

GCE

Mathematics

Advanced GCE

Unit 4727: Further Pure Mathematics 3

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Integrating factor. $e^{\int x dx} = e^{\frac{1}{2}x^2}$ B1 For correct IF	ĺ
$\Rightarrow \frac{d}{dx} \left(y e^{\frac{1}{2}x^2} \right) = x e^{x^2}$ M1 For $\frac{d}{dx} \left(y \cdot \text{their IF} \right) = x e^{\frac{1}{2}x^2} \cdot \text{their IF}$	
$\Rightarrow y e^{\frac{1}{2}x^2} = \frac{1}{2}e^{x^2} (+c)$ A1 For correct integration both sides	
$\Rightarrow y = e^{-\frac{1}{2}x^2} \left(\frac{1}{2} e^{x^2} + c \right) = \frac{1}{2} e^{\frac{1}{2}x^2} + c e^{-\frac{1}{2}x^2} $ A1 4 For correct solution AEF as $y = f(x)$	
(ii) $(0, 1) \Rightarrow c = \frac{1}{2}$ M1 For substituting $(0, 1)$ into their GS, solving for c and obtaining a solution of t $t = \frac{1}{2} \left(\frac{1}{2}x^2 + \frac{1}{2}x^2 \right)$ A1 2 For correct solution AEF	he DE
$\Rightarrow y = \frac{1}{2} \left(e^{\frac{1}{2}x^2} + e^{-\frac{1}{2}x^2} \right)$ A1 2 For correct solution AEF Allow $y = \cosh\left(\frac{1}{2}x^2\right)$	
6	
2 (i) $\mathbf{n} = [2, 1, -3] \times [-1, 2, 4]$ M1 For using \times of direction vectors $= [10, -5, 5] = k[2, -1, 1]$ A1 For correct \mathbf{n}	
$(1, 3, 4) \Rightarrow 2x - y + z = 3$ A1 3 For substituting $(1, 3, 4)$ and obtaining AG (Verification only M	10)
(ii) METHOD 1 M1 For $21 - 3$ OR $[1, 3, 4]$ $\cdot [2, -1, 1] - 21$	
distance = $\frac{21-3}{ \mathbf{n} } OR \frac{ [1,3,4]\cdot[2,-1,1]-21 }{ \mathbf{n} } OR ([1,3,4]-[a,b,c])\cdot[2,-1,1] $ soi	
$OR \frac{ ([1, 3, 4] - [a, b, c]) \cdot [2, -1, 1] }{ \mathbf{n} } \text{ where } (a, b, c) \qquad B1 \qquad \text{For } \mathbf{n} = \sqrt{6} \text{ soi}$	
$= \frac{18}{\sqrt{6}} = 3\sqrt{6}$ A1 3 For correct distance AEF	
METHOD 2	
\Rightarrow distance = $3 \mathbf{n} = 3\sqrt{6}$ A1 For correct distance AEF	
METHOD 3 As Method 2 to $t = 3 \Rightarrow (7, 0, 7)$ on q M1* For finding point where normal meets q	
distance from (1, 3, 4) M1 For finding distance from (1, 3, 4) (*dep)	
$= \sqrt{(7-1)^2 + (0-3)^2 + (7-4)^2} = \sqrt{54} = 3\sqrt{6}$ A1 For correct distance AEF	
6	
3 (i) $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$ z or $e^{i\theta}$ may be used throughout For correct expression for $\sin \theta$ soi	
$\sin^4 \theta = \frac{1}{16} \left(z^4 - 4z^2 + 6 - 4z^{-2} + z^{-4} \right)$ M1 For expanding $\left(e^{i\theta} - e^{-i\theta} \right)^4$ (with at least	st
3 terms and 1 binomial coefficient)	
$\Rightarrow \sin^4 \theta = \frac{1}{16} (2\cos 4\theta - 8\cos 2\theta + 6)$ M1 For grouping terms and using multiple an	gles
$\Rightarrow \sin^4 \theta = \frac{1}{8} (\cos 4\theta - 4\cos 2\theta + 3)$ A1 4 For answer obtained correctly AG	
(ii) $\int_{0}^{\frac{1}{6}\pi} \sin^{4}\theta d\theta = \frac{1}{8} \left[\frac{1}{4} \sin 4\theta - 2 \sin 2\theta + 3\theta \right]_{0}^{\frac{1}{6}\pi}$ M1 For integrating (i) to $A \sin 4\theta + B \sin 2\theta + A$ For correct integration	$C\theta$
$=\frac{1}{2}\left(\frac{1}{2}\sqrt{3}-\sqrt{3}+\frac{1}{2}\pi\right)=\frac{1}{2}\left(4\pi-7\sqrt{3}\right)$ M1 For completing integration	
and substituting limits A1 4 For correct answer AEF(exact)	
8	

