Mark Scheme 4726 June 2006

1 Correct expansion of $\sin x$ Multiply their expansion by $(1+x)$
Obtain $x+x^{2}-x^{3} / 6$

2 (i) Get $\sec ^{2} y \frac{d y}{d x}=1$ or equivalent
Clearly use $1+\tan ^{2} y=\sec ^{2} y$
Clearly arrive at A.G.
(ii) Reasonable attempt to diff. to $\frac{-2 x}{\left(1+x^{2}\right)^{2}}$

Substitute their expressions into D.E. Clearly arrive at A.G.

3 (i) State $y=0$ (or seen if working given)
(ii) Write as quad. in x^{2}

Use for real $x, b^{2}-4 a c \geq 0$
Produce quad. inequality in y
Attempt to solve inequality Justify A.G.

4 (i) Correct definition of $\cosh x$ or $\cosh 2 x$ Attempt to sub. in RHS and simplify Clearly produce A.G.
(ii) Write as quadratic in $\cosh x$

Solve their quadratic accurately
Justify one answer only
Give $\ln (4+\sqrt{ } 15)$

5 (i)
Get $(t+1 / 2)^{2}+3 / 4$
(ii) Derive or quote $\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t$

Derive or quote $\sin x=2 t /\left(1+t^{2}\right)$
Attempt to replace all x and $d x$
Get integral of form $A /\left(B t^{2}+C t+D\right)$ Use complete square form as $\tan ^{-1}(f(t))$ Get A.G.

B1 Quote or derive $x-1 / 6 x^{3}$
M1 Ignore extra terms
A1 $\sqrt{ }$ On their $\sin x$; ignore extra terms; allow 3 !
SC Attempt product rule M1 Attempt $f(0), \mathrm{f}^{\prime}(0), \mathrm{f}^{\prime \prime}(0) . .$. (at least 3) M1
Use Maclaurin accurately cao A1
M1
M1 May be implied
A1
M1 Use of chain/quotient rule
M1 Or attempt to derive diff. equ ${ }^{\text {n }}$.
A1
SC Attempt diff. of $\left(1+x^{2}\right) \mathrm{d} y=1 \mathrm{M} 1, \mathrm{~A} 1$ dx
Clearly arrive at A.G. B1
B1 Must be = ; accept x-axis; ignore any others

M1 $\left(x^{2} y-x+(3 y-1)=0\right)$
M1 Allow > ; or < for no real x
M1 $1 \geq 12 y^{2}-4 y ; 12 y^{2}-4 y-1 \leq 0$
M1 Factorise/ quadratic formula
A1 e.g. diagram / table of values of y
SC Attempt diff. by product/quotient M1 Solve dy/d $x=0$ for two real $x \quad$ M1 Get both $(-3,-1 / 6)$ and ($1,1 / 2$) A1 Clearly prove min./max. A1
Justify fully the inequality e.g. detailed graph

M1 or LHS if used

M1 $\left(2 \cosh ^{2} x-7 \cosh x-4=0\right)$
A1 $\sqrt{ }$ Factorise/quadratic formula
B1 State cosh $x \geq 1 /$ graph; allow ≥ 0
A1 cao; any one of $\pm \ln (4 \pm \sqrt{ } 15)$ or decimal equivalent of $\ln ()$

B1 cao
B1
B1
M1
A1 $\sqrt{ }$ From their expressions, $C \neq 0$
M1 From formulae book or substitution
A1

6 (i) Attempt to sum areas of rectangles Use G.P. on $h\left(1+3^{h}+3^{2 h}+\ldots+3^{(n-1) h}\right)$

Simplify to A.G.
(ii) Attempt to find sum areas of different rect. Use G.P. on $h\left(3^{h}+3^{2 h}+\ldots+3^{n h}\right)$

Simplify to A.G.
(iii) Get $1.8194(8), 1.8214(8)$ correct

7 (i) Attempt to solve $r=0, \tan \theta=-\sqrt{ } 3$ Get $\theta=-\frac{1}{3} \pi$ only
(ii) $r=\sqrt{ } 3+1$ when $\theta=1 / 4 \pi$
(iii)

