

GCE

Mathematics

Advanced GCE

Unit 4733: Probability and Statistics 2

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1		- 468	B1	52 stated
		$\hat{\mu} = \overline{x} = \frac{468}{9} = 52$	M1	Correct method for biased estimator
			M1	Multiply by 9/8
		$\frac{24820}{9} - 52^2 = 53.78$		[if single formula, allow M0 M1 if wrong but divisor 8 seen
				anywhere]
		$\hat{\sigma}^2 = \frac{9}{8} \times 53.78 = 60.5$	A1 4	Answer 60.5 or exact equivalent
		8		
2		$53.28 - \mu_{-1.96}$	M1dep	Standardise with \sqrt{n} once & equate to z, allow sign, square/ $$
		$\frac{53.28 - \mu}{5 / \sqrt{n}} = 1.96$		errors
		$\frac{\mu - 51.65}{5 / \sqrt{n}} = 1.3$	A1	twice, signs correct, zs may be wrong
		$\frac{r}{5/\sqrt{n}} = 1.3$	B1	Both correct z values seen
			depM1	Solve to get \sqrt{n} or μ , needs first M1
		$\sqrt{n} = 10, \qquad n = 100$	A1	n = 100, not from wrong signs
		$\mu = 52.3$	B1 6	a.r.t. 52.3, right arithmetic needed but \sqrt{n} can be omitted
3		B(200, 0.0228)	M1	B(200, 0.0228) stated or implied
		Po(4.56)	A1	Po(4.56) stated or implied, allow 4.6 here
		$e^{-4.56}(1+4.56+\frac{4.56^2}{2})$	M1	Correct formula for $P(\le 2) \pm 1$ term, any λ (tables: M0)
		2	A1	Correct formula, 4.56 needed
		= 0.167	A1 B1 6	Answer, a.r.t. 0.167 [0.16694]
		n large or n > 50; p small or np < 5	B1 6	Both, can be merely asserted. If numbers, must be these
				SR interpolation: clear method M1, answer A2
				MR: typically B(200, 0.228) \approx N(45.6, 3.52): M1A1;
4	(i)	212.4. 220	M1	standardise correctly, M1; state np , $nq > 5$, B1
4	(i)	Either $z = \frac{213.4 - 230}{45 / \sqrt{50}}$	IVII	Standardise z with $\sqrt{50}$, ignore sign or $$ or squaring errors
				z-value, a.r.t. -2.61 , or p in range [0.0044, 0.005)
		=-2.608	A1	Correctly compare (–)2.576, signs consistent,
		$-2.608 < -2.576 \ or \ 0.0047 < 0.005$	B1	or p explicitly with 0.005
	Or	CV:: 45 213.6	M1	$230 - z\sigma/\sqrt{50}$, allow $$ or squaring errors, allow \pm but not
	0.	CV is $230 - 2.576 \times \frac{45}{\sqrt{50}} = 213.6$	B1	just +; $z = 2.576$
		213.4 < 213.6		
			A1	Explicitly compare 213.4 with 213.6
		Reject H ₀ . Significant evidence	M1	"Reject", FT, needs correct method and form of
	(::)	that population mean is not 230	A1 FT 5	comparison; interpreted, acknowledge uncertainty
	(ii)	Yes, population distribution is not known to be normal	B2 2	Not, "yes, sample size is large" but ignore "can use it as"
		KHOWH to be normal		SR: Both right and wrong answers: B1
-		H . 1 . 10 . H . 1 . 10	D2	α "Yes as it must be assumed normal": B1
5		$H_0: \lambda = 12; H_1: \lambda > 12$	B2 M1	Both correct: B2. Allow μ . One error, B1, but <i>not x</i> , <i>r</i> etc.
		Either: $P(\ge 19) = 1 - P(\le 18)$	101 1	Po(12) stated or implied, e.g. 0.9787
		= 1 - 0.9626 = 0.0374	A1	0.0374, or 0.9626 if compared with 0.9
		= 0.0374 < 0.1	B1	Explicitly compare $P(\ge 19)$ with 0.1 , or $P(\le 18)$ with 0.9
		Or : CR is ≥ 18 , $p = 0.063$	A1	$\geq 18 \text{ and } 0.063 \text{ stated}$
		-	B1	Explicit comparison of CV (right-hand CR) with 19
		19 ≥ 18		"Reject" FT, needs correct method and comparison, e.g. <i>not</i>
		Reject H ₀ . Significant evidence of increase in mean number of	M1	
		applicants	A1 FT 7	from ≤ 19 or = 19, withhold if inconsistent Interpreted in context, acknowledge uncertainty
L	I .	аррисань	ALLI /	interpreted in context, acknowledge uncertainty

