

GCE

Mathematics

Advanced GCE

Unit 4729: Mechanics 2

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
✓and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

M

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

	Question	Answer	Marks	Guidance
1		$v_x = 40\cos 35$	B1	Expect 32.8, need not be evaluated.
		$v_y = 40\sin 35 - 9.8 \times 3$	B1	Expect –6.46, need not be evaluated.
		$v = \sqrt{32.8^2 + 6.46^2}$ or $\tan \theta = 6.46/32.8$	M1	Use of Pythagoras or relevant trig on $cv(v_x)$ and $cv(v_y)$
		$v = 33.4 \text{ ms}^{-1}$	A1	
		θ = 11.1° below horizontal	A1	AEF; allow 11.2
			[5]	
2	(i)	$h = r \tan \alpha$	B1	Seen anywhere and in any form.
			M1	Table of values idea.
		$x(\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h) = \frac{1}{3}\pi r^2 h \times \frac{h}{4} - \frac{2}{3}\pi r^3 \times \frac{3}{8}r$	A1	
		$x = \frac{r(\tan^2 \alpha - 3)}{8 + 4\tan \alpha}$	A1	AG www
		o i ruma	[4]	
2	(ii)	x < 0	B1	May be implied.
		Solve $\tan^2 \alpha - 3 < 0$	M1	Condone =
		α < 60	A1	Condone ≤ throughout.
			[3]	SC Use of = or > throughout. Max B0 M1 A0
3	(i)		M1	Moments about A.
		$P \times 1.6 = 10g\cos 60 \times 1.2$	A1	
		P = 36.75 N	A1	Allow 36.8
			[3]	
3	(ii)		M1	Attempt at resolving vertically or taking moments.
		$R + 36.75\sin 30 = 10g$	A1 FT	May be implied. $R = 79.6(25)$
		$F = 36.75\cos 30$	B1 FT	Expect 31.8. Or second correct equation involving <i>F</i> or <i>R</i> or both.
		$\mu = 31.8/79.6$	M1	For use of $(\text{their})F = \mu(\text{their})R$ R not = 10 g or their P from (i).
		$\mu = 0.4(00)$	A1	AWRT www. Allow inequality
			[5]	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question		n	Answer	Marks	Guidance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	(i)	(a)	$\sin\theta = \frac{1}{2}$ or $\theta = 30$	B1	θ is angle with horizontal. May have angle with vertical. May be seen later.
$ \begin{array}{ c c c c c } \hline \textbf{4} & (i) & (b) \\ \hline \textbf{4} & (i) & (b) \\ \hline \textbf{A} \\ \hline \textbf{4} & (ii) & (b) \\ \hline \textbf{R} + T\sin\theta = 0.2g \\ R = 1.21 \text{N} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{B} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{A} $					M1	Attempt at resolving horizontally.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$T\cos\theta = 0.2 \times 1.2\cos\theta \times 2.5^2$	A1	cv(r) but not $r = 1.2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				T = 1.5 N	A1	Rounding to 1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$R = 1.21 \text{ N}$ $R = 1.21 \text{ N}$ $R = 1.21 \text{ N}$ $R = 0$ $R = 0$ $T_1 \sin \theta = 0.2g$ $T_1 \cos \theta = 0.2 \times v^2_{fr} \text{ or } 0.2 \times r\omega^2$ $v = 4.2 \text{ ms}^{-1}$ $1500g \sin 5$ $a = 0.313$ $A1$ $2500 - 750 - 1500g \sin 5 = 1500a$ $a = 0.313$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	4	(i)	(b)			,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$FT \ on \ cv(T)$
$ \begin{array}{ c c c c c c } \hline \bf 4 & (ii) & r = \sqrt{1.2^2 - 0.6^2} = 1.2\cos\theta \\ R = 0 & B1 \\ R = 0 & B1 \\ T_1 \cos\theta = 0.2g & B1 \\ T_1 \cos\theta = 0.2 \times v^2/r \text{ or } 0.2 \times r\omega^2 \\ v = 4.2 \text{ ms}^{-1} & A1 \\ \hline \bf 5 & (i) & 25000/10 \\ 1500g \sin5 & B1 \\ 2500 - 750 - 1500g \sin5 = 1500a \\ a = 0.313 & A1 \\ \hline \bf 5 & (ii) & WD against resistance = 750d \\ WD by engine = 25000 \times 28 (= 700000) \\ Change in PE = 1500g \times d \sin5 \\ Change in KE = \pm \frac{1}{2} \times 1500 \times (20^2 - 10^2) + 750d + 1500g \times d \sin5 \\ \times d \sin5 & A1 \\ \hline \bf 5 & (iii) & \frac{1281.1}{1281.1} \\ A1 & Attempt at N2L with 4 terms. \\ cv(1500g \sin5); cv(2500) not 25000. \\ A1 & Allow 0.31 \\ \hline \bf 5 & (iii) & WD against resistance = 750d \\ WD by engine = 25000 \times 28 (= 700000) \\ Change in KE = \pm \frac{1}{2} \times 1500 \times (20^2 - 10^2) \\ \times d \sin5 & A1 \\ \hline \bf 5 & (iii) & Use of correct formula for KE. \\ Use conservation of energy, at least 3 used including WD by engine. \\ \hline \bf 6 & (iii) & (iiiiiiiiiiiiiiiiiiiiiiiiiiii$				R = 1.21 N		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					[3]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	(ii)		$r = \sqrt{1.2^2 - 0.6^2} = 1.2\cos\theta$	B1	May been seen in (i), must be used in here.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				R=0	B1	May be implied.
$ \begin{array}{ c c c c c c } \hline b & v = 4.2 \text{ ms}^{-1} & A1 \\ \hline & 5 & (i) & 25000/10 \\ & 1500g \sin 5 & B1 \\ & & & 1281.1 \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$				$T_1 \sin \theta = 0.2g$	B1	
$ \begin{array}{ c c c c c c } \hline b & v = 4.2 \text{ ms}^{-1} & A1 \\ \hline & 5 & (i) & 25000/10 \\ & 1500g \sin 5 & B1 \\ & & & 1281.1 \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$				$T_1 \cos \theta = 0.2 \times v_{/r}^2$ or $0.2 \times r\omega^2$	M1	Attempt at resolving.
$ \begin{array}{ c c c c c c } \hline \textbf{5} & \textbf{(i)} & 25000/10 \\ 1500g \sin 5 & B1 \\ 2500 - 750 - 1500g \sin 5 = 1500a & A1 \\ a = 0.313 & A1 \\ \hline \textbf{5} & \textbf{(ii)} & WD \ against \ resistance = 750d \\ WD \ by \ engine = 25000 \times 28 \ (= 700000) \\ Change \ in \ FE = 1500g \times d \sin 5 \\ Change \ in \ KE = \pm \frac{1}{2} \times 1500 \times (20^2 - 10^2) \\ \times d \sin 5 & A1 \\ \hline $				$v = 4.2 \text{ ms}^{-1}$	A1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					[5]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	(i)		25000/10	B1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1500gsin5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						•
Solution				_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				a = 0.313		Allow 0.31
WD by engine = 25000×28 (= 700000) Change in PE = $1500g \times d\sin 5$ Change in KE = $\pm \frac{1}{2} \times 1500 \times (20^2 - 10^2)$ B1 B1 Use of correct formula for KE. Use conservation of energy, at least 3 used including WD by engine. $25000 \times 28 = \frac{1}{2} \times 1500 \times (20^2 - 10^2) + 750d + 1500g \times d\sin 5$ A1 $\times d\sin 5$ A1						
Change in PE = $1500g \times d\sin 5$ Change in KE = $\pm \frac{1}{2} \times 1500 \times (20^2 - 10^2)$ B1 Use of correct formula for KE. Use conservation of energy, at least 3 used including WD by engine. $25000 \times 28 = \frac{1}{2} \times 1500 \times (20^2 - 10^2) + 750d + 1500g$ $\times d\sin 5$ A1	5	(ii)				750h/sin5
Change in KE = $\pm \frac{1}{2} \times 1500 \times (20^2 - 10^2)$ B1 Use of correct formula for KE. Use conservation of energy, at least 3 used including WD by engine. $25000 \times 28 = \frac{1}{2} \times 1500 \times (20^2 - 10^2) + 750d + 1500g \times d\sin 5$ A1						1700
Use conservation of energy, at least 3 used including WD by engine. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{vmatrix} 25000 \times 28 &= \frac{1}{2} \times 1500 \times (20^2 - 10^2) + 750d + 1500g \\ \times d\sin 5 \end{vmatrix}$ engine.				Change in KE = $\pm \frac{1}{2} \times 1500 \times (20^{2} - 10^{2})$		
$\begin{vmatrix} 25000 \times 28 = \frac{1}{2} \times 1500 \times (20^2 - 10^2) + 750d + 1500g \\ \times d\sin 5 \end{vmatrix}$ A1					IVI I	
					A1	engme.
A = A + A + A + A + A + A + A + A + A +				d = 234	A1	
$\begin{bmatrix} u - 234 \\ \hline [7] \end{bmatrix}$				u – 23 f		

