approximation of 1, to find a second approximation

to the root of x2 − 2 sinh x + 2 = 0. [2]

4 The equation of a curve, in polar coordinates, is

r = e−2θ , for 0 ≤ θ ≤ π.

(i) Sketch the curve, stating the polar coordinates of the point at which r takes its greatest value.

[2]

(ii) The pole is O and points P and Q, with polar coordinates (r
1
, θ

1
) and (r

2
, θ

2
) respectively, lie

on the curve. Given that θ
2
> θ

1
, show that the area of the region enclosed by the curve and the

lines OP and OQ can be expressed as k(r2
1
− r2

2
), where k is a constant to be found. [5]
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5 (i) Using the definitions of sinh x and cosh x in terms of ex and e−x, show that

cosh2 x − sinh2 x ≡ 1.

Deduce that 1 − tanh2 x ≡ sech2 x. [4]

(ii) Solve the equation 2 tanh2 x − sech x = 1, giving your answer(s) in logarithmic form. [4]

6 (i) Express
4

(1 − x)(1 + x)(1 + x2) in partial fractions. [5]

(ii) Show that ä
1√
3

0

4

1 − x4
dx = ln(

√
3 + 1√
3 − 1

) + 1
3
π. [4]

7

O
x

y

1 2 3 n–1 n

The diagram shows the curve with equation y = 3
√

x, together with a set of n rectangles of unit width.

(i) By considering the areas of these rectangles, explain why

3
√

1 + 3
√

2 + 3
√

3 + . . . + 3
√

n > ã n

0

3
√

x dx. [2]

(ii) By drawing another set of rectangles and considering their areas, show that

3
√

1 + 3
√

2 + 3
√

3 + . . . + 3
√

n < ã n+1

1

3
√

x dx. [3]

(iii) Hence find an approximation to
100

∑
n=1

3
√

n, giving your answer correct to 2 significant figures. [3]

[Questions 8 and 9 are printed overleaf.]
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8 The equation of a curve is

y = kx

(x − 1)2
,

where k is a positive constant.

(i) Write down the equations of the asymptotes of the curve. [2]

(ii) Show that y ≥ −1
4
k. [4]

(iii) Show that the x-coordinate of the stationary point of the curve is independent of k, and sketch

the curve. [4]

9 (i) Given that y = tanh−1 x, for −1 < x < 1, prove that y = 1
2

ln(1 + x

1 − x
). [3]

(ii) It is given that f(x) = a cosh x − b sinh x, where a and b are positive constants.

(a) Given that b ≥ a, show that the curve with equation y = f(x) has no stationary points. [3]

(b) In the case where a > 1 and b = 1, show that f(x) has a minimum value of
√

a2 − 1. [6]
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