-	(:)	TC and another aminos it does not	D1		A manuar that all areas a sum of an all areas aliance of "in demand and" in
0	(i)	If one customer arrives, it does not	B1		Answer that shows correct understanding of "independent", in
		change the probability that another	D1	2	context; <i>not</i> just equivalent to "singly"
		one does so; customers probably	B1	2	Plausible reason, in context, nothing wrong, nothing that
	(;;)	arrive in groups of at least 2	M1		suggests "constant average rate"
	(ii)	0.1730	M1 A1	2	Correct use of tables or formula, e.g3007, or .4405 from Po(5) if Po(7) stated; answer 0.173, 0.1730 or better
	(iii)	Po(35)	B1		Po(5×7) stated or implied
	(111)	N(35, 35)	M1		Normal, μ = their λ
		14(33, 33)	A1		Both parameters correct, allow 35^2 , $\sqrt{35}$
		$(40.5-35) = 1 - \Phi(0.9297)$	M1		Standardise 40 with λ , $\sqrt{\lambda}$, allow $\sqrt{\lambda}$, cc errors
		$1 - \Phi\left(\frac{40.5 - 35}{\sqrt{35}}\right) = 1 - \Phi(0.9297)$	A1		Both $\sqrt{\lambda}$ and cc correct
		= 0.1763	A1	6	Answer, a.r.t. 0.176 [penalise 0.1765]
7	(i)	- 0.1703	B1		Horizontal line above axis
'	(1)		B1		Concave decreasing curve above axis
			B1	3	Both correct including approx relationship, not extending
		Ψ.			beyond [1, 3], verticals and scale not needed
	(ii)	2 a F =7 ³	M1		Attempt $\int f_X(x)dx$, limits 1, 3 at some stage, and equate to 1
		$\int_{1}^{3} \frac{a}{x^{2}} dx = 1, \left[\frac{-a}{x} \right]_{1}^{3} = 1; a = \frac{3}{2}$	B1		Correct indefinite integral
		$\begin{bmatrix} J_1 & \chi^2 & & & \downarrow & \chi \end{bmatrix}_1$	A1	3	Correctly obtain 3/2 or 1.5 or exact equivalent
	(iii)	$\int_{0}^{3} a = \int_{0}^{3} a = $	M1		Attempt $\int x f_X(x) dx$, limits 1, 3 at some stage
		$\int_{1}^{3} \frac{a}{x} dx = \left[a \ln x \right]_{1}^{3}$	B1 F7	Γ	Correct indefinite integral, FT on a
		$= \frac{3}{2} \ln 3$	A1 F	Т3	Answer, any exact equivalent or a.r.t 1.65, FT on a, or a ln 3
	(:)		B1	1	
	(iv)	<i>T</i> is equally likely to take any value between 1 and 3	ы	1	Must be "values taken by T" (or "of T") or clear equivalent
		between 1 and 3			Any hint that they think T is an <i>event</i> gets B0.
					α "Same chance of occurring anywhere between 1 and 3": 0
					β "For values of T between 1 and 3, T is equally likely": 0 γ "Each value of T is equally likely to occur": 1
					Y Each value of I is equally likely to occur. I
8	(i)	B(40, 0.225)	M1		
8	(i)	$B(40, 0.225)$ $\approx N(9, 6.975)$	M1 M1		B(40, 0.225) stated or implied
8	(i)	\approx N(9, 6.975)	M1		B(40, 0.225) stated or implied Normal, mean 9
8	(i)	\approx N(9, 6.975)			B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$	M1 A1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074	M1 A1 M1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and}$	M1 A1 M1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225)
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074	M1 A1 M1 A1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908]
8	(i)	$\approx N(9, 6.975)$ $\frac{5.5 - 9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and}$	M1 A1 M1 A1 A1	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq ,
8		$\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers	M1 A1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly")
8		≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and	M1 A1 M1 A1 A1 B2	8	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n=3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of # > 3600, or "ignore repeats"
	(ii)	$\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to } 0.5$ Number list sequentially and select using random numbers If # > 3600, ignore (etc)	M1 A1 M1 A1 A1 B2 B1 B1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1
9		$\approx N(9, 6.975)$ $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to } 0.5$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$	M1 A1 M1 A1 A1 B2 B1 B1 B1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13	M1 A1 M1 A1 B2 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or $\{13, 14\}$, allow = but no other inequalities
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13 with probability 0.0475	M1 A1 M1 A1 A1 B2 B1 B1 B1 A1 A1		B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n=3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$	M1 A1 M1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and √npq, allow npq, no or wrong cc CC and √npq correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq, allow from e.g. n = 3600 Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of # > 3600, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π. One error, B1, but r, x etc: B0