(iv) Formula with correct r used

Replace $\tan ^{2} \theta=\sec ^{2} \theta-1$
Attempt to integrate their expression
Get $\theta+\sqrt{ } 3 \ln \sec \theta+1 / 2 \tan \theta$
Correct limits to $1 / 4 \pi+\sqrt{ } 3 \ln \sqrt{ } 2+1 / 2$
8 (i) Attempt to diff. using product/quotient
Attempt to solve $\mathrm{d} y / \mathrm{d} x=0$
Rewrite as A.G.
(ii) Diff. to $f^{\prime}(x)=1 \pm 2 \operatorname{sech}^{2} x$

Use correct form of $\mathrm{N}-\mathrm{R}$ with their expressions from correct $f(x)$
Attempt N-R with $x_{1}=2$ from previous M1
Get $x_{2}=1.9162(2)$ (3 s.f. min.)
Get $x_{3}=1.9150(1)(3$ s.f. min.)
(iii) Work out e_{1} and e_{2} (may be implied)

M1 $\left(h .3^{h}+h .3^{2 h}+\ldots+h .3^{(n-1) h}\right)$
M1 All terms not required, but last term needed (or 3^{1-h}); or specify a, r and n for a G.P.
A1 Clearly use $n h=1$
M1 Different from (i)
M1 All terms not required, but last term needed; G.P. specified as in (i), or deduced from (i)
A1
$\mathrm{B} 1, \mathrm{~B} 1$ Allow $1.81 \leq \mathrm{A} \leq 1.83$
M1 Allow $\pm \sqrt{ } 3$
A1 Allow -60°
$\mathrm{B} 1, \mathrm{~B} 1 \mathrm{AEF}$ for $r, 45^{\circ}$ for θ
B1 Correct r at correct end-values of θ; Ignore extra θ used

B1 Correct shape with r not decreasing

M1 r^{2} may be implied
B1
M1 Must be 3 different terms leading to any 2 of $a \theta+b \ln (\sec \theta / \cos \theta)+c \tan \theta$
A1 Condone answer $x 2$ if $1 / 2$ seen elsewhere
A1 cao; AEF
M1
M1
A1 Clearly gain A.G.
B1 Or $\pm 2 \operatorname{sech}^{2} x-1$
M1
M1 To get an x_{2}
A1
A1 cao

B1 $\sqrt{-0.083(8), ~}-0.0012$ (allow \pm if both of same sign); e_{1} from 0.083 to 0.085

Use $e_{2} \approx k e_{1}{ }^{2}$ and $e_{3} \approx k e_{2}{ }^{2}$
Get $e_{3} \approx e_{2}{ }^{3} / e_{1}{ }^{2}=-0.0000002$ (or 3)

9 (i) Rewrite as quad. in e^{y}
Solve to $\mathrm{e}^{y}=\left(x \pm \sqrt{ }\left(x^{2}+1\right)\right)$ Justify one solution only
(ii) Attempt parts on $\sinh x \cdot \sinh ^{n-1} x$

Get correct answer
Justify $\sqrt{ } 2$ by $\sqrt{ }\left(1+\sinh ^{2} x\right)$ for cosh x when limits inserted
Replace $\cosh ^{2}=1+\sinh ^{2}$; tidy at this stage Produce I_{n-2}
Gain A.G. clearly
(iii) Attempt $4 I_{4}=\sqrt{ } 2-3 I_{2}, 2 I_{2}=\sqrt{ } 2-I_{0}$ Work out $I_{0}=\sinh ^{-1} 1=\ln (1+\sqrt{ } 2)=\alpha$ Sub. back completely for I_{4} Get ${ }^{1} / 8(3 \ln (1+\sqrt{ } 2)-\sqrt{ } 2)$

M1
A1 $\sqrt{ } \pm$ if same sign as B1 $\sqrt{ }$
SC B1 only for $x_{4}-x_{3}$

M1 Any form
A1 Allow $y=\ln (\quad)$
B1 $x-\sqrt{ }\left(x^{2}+1\right)<0$ for all real x
SC Use $C^{2}-S^{2}=1$ for $C= \pm \sqrt{ }\left(1+x^{2}\right) \quad$ M1
Use/state $\cosh y+\sinh y=\mathrm{e}^{y} \quad \mathrm{~A} 1$
Justify one solution only B1
M1
A1 ($\left.\cosh x \cdot \sinh ^{n-1} x-\int \cosh ^{2} x \cdot(n-1) \sinh ^{n-2} x d x\right)$
B1 Must be clear
M1
A1
A1
M1 Clear attempt at iteration (one at least seen)
B1 Allow I_{2}
M1
A1 AEEF