Question		n	Answer	Marks	Guidance
6	(i)		$v^2 = 2 \times 9.8 \times 3.136$	M1	Uses $v^2 = u^2 + 2as$ or energy with $u = 0$. Signs must be consistent.
			v = 7.84	A1	
			Rebound speed = $7.84e$	B1 FT	Ignore –ve.
			$I = \pm 0.5(7.84 + 7.84e) = \pm 3.92(1 + e)$	B1 FT	AEF seen. FT on $cv(v)$.
				[4]	
6	(ii)		-7.84e = 7.84e - gt	M1	Uses a complete method to find <i>t</i> .
			t = 1.6e AG	A1 [2]	
6	(iii)	(a)	$t_2 = 1.6e^2$	B1	
		(b)	$t_3 = 1.6e^3$	B1	
				[2]	
6	(iv)		Time to first bounce is 0.8 s	B1	
			Identify total time is sum of a GP in e	B1	Indication of the sum of at least to term in e ⁴
				M1	Equate 3.4 or 4.2 or 5 or 5.8 with attempt at use of formula for sum to infinity of a GP.
			$\frac{1.6e}{1-e} = 4.2$	A1	
			e = 0.724	A1 [5]	Allow 21/29
7	(i)		$For P 4.9t^2 = 60$	M1	Signs must be consistent.
			t = 3.5(0)	A1	aef
			For $Q = 25\sin\theta \times t - \frac{1}{2} \times 9.8 \times t^2$	M1	
			$\theta = 43.3$	A1	
			$PQ = (25\cos\theta - 15) \times t_c$	M1	
			= 11.2	A1	
				[6]	

C	uestion	Answer	Marks	Guidance	
7	(ii)	$25\cos\theta(t) = 15(t)$ and solving for θ	M1	Equating horizontal components of velocity (or displacement) and solving for θ .	
		θ = 53.1	A1		
		For Q $s_{y1} = 25\sin\theta \times t - \frac{1}{2} \times 9.8 \times t^2$	B1		
		For $P s_{y2} = \pm \frac{1}{2} \times 9.8 \times t^2$	B1		
		$Using s_{y1} + s_{y2} = 60$	*M1		
		Solving for <i>t</i>	M1dep*		
		t=3	A1		
		$v = 25\sin\theta - 9.8 \times 3$	M1	Other methods include finding time to max height for Q.	
		v = -9.4 therefore falling.	A1		
			[9]		
OR	(ii)	$25\cos\theta(t) = 15(t)$ and solving for θ	M1	Equating horizontal components of velocity (or displacement) and solving for θ .	
		θ = 53.1	A1		
		For Q $y = x \tan \theta - \frac{gx^2}{2 \times (25)^2 \cos^2 \theta}$	B1		
		For $P = (60-)\frac{gx^2}{2\times(15)^2}$	B1		
		Equate y and solve for x	*M1	Must include 60.	
		Use $x = u\cos\theta t$ to find t	M1dep*		
		t=3	A1		
		$v = 25\sin\theta - 9.8 \times 3$	M1	Other methods include finding time to max height for Q.	
		v = -9.4 therefore falling.	A1		
			[9]		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