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13 with probability 0.0475	M1 A1 M1 A1 A1 B2 B1 B1 B1 A1 A1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with <i>np</i> and √ <i>npq</i> , allow <i>npq</i> , no or wrong cc CC and √ <i>npq</i> correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow <i>npq</i> , allow from e.g. <i>n</i> = 3600 Number list, don't need "sequentially" Mention random numbers (<i>not</i> "select numbers randomly") Deal with issue of # > 3600, <i>or</i> "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π. One error, B1, but <i>r</i> , <i>x</i> etc: B0 Compare CV <i>from correct tail and inequality</i> with 12,
	(ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 np = 9 > 5 or n large; and nq = 31 > 5 or p close to 0.5 Number list sequentially and select using random numbers If # > 3600, ignore (etc) B(14, 0.7) CR is ≥ 13 with probability 0.0475 H ₀ : $p = 0.7$, H ₁ : $p > 0.7$ 12 < 13	M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\geq 12) = 0.1608 and > 0.05 or P($<$ 12) = 0.8392 and $<$ 0.95
	(ii)		M1 A1 M1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or $\{13, 14\}$, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(≥ 12) = 0.1608 and > 0.05 or P(< 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 A1 M1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P(\le 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \ge 13 or < 12; p method needs \ge 12 or < 12
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 B1 B1 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P(\le 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \ge 13 or < 12; p method needs \ge 12 or < 12 Withhold if inconsistent
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 A1 M1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P($<$ 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \ge 13 or $<$ 12; p method needs \ge 12 or $<$ 12 Withhold if inconsistent Contextualised, acknowledge uncertainty
	(ii)		M1 A1 M1 A1 B2 B1 B1 B1 B1 M1 A1 A1 A1 M1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, or P(\ge 12) = 0.1608 and > 0.05 or P($<$ 12) = 0.8392 and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs \ge 13 or < 12; p method needs \ge 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum]
	(ii) (ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13 with probability 0.0475 $H_0: p = 0.7, H_1: p > 0.7$ $12 < 13$ Do not reject H_0 . Insufficient evidence that proportion who show improvement is greater than 0.7	M1 A1 M1 A1 B2 B1 B1 B1 B1 A1 A1 A1 A1 A1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and $> 0.05 or P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]
	(ii)	809, 6.975)	M1 A1 M1 A1 B2 B1 B1 B1 M1 A1 A1 A1 A1 A1 B2 B1 M1 A1 M1 A1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of # > 3600, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and $> 0.05 or P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum] B(14, 0.8) stated or implied, allow from B(14, 0.75)
	(ii) (ii)	≈ N(9, 6.975) $\frac{5.5-9}{\sqrt{6.975}} = -1.325$ 0.9074 $np = 9 > 5 \text{ or } n \text{ large; and } nq = 31 > 5 \text{ or } p \text{ close to 0.5}$ Number list sequentially and select using random numbers If # > 3600, ignore (etc) $B(14, 0.7)$ CR is ≥ 13 with probability 0.0475 $H_0: p = 0.7, H_1: p > 0.7$ $12 < 13$ Do not reject H_0 . Insufficient evidence that proportion who show improvement is greater than 0.7	M1 A1 M1 A1 B2 B1 B1 B1 B1 A1 A1 A1 A1 A1 A1 B2 B1	3	B(40, 0.225) stated or implied Normal, mean 9 Variance 6.975 or SD 2.641 or 6.975 Standardise with np and \sqrt{npq} , allow npq , no or wrong cc CC and \sqrt{npq} correct, allow from N(3600, 0.225) Answer, in range [0.907, 0.908] Full conditions B2; partial, B1 (assertions OK). Allow npq , allow from e.g. $n = 3600$ Number list, don't need "sequentially" Mention random numbers (not "select numbers randomly") Deal with issue of $\# > 3600$, or "ignore repeats" α "Randomly pick numbers from 0 to 3599": (B1) B0 B1 B(14, 0.7) stated or implied, e.g. N(9.8, 2.94), can be recovered CV 13, or > 12 or {13, 14}, allow = but no other inequalities Exactly correct CR, and supporting prob .0475 or .9525 seen Both, B2. Allow π . One error, B1, but r , x etc: B0 Compare CV from correct tail and inequality with 12, $or P(\ge 12) = 0.1608$ and $> 0.05 or P(< 12) = 0.8392$ and < 0.95 Correct method & conclusion, requires like-with-like; CV method needs ≥ 13 or < 12 ; p method needs ≥ 12 or < 12 Withhold if inconsistent Contextualised, acknowledge uncertainty [SR: Normal or Po: (i) M1, (ii) B2 maximum] [0.9932 or 0.0068 probably B2 maximum]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office

Telephone: 01223 552552 Facsimile: 01223 552553