4 (i)	EITHER $1 + \omega + \omega^2$	M1	•	For result shown by any correct method AG
	= sum of roots of $(z^3 - 1 = 0) = 0$	A1	2	
	$OR \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$			
	$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$			
	OR sum of G.P.			
	$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$			
	or explained in terms of vectors			
	OR			
	$1 + \operatorname{cis} \frac{2}{3}\pi + \operatorname{cis} \frac{4}{3}\pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 0$			
(ii)	Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3}\pi$ \circlearrowleft	В1		For correct interpretation of \times by ω
	- 3			(allow 120° and omission of, or error in, \circlearrowleft)
	$z_1 - z_3 = \overrightarrow{CA} , z_3 - z_2 = \overrightarrow{BC}$	B1		For identification of vectors soi (ignore direction errors)
	\overrightarrow{BC} rotates through $\frac{2}{3}\pi$ to direction of \overrightarrow{CA}	M1		For linking <i>BC</i> and <i>CA</i> by rotation of $\frac{2}{3}\pi$ <i>OR</i> ω
	$\triangle ABC$ has $BC = CA$, hence result	A1	4	For stating equal magnitudes \Rightarrow AG
(iii)	$(\mathbf{ii}) \Rightarrow z_1 + \omega z_2 - (1 + \omega)z_3 = 0$	M1		For using $1 + \omega + \omega^2 = 0$ in (ii)
	$1 + \omega + \omega^2 = 0 \Rightarrow z_1 + \omega z_2 + \omega^2 z_3 = 0$	A1	2	For obtaining AG
		8		
5 (i)	Aux. equation $3m^2 + 5m - 2 = 0$	M1		For correct auxiliary equation seen and solution attempted
	$\Rightarrow m = \frac{1}{3}, -2$	A1		For correct roots
	CF $(y =) A e^{\frac{1}{3}x} + B e^{-2x}$	A1v	1	For correct CF
	PI $(y =) px + q \Rightarrow 5p - 2(px + q) = -2x + 13$	M1		f.t. from <i>m</i> with 2 arbitrary constants For stating and substituting PI of correct form
	$\Rightarrow p=1, q=-4$	A1	A1	For correct value of p , and of q
	GS $(y =) A e^{\frac{1}{3}x} + B e^{-2x} + x - 4$	B1√	7	For GS f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI
(ii)	$\left(0, -\frac{7}{2}\right) \Rightarrow A + B = \frac{1}{2}$	M1		For substituting $\left(0, -\frac{7}{2}\right)$ in their GS
	$y' = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} + 1$, $(0, 0) \Rightarrow A - 6B = -3$	M1		and obtaining an equation in A and B For finding y' , substituting $(0, 0)$ and obtaining an equation in A and B
		M1		For solving their 2 equations in A and B
	$\Rightarrow A = 0, \ B = \frac{1}{2}$	A1		For correct A and B CAO
	$\Rightarrow (y =) \frac{1}{2} e^{-2x} + x - 4$	B1v	5	For correct solution f.t. with their <i>A</i> and <i>B</i> in their GS
(iii)	$x \text{ large} \Rightarrow (y =) x - 4$	B1v	1	For correct equation or function (allow \approx and \rightarrow) www
		13	2	f.t. from (ii) if valid
		1.	<u>'</u>	

6	(i)	$a^4 = r^6 = e \implies a$ has order 4, a^2 has order 2	M1		For considering powers of <i>a</i>
		$\left(a^3\right)^4 = a^{12} = e \implies a^3 \text{ has order 4}$	A1		For order of any one of a , a^2 , a^3 correct
		$\begin{pmatrix} a \end{pmatrix} = a = e \Rightarrow a$ has order 4	A1		For all correct
		$\left(r^2\right)^3 = e \implies r^2 \text{ has order } 3$	B1	4	For order of r^2 correct
	(ii)	G order 4	M1		For top line in either table
		Order of element 1 2 (4) Number of elements 1 3 (0)			Allow inclusion of 4 and 6 respectively (and other orders if 0 appears below)
		H order 6	A 1		••
		Order of element 1 2 3 (6)	A1 A1		For order 4 table For order 6 table
		Number of elements $\begin{vmatrix} 1 & 3 & 2 & (0) \end{vmatrix}$ G and H are the only non-cyclic groups of order	В1		For stating that only G and H need be
		which divides 12	Di		considered AEF
		Q has 1 element of order 2, G and H have 3,	B1	5	For argument completed by elements of order 2
		so no non-cyclic subgroups in Q			AG SR Allow equivalent arguments for B1 B1
			9		
7	(i)	$[1, 1, -2] \times [1, -1, 3] = (\pm)[1, -5, -2]$	M1		For using × of direction vectors
			A1		For correct direction
		$[1, -1, 3] \times [1, 5, -12] = (\pm)[-3, 15, 6]$	M1 A1		For using × of direction vectors For correct direction
		$[-3, 15, 6] = k[1, -5, -2] \Rightarrow \text{parallel}$	A1	5	For argument completed AG
					(k = -3 not essential)
	(ii)	Line of intersection is parallel to <i>l</i> and <i>m</i>	B1	1	For correct statement
	(iii)	METHOD 1	3.51		
		$\begin{cases} x + y - 2z = 5 \\ x - y + 3z = 6 \end{cases}$ e.g. $z = 0 \implies \left(\frac{11}{2}, -\frac{1}{2}, 0\right)$ on l	M1 A1		For attempt to find points on 2 lines For a correct point on one line
		$\begin{cases} x - y + 3z = 6 \\ x + 5y - 12z = 12 \end{cases} \text{ e.g. } z = 0 \implies (7, 1, 0) \text{ on } m$	A1		For a correct point on another line
		$\begin{cases} x + y - 2z = 5 \\ x + 5y - 12z = 12 \end{cases}$ e.g. $z = 0 \implies \left(\frac{13}{4}, \frac{7}{4}, 0\right)$ on l_3			
		Different points \Rightarrow no common line of intersection	A1	4	For correct answer
		METHOD 2			
		$\begin{cases} x + y - 2z = 5 \\ x - y + 3z = 6 \end{cases}$ e.g. $\Rightarrow z = 11 - 2x, y = 27 - 5x$	M1		For finding (e.g.) y and z in terms of x
		x - y + 3z = 6	A1		OR eliminating one variable For correct expressions OR equations
		LHS of eqn 3 =	A 1		For obtaining a contradiction from 3rd equation
		$x + (135 - 25x) - (132 - 24x) = 3 \neq 12$. 1		
		⇒ no common line of intersection	A1		For correct answer
		METHOD 3	M2		For attempt to link 3 equations
		LHS $\Pi_3 = 3\Pi_1 - 2\Pi_2$ RHS $3 \times 5 - 2 \times 6 = 3 \neq 12$	A1		For obtaining a contradiction
		$\Rightarrow \text{ no common line of intersection}$	A1		For correct answer
		SR Variations on all methods may gain full credit	111		SR f.t. may be allowed from relevant working
		The second of all medious may gain full credit	14	<u>, </u>	522 III may be anowed from felevant working
			10	<u>'</u>	

8 (i)	((a,b)*(c,d))*(e,f) = (ac,ad+b)*(e,f)	M1	For 3 distinct elements bracketed and attempt to expand
	=(ace, acf + ad + b)	A1	For correct expression
	(a,b)*((c,d)*(e,f)) = (a,b)*(ce,cf+d)		
	=(ace, acf + ad + b)	A1 3	For correct expression again
(ii)	(a,b)*(1,1) = (a,a+b), (1,1)*(a,b) = (a,b+1)	M1	For combining both ways round
	$a+b=b+1 \Rightarrow a=1$	M1	For equating components
	\Rightarrow (1, b) \forall b		(allow from incorrect pairs)
		A1 3	For correct elements AEF
(iii)	(mp, mq + n) OR (pm, pn + q) = (1, 0)	M 1	For either element on LHS
	$\Rightarrow (p,q) = \left(\frac{1}{m}, -\frac{n}{m}\right)$	A1 2	For correct inverse
(iv)	$(a,b)*(a,b) = (a^2, ab+b) = (1,0)$ $OR(a,b) = \left(\frac{1}{a}, -\frac{b}{a}\right) \implies a^2 = 1, ab = -b$	M1	For attempt to find self-inverses
	\Rightarrow self-inverse elements (1, 0) and (-1, b) \forall b	B1 A1 3	For $(1, 0)$. For $(-1, b)$ AEF
(v)	$(0, y)$ has no inverse for any $y \Rightarrow$ not a group	B1 1	For stating any one element with no inverse. Allow $x \neq 0$ required, provided reference to inverse is made "Some elements have no inverse" B0
		12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